1
|
Zhang S, Guo Y, Lu Y, Liu F, Heng BC, Deng X. The considerations on selecting the appropriate decellularized ECM for specific regeneration demands. Mater Today Bio 2024; 29:101301. [PMID: 39498148 PMCID: PMC11532911 DOI: 10.1016/j.mtbio.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
An ideal biomaterial should create a customized tissue-specific microenvironment that can facilitate and guide the tissue repair process. Due to its good biocompatibility and similar biochemical properties to native tissues, decellularized extracellular matrix (dECM) generally yields enhanced regenerative outcomes, with improved morphological and functional recovery. By utilizing various decellularization techniques and post-processing protocols, dECM can be flexibly prepared in different states from various sources, with specifically customized physicochemical properties for different tissues. To initiate a well-orchestrated tissue-regenerative response, dECM exerts multiple effects at the wound site by activating various overlapping signaling pathways to promote cell adhesion, proliferation, and differentiation, as well as suppressing inflammation via modulation of various immune cells, including macrophages, T cells, and mastocytes. Functional tissue repair is likely the main aim when employing the optimized dECM biomaterials. Here, we review the current applications of different kinds of dECMs in an attempt to improve the efficiency of tissue regeneration, highlighting key considerations on developing dECM for specific tissue engineering applications.
Collapse
Affiliation(s)
- Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yixuan Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Fangyong Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
2
|
Li M, Zhao P, Wang J, Zhang X, Li J. Functional antimicrobial peptide-loaded 3D scaffolds for infected bone defect treatment with AI and multidimensional printing. MATERIALS HORIZONS 2024. [PMID: 39484845 DOI: 10.1039/d4mh01124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infection is the most prevalent complication of fractures, particularly in open fractures, and often leads to severe consequences. The emergence of bacterial resistance has significantly exacerbated the burden of infection in clinical practice, making infection control a significant treatment challenge for infectious bone defects. The implantation of a structural stent is necessary to treat large bone defects despite the increased risk of infection. Therefore, there is a need for the development of novel antibacterial therapies. The advancement in antibacterial biomaterials and new antimicrobial drugs offers fresh perspectives on antibacterial treatment. Although antimicrobial 3D scaffolds are currently under intense research focus, relying solely on material properties or antibiotic action remains insufficient. Antimicrobial peptides (AMPs) are one of the most promising new antibacterial therapy approaches. This review discusses the underlying mechanisms behind infectious bone defects and presents research findings on antimicrobial peptides, specifically emphasizing their mechanisms and optimization strategies. We also explore the potential prospects of utilizing antimicrobial peptides in treating infectious bone defects. Furthermore, we propose that artificial intelligence (AI) algorithms can be utilized for predicting the pharmacokinetic properties of AMPs, including absorption, distribution, metabolism, and excretion, and by combining information from genomics, proteomics, metabolomics, and clinical studies with computational models driven by machine learning algorithms, scientists can gain a comprehensive understanding of AMPs' mechanisms of action, therapeutic potential, and optimizing treatment strategies tailored to individual patients, and through interdisciplinary collaborations between computer scientists, biologists, and clinicians, the full potential of AI in accelerating the discovery and development of novel AMPs will be realized. Besides, with the continuous advancements in 3D/4D/5D/6D technology and its integration into bone scaffold materials, we anticipate remarkable progress in the field of regenerative medicine. This review summarizes relevant research on the optimal future for the treatment of infectious bone defects, provides guidance for future novel treatment strategies combining multi-dimensional printing with new antimicrobial agents, and provides a novel and effective solution to the current challenges in the field of bone regeneration.
Collapse
Affiliation(s)
- Mengmeng Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
- Trauma Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Peizhang Zhao
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
- Trauma Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jingwen Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
- Trauma Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xincai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Jun Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
- Trauma Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
3
|
de Silva L, van den Beucken JJJP, Rosenberg AJWP, Longoni A, Gawlitta D. Unraveling devitalization: its impact on immune response and ectopic bone remodeling from autologous and allogeneic callus mimics. Stem Cells Transl Med 2024:szae063. [PMID: 39276211 DOI: 10.1093/stcltm/szae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/12/2024] [Indexed: 09/16/2024] Open
Abstract
Endochondral bone regeneration is a promising approach in regenerative medicine. Callus mimics (CMs) are engineered and remodeled into bone tissue upon implantation. The long-term objective is to fabricate a sustainable off-the-shelf treatment option for patients. Devitalization was introduced to facilitate storage and using allogeneic (donor) cells would further propel the off-the-shelf approach. However, allogeneic CMs for bone regeneration pose a potential antigenicity concern. Here, we explored the impact of devitalization on antigenicity and osteoinductive bone formation when implanting syngeneic or allogeneic CM in a vital or devitalized state. For this, we implanted chondrogenically differentiated rat-derived mesenchymal stromal cells using an allogeneic immunocompetent ectopic rat model. Vital syngeneic CMs demonstrated the highest bone formation, and vital allogeneic CMs showed the lowest bone formation, while both devitalized CMs showed comparable intermediate levels of bone formation. Preceding bone formation, the level of tartrate-resistant acid phosphatase staining at 7 and 14 days was proportional to the level of eventual bone formation. No differences were observed for local innate immune responses at any time point before or after bone formation. In contrast, allogeneic CMs elicit a mild adaptive immune response, which still permits bone formation in an immunocompetent environment, albeit at a reduced rate compared to the autologous living counterpart. Overall, devitalization delays bone formation when autologous CMs are implanted, whereas it accelerates bone formation in allogeneic CMs, highlighting the potential of this approach for achieving off-the-shelf treatment.
Collapse
Affiliation(s)
- Leanne de Silva
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht 3584 CT, The Netherlands
| | | | - Antoine J W P Rosenberg
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Alessia Longoni
- Regenerative Medicine Center Utrecht, Utrecht 3584 CT, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht 3584 CT, The Netherlands
| |
Collapse
|
4
|
Sousa AR, Cunha AF, Santos-Coquillat A, Estrada BH, Spiller KL, Barão M, Rodrigues AF, Simões S, Vilaça A, Ferreira L, Oliveira MB, Mano JF. Shape-Versatile Fixed Cellular Materials for Multiple Target Immunomodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405367. [PMID: 38739450 PMCID: PMC11272431 DOI: 10.1002/adma.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Therapeutic cells are usually administered as living agents, despite the risks of undesired cell migration and acquisition of unpredictable phenotypes. Additionally, most cell-based therapies rely on the administration of single cells, often associated with rapid in vivo clearance. 3D cellular materials may be useful to prolong the effect of cellular therapies and offer the possibility of creating structural volumetric constructs. Here, the manufacturing of shape-versatile fixed cell-based materials with immunomodulatory properties is reported. Living cell aggregates with different shapes (spheres and centimeter-long fibers) are fixed using a method compatible with maintenance of structural integrity, robustness, and flexibility of 3D constructs. The biological properties of living cells can be modulated before fixation, rendering an in vitro anti-inflammatory effect toward human macrophages, in line with a decreased activation of the nuclear factor kappa B (NF-κB) pathway that preponderantly correlated with the surface area of the materials. These findings are further corroborated in vivo in mouse skin wounds. Contact with fixed materials also reduces the proliferation of activated primary T lymphocytes, while promoting regulatory populations. The fixation of cellular constructs is proposed as a versatile phenotypic stabilization method that can be easily implemented to prepare immunomodulatory materials with therapeutic potential.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ana F Cunha
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ana Santos-Coquillat
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Beatriz Hernaez Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Marta Barão
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Artur Filipe Rodrigues
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Susana Simões
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Andreia Vilaça
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
5
|
He Z, Li H, Zhang Y, Gao S, Liang K, Su Y, Du Y, Wang D, Xing D, Yang Z, Lin J. Enhanced bone regeneration via endochondral ossification using Exendin-4-modified mesenchymal stem cells. Bioact Mater 2024; 34:98-111. [PMID: 38186959 PMCID: PMC10770633 DOI: 10.1016/j.bioactmat.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Nonunions and delayed unions pose significant challenges in orthopedic treatment, with current therapies often proving inadequate. Bone tissue engineering (BTE), particularly through endochondral ossification (ECO), emerges as a promising strategy for addressing critical bone defects. This study introduces mesenchymal stem cells overexpressing Exendin-4 (MSC-E4), designed to modulate bone remodeling via their autocrine and paracrine functions. We established a type I collagen (Col-I) sponge-based in vitro model that effectively recapitulates the ECO pathway. MSC-E4 demonstrated superior chondrogenic and hypertrophic differentiation and enhanced the ECO cell fate in single-cell sequencing analysis. Furthermore, MSC-E4 encapsulated in microscaffold, effectively facilitated bone regeneration in a rat calvarial defect model, underscoring its potential as a therapeutic agent for bone regeneration. Our findings advocate for MSC-E4 within a BTE framework as a novel and potent approach for treating significant bone defects, leveraging the intrinsic ECO process.
Collapse
Affiliation(s)
- Zihao He
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Hui Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Shuang Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yiqi Su
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Du Wang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Zhen Yang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| |
Collapse
|
6
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
7
|
Schaller R, Moya A, Zhang G, Chaaban M, Paillaud R, Bartoszek EM, Schaefer DJ, Martin I, Kaempfen A, Scherberich A. Engineered phalangeal grafts for children with symbrachydactyly: A proof of concept. J Tissue Eng 2024; 15:20417314241257352. [PMID: 38872920 PMCID: PMC11171439 DOI: 10.1177/20417314241257352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Tissue engineering approaches hold great promise in the field of regenerative medicine, especially in the context of pediatric applications, where ideal grafts need to restore the function of the targeted tissue and consider growth. In the present study, we aimed to develop a protocol to engineer autologous phalangeal grafts of relevant size for children suffering from symbrachydactyly. This condition results in hands with short fingers and missing bones. A previously-described, developmentally-inspired strategy based on endochondral ossification (ECO)-the main pathway leading to bone and bone marrow development-and adipose derived-stromal cells (ASCs) as the source of chondroprogenitor was used. First, we demonstrated that pediatric ASCs associated with collagen sponges can generate hypertrophic cartilage tissues (HCTs) in vitro that remodel into bone tissue in vivo via ECO. Second, we developed and optimized an in vitro protocol to generate HCTs in the shape of small phalangeal bones (108-390 mm3) using freshly isolated adult cells from the stromal vascular fraction (SVF) of adipose tissue, associated with two commercially available large collagen scaffolds (Zimmer Plug® and Optimaix 3D®). We showed that after 12 weeks of in vivo implantation in an immunocompromised mouse model such upscaled grafts remodeled into bone organs (including bone marrow tissues) retaining the defined shape and size. Finally, we replicated similar outcome (albeit with a slight reduction in cartilage and bone formation) by using minimally expanded pediatric ASCs (3 × 106 cells per grafts) in the same in vitro and in vivo settings, thereby validating the compatibility of our pediatric phalanx engineering strategy with a clinically relevant scenario. Taken together, these results represent a proof of concept of an autologous approach to generate osteogenic phalangeal grafts of pertinent clinical size, using ASCs in children born with symbrachydactyly, despite a limited amount of tissue available from pediatric patients.
Collapse
Affiliation(s)
- Romain Schaller
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Adrien Moya
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gangyu Zhang
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Paillaud
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ewelina M Bartoszek
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandre Kaempfen
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
- Paediatric Orthopaedic, University Children’s Hospital Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
de Silva L, Longoni A, Staubli F, Nurmohamed S, Duits A, Rosenberg AJWP, Gawlitta D. Bone Regeneration in a Large Animal Model Featuring a Modular Off-the-Shelf Soft Callus Mimetic. Adv Healthc Mater 2023; 12:e2301717. [PMID: 37580174 PMCID: PMC11468236 DOI: 10.1002/adhm.202301717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Implantation of engineered cartilage with soft callus features triggers remodeling to bone tissue via endochondral bone regeneration (EBR). Thus far, EBR has not progressed to the level of large animals on the axis of clinical translation. Herein, the feasibility of EBR is aimed for a critical-sized defect in a large animal model. Chondrogenesis is first induced in goat-derived multipotent mesenchymal stromal cells (MSCs) by fine-tuning the cellular differentiation process. Through a unique devitalization process, two off-the-shelf constructs aimed to recapitulate the different stages of the transient cartilaginous soft callus template in EBR are generated. To evaluate bone regeneration, the materials are implanted in an adapted bilateral iliac crest defect model in goats, featuring a novel titanium star-shaped spacer. After 3 months, the group at the more advanced differentiation stage shows remarkable regenerative capacity, with comparable amounts of bone regeneration as the autograft group. In contrast, while the biomaterial mimicking the earlier stages of chondrogenesis shows improved regeneration compared to the negative controls, this is subpar compared to the more advanced material. Concluding, EBR is attainable in large animals with a soft callus mimetic material that leads to fast conversion into centimeter-scale bone, which prospects successful implementation in the human clinics.
Collapse
Affiliation(s)
- Leanne de Silva
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
| | - Alessia Longoni
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Flurina Staubli
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
| | - Silke Nurmohamed
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Anneli Duits
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Antoine J. W. P. Rosenberg
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
| |
Collapse
|
9
|
Eremeev A, Pikina A, Ruchko Y, Bogomazova A. Clinical Potential of Cellular Material Sources in the Generation of iPSC-Based Products for the Regeneration of Articular Cartilage. Int J Mol Sci 2023; 24:14408. [PMID: 37833856 PMCID: PMC10572671 DOI: 10.3390/ijms241914408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory joint diseases, among which osteoarthritis and rheumatoid arthritis are the most common, are characterized by progressive degeneration of the cartilage tissue, resulting in the threat of limited or lost joint functionality in the absence of treatment. Currently, treating these diseases is difficult, and a number of existing treatment and prevention measures are not entirely effective and are complicated by the patients' conditions, the multifactorial nature of the pathology, and an incomplete understanding of the etiology. Cellular technologies based on induced pluripotent stem cells (iPSCs) can provide a vast cellular resource for the production of artificial cartilage tissue for replacement therapy and allow the possibility of a personalized approach. However, the question remains whether a number of etiological abnormalities associated with joint disease are transmitted from the source cell to iPSCs and their chondrocyte derivatives. Some data state that there is no difference between the iPSCs and their derivatives from healthy and sick donors; however, there are other data indicating a dissimilarity. Therefore, this topic requires a thorough study of the differentiation potential of iPSCs and the factors influencing it, the risk factors associated with joint diseases, and a comparative analysis of the characteristics of cells obtained from patients. Together with cultivation optimization methods, these measures can increase the efficiency of obtaining cell technology products and make their wide practical application possible.
Collapse
Affiliation(s)
- Artem Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Arina Pikina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, GSP-1 Leninskie Gory, Moscow 119991, Russia
| | - Yevgeny Ruchko
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Alexandra Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
| |
Collapse
|
10
|
Kim J. Characterization of Biocompatibility of Functional Bioinks for 3D Bioprinting. Bioengineering (Basel) 2023; 10:bioengineering10040457. [PMID: 37106644 PMCID: PMC10135811 DOI: 10.3390/bioengineering10040457] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Three-dimensional (3D) bioprinting with suitable bioinks has become a critical tool for fabricating 3D biomimetic complex structures mimicking physiological functions. While enormous efforts have been devoted to developing functional bioinks for 3D bioprinting, widely accepted bioinks have not yet been developed because they have to fulfill stringent requirements such as biocompatibility and printability simultaneously. To further advance our knowledge of the biocompatibility of bioinks, this review presents the evolving concept of the biocompatibility of bioinks and standardization efforts for biocompatibility characterization. This work also briefly reviews recent methodological advances in image analyses to characterize the biocompatibility of bioinks with regard to cell viability and cell-material interactions within 3D constructs. Finally, this review highlights a number of updated contemporary characterization technologies and future perspectives to further advance our understanding of the biocompatibility of functional bioinks for successful 3D bioprinting.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
11
|
Gu Y, Pigeot S, Ahrens L, Tribukait‐Riemenschneider F, Sarem M, Wolf F, García‐García A, Barbero A, Martin I, Shastri VP. Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs. Adv Healthc Mater 2023; 12:e2202550. [PMID: 36527264 PMCID: PMC11469250 DOI: 10.1002/adhm.202202550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Engineering living bone tissue of defined shape on-demand has remained a challenge. 3D bioprinting (3DBP), a biofabrication process capable of yielding cell constructs of defined shape, when combined with developmental engineering can provide a possible path forward. Through the development of a bioink possessing appropriate rheological properties to carry a high cell load and concurrently yield physically stable structures, printing of stable, cell-laden, single-matrix constructs of anatomical shapes is realized without the need for fugitive or support phases. Using this bioink system, constructs of hypertrophic cartilage of predesigned geometry are engineered in vitro by printing human mesenchymal stromal cells at a high density to drive spontaneous condensation and implanted in nude mice to evoke endochondral ossification. The implanted constructs retain their prescribed shape over a 12-week period and undergo remodeling to yield ossicles of the designed shape with neovascularization. Microcomputed tomography, histological, and immunohistochemistry assessments confirm bone tissue characteristics and the presence of human cells. These results demonstrate the potential of 3DBP to fabricate complex bone tissue for clinical application.
Collapse
Affiliation(s)
- Yawei Gu
- Institute for Macromolecular ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Sebastien Pigeot
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
| | - Lucas Ahrens
- Institute for Macromolecular ChemistryUniversity of Freiburg79104FreiburgGermany
| | | | - Melika Sarem
- Institute for Macromolecular ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Francine Wolf
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
| | - Andres García‐García
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
| | - Andrea Barbero
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
| | - Ivan Martin
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
| | - V. Prasad Shastri
- Institute for Macromolecular ChemistryUniversity of Freiburg79104FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of Freiburg79104FreiburgGermany
| |
Collapse
|
12
|
He Y, Li F, Jiang P, Cai F, Lin Q, Zhou M, Liu H, Yan F. Remote control of the recruitment and capture of endogenous stem cells by ultrasound for in situ repair of bone defects. Bioact Mater 2023; 21:223-238. [PMID: 36157244 PMCID: PMC9465026 DOI: 10.1016/j.bioactmat.2022.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cell-based tissue engineering has provided a promising platform for repairing of bone defects. However, the use of exogenous bone marrow mesenchymal stem cells (BMSCs) still faces many challenges such as limited sources and potential risks. It is important to develop new approach to effectively recruit endogenous BMSCs and capture them for in situ bone regeneration. Here, we designed an acoustically responsive scaffold (ARS) and embedded it into SDF-1/BMP-2 loaded hydrogel to obtain biomimetic hydrogel scaffold complexes (BSC). The SDF-1/BMP-2 cytokines can be released on demand from the BSC implanted into the defected bone via pulsed ultrasound (p-US) irradiation at optimized acoustic parameters, recruiting the endogenous BMSCs to the bone defected or BSC site. Accompanied by the daily p-US irradiation for 14 days, the alginate hydrogel was degraded, resulting in the exposure of ARS to these recruited host stem cells. Then another set of sinusoidal continuous wave ultrasound (s-US) irradiation was applied to excite the ARS intrinsic resonance, forming highly localized acoustic field around its surface and generating enhanced acoustic trapping force, by which these recruited endogenous stem cells would be captured on the scaffold, greatly promoting them to adhesively grow for in situ bone tissue regeneration. Our study provides a novel and effective strategy for in situ bone defect repairing through acoustically manipulating endogenous BMSCs. We designed ARS and embedded it into SDF-1/BMP-2 loaded hydrogel to form BSC. The BSC can release SDF-1/BMP-2 by p-US irradiation for recruitment of endogenous BMSCs and capture them by s-US irradiation. The in situ repair of bone defects were successfully realized by US-mediated control of the recruitment and capture of BMSCs.
Collapse
Affiliation(s)
- Yanni He
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Peng Jiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Qin Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Meijun Zhou
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Corresponding author. Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Corresponding author. Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
13
|
Liu Y, Puthia M, Sheehy EJ, Ambite I, Petrlova J, Prithviraj S, Oxborg MW, Sebastian S, Vater C, Zwingenberger S, Struglics A, Bourgine PE, O'Brien FJ, Raina DB. Sustained delivery of a heterodimer bone morphogenetic protein-2/7 via a collagen hydroxyapatite scaffold accelerates and improves critical femoral defect healing. Acta Biomater 2023; 162:164-181. [PMID: 36967054 DOI: 10.1016/j.actbio.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Despite the glimmer of hope provided by the discovery and commercialization of bone morphogenetic protein-2 (BMP-2) as a bone graft substitute, side effects related to the use of supraphysiological doses have hindered its clinical usage. In this study, we compared the osteoinductive potential of BMP-2 homodimer with a heterodimer of BMP-2/7, both delivered via a collagen-hydroxyapatite (CHA) scaffold delivery system, with the aim to reduce the overall therapeutic BMP doses and the associated side-effects. We first show that the incorporation of hydroxyapatite in collagen-based BMP delivery systems is pivotal for achieving efficient BMP sequestration and controlled release. Using an ectopic implantation model, we then showed that the CHA+BMP-2/7 was more osteoinductive than CHA+BMP-2. Further evaluation of the molecular mechanisms responsible for this increased osteoinductivity at an early stage in the regeneration process indicated that the CHA+BMP-2/7 enhanced progenitor cell homing at the implantation site, upregulated the key transcriptomic determinants of bone formation, and increased the production of bone extracellular matrix components. Using fluorescently labelled BMP-2/7 and BMP-2, we demonstrated that the CHA scaffold provided a long-term delivery of both molecules for at least 20 days. Finally, using a rat femoral defect model, we showed that an ultra-low dose (0.5 µg) of BMP-2/7 accelerated fracture healing and performed at a level comparable to 20-times higher BMP-2 dose. Our results indicate that the sustained delivery of BMP-2/7 via a CHA scaffold could bring us a step closer in the quest for the use of physiological growth factor doses in fracture healing. STATEMENT OF SIGNIFICANCE: • Incorporation of hydroxyapatite (HA) in a collagen scaffold dramatically improves bone morphogenic protein (BMP) sequestration via biophysical interactions with BMP, thereby providing more controlled BMP release compared with pristine collagen. • We then investigate the molecular mechanisms responsible for increased osteoinductive potential of a heterodimer BMP-2/7 with is clinically used counterpart, the BMP-2 homodimer. • The superior osteoinductive properties of BMP-2/7 are a consequence of its direct positive effect on progenitor cell homing at the implantation site, which consequently leads to upregulation of cartilage and bone related genes and biochemical markers. • An ultra-low dose of BMP-2/7 delivered via a collagen-HA (CHA) scaffold leads to accelerated healing of a critical femoral defect in rats while a 20-times higher BMP-2 dose was required to achieve comparable results.
Collapse
|
14
|
Dupard SJ, Garcia AG, Bourgine PE. Customizable 3D printed perfusion bioreactor for the engineering of stem cell microenvironments. Front Bioeng Biotechnol 2023; 10:1081145. [PMID: 36698631 PMCID: PMC9870251 DOI: 10.3389/fbioe.2022.1081145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Faithful modeling of tissues and organs requires the development of systems reflecting their dynamic 3D cellular architecture and organization. Current technologies suffer from a lack of design flexibility and complex prototyping, preventing their broad adoption by the scientific community. To make 3D cell culture more available and adaptable we here describe the use of the fused deposition modeling (FDM) technology to rapid-prototype 3D printed perfusion bioreactors. Our 3D printed bioreactors are made of polylactic acid resulting in reusable systems customizable in size and shape. Following design confirmation, our bioreactors were biologically validated for the culture of human mesenchymal stromal cells under perfusion for up to 2 weeks on collagen scaffolds. Microenvironments of various size/volume (6-12 mm in diameter) could be engineered, by modulating the 3D printed bioreactor design. Metabolic assay and confocal microscopy confirmed the homogenous mesenchymal cell distribution throughout the material pores. The resulting human microenvironments were further exploited for the maintenance of human hematopoietic stem cells. Following 1 week of stromal coculture, we report the recapitulation of 3D interactions between the mesenchymal and hematopoietic fractions, associated with a phenotypic expansion of the blood stem cell populations.Our data confirm that perfusion bioreactors fit for cell culture can be generated using a 3D printing technology and exploited for the 3D modeling of complex stem cell systems. Our approach opens the gates for a more faithful investigation of cellular processes in relation to a dynamic 3D microenvironment.
Collapse
Affiliation(s)
- Steven J. Dupard
- Cell, Tissue and Organ engineering laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ engineering laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Paul E. Bourgine
- Cell, Tissue and Organ engineering laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
15
|
García-García A, Pigeot S, Martin I. Engineering of immunoinstructive extracellular matrices for enhanced osteoinductivity. Bioact Mater 2022; 24:174-184. [PMID: 36606254 PMCID: PMC9800268 DOI: 10.1016/j.bioactmat.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The increasing recognition of the contribution of the immune system to activate and prime regeneration implies that tissue engineering strategies and biomaterials design should target regulation of early immunological processes. We previously proposed the cell-based engineering and devitalization of extracellular matrices (ECMs) as a strategy to generate implant materials delivering custom-defined signals. Here, in the context of bone regeneration, we aimed at enhancing the osteoinductivity of such ECMs by enriching their immunomodulatory factors repertoire. Priming with IL1β a cell line overexpressing BMP-2 enabled engineering of ECMs preserving osteoinductive signals and containing larger amounts of angiogenic (VEGF) and pro-inflammatory molecules (IL6, IL8 and MCP1). Upon implantation, these IL1β-induced materials enhanced processes typical of the inflammatory phase (e.g., vascular invasion, osteoclast recruitment and differentiation), leading to 'regenerative' events (e.g., M2 macrophage polarization) and ultimately resulting in faster and more efficient bone formation. These results bear relevance towards the manufacturing of potent off-the-shelf osteoinductive materials and outline the broader paradigm of engineering immunoinstructive implants to enhance tissue regeneration.
Collapse
Affiliation(s)
- Andrés García-García
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland,Corresponding author. Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Sébastien Pigeot
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland,Department of Biomedical Engineering, University of Basel, 4123, Allschwill, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland,Department of Biomedical Engineering, University of Basel, 4123, Allschwill, Switzerland,Corresponding author. Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| |
Collapse
|
16
|
A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication. Acta Biomater 2022; 154:641-649. [PMID: 36261107 DOI: 10.1016/j.actbio.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
We previously described an immortalized, genetically-engineered human Mesenchymal stromal cell line to generate BMP2-enriched Chondrogenic Matrices (MB-CM), which after devitalization and storage could efficiently induce ectopic bone tissue by endochondral ossification. In order to increase the efficiency of MB-CM utilization towards engineering scaled-up bone structures, here we hypothesized that MB-CM can retain osteoinductive properties when combined with an osteoconductive material. We first tested different volumetric ratios of MB-CM:SmartBone® (as clinically used, osteoconductive reference material) and assessed the bone formation capacity of the resulting composites following ectopic mouse implantation. After 8 weeks, as little as 25% of MB-CM was sufficient to induce bone formation and fusion across SmartBone® granules, generating large interconnected bony structures. The same composite percentage was then further assessed in a scaled-up model, namely within an axially-vascularized, confined, ectopically prefabricated flap (0.8 cm3) in rats. The material efficiently induced the formation of new bone (31% of the cross-sectional area after 8 weeks), including bone marrow and vascular elements, throughout the flap volume. Our findings outline a strategy for efficient use of MB-CM as part of a composite material, thereby reducing the amount required to fill large spaces and enabling utilization in critically sized grafts, to address challenging clinical scenarios in bone reconstruction. STATEMENT OF SIGNIFICANCE: Most bone repair strategies rely either on osteconductive properties of ceramics and devitalized bone, or osteoinductive properties of growth factors and extracellular matrices (ECM). Here we designed a composite material made of a clinically accepted osteoconductive material and an off-the-shelf tissue engineered human cartilage ECM with strong osteoinductive properties. We showed that low amount of osteoinductive ECM potentiated host cells recruitment to form large vascularized bone structures in two different animal models, one being a challenging prefabricated bone-flap model targeting challenging clinical bone repair. Overall, this study highlights the use of a promising human off-the-shelf material for accelerated healing towards clinical applications.
Collapse
|
17
|
Zhang H, Li Q, Xu X, Zhang S, Chen Y, Yuan T, Zeng Z, Zhang Y, Mei Z, Yan S, Zhang L, Wei S. Functionalized Microscaffold-Hydrogel Composites Accelerating Osteochondral Repair through Endochondral Ossification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52599-52617. [PMID: 36394998 DOI: 10.1021/acsami.2c12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Osteochondral regeneration remains a key challenge because of the limited self-healing ability of the bone and its complex structure and composition. Biomaterials based on endochondral ossification (ECO) are considered an attractive candidate to promote bone repair because they can effectively address the difficulties in establishing vascularization and poor bone regeneration via intramembranous ossification (IMO). However, its clinical application is limited by the complex cellular behavior of ECO and the long time required for induction of the cell cycle. Herein, functionalized microscaffold-hydrogel composites are developed to accelerate the developmental bone growth process via recapitulating ECO. The design comprises arginine-glycine-aspartic acid (RGD)-peptide-modified microscaffolds loaded with kartogenin (KGN) and wrapped with a layer of RGD- and QK-peptide-comodified alginate hydrogel. These microscaffolds enhance the proliferation and aggregation behavior of the human bone marrow mesenchymal stem cells (hBMSCs); the controlled release of kartogenin induces the differentiation of hBMSCs into chondrocytes; and the hydrogel grafted with RGD and QK peptide facilitates chondrocyte hypertrophy, which creates a vascularized niche for osteogenesis and finally accelerates osteochondral repair in vivo. The findings provide an efficient bioengineering approach by sequentially modulating cellular ECO behavior for osteochondral defect repair.
Collapse
Affiliation(s)
- He Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Qian Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Xiangliang Xu
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Yang Chen
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Tao Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Tumor Biology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Ziqian Zeng
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Yifei Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Zi Mei
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Shuang Yan
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Lei Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Shicheng Wei
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
18
|
Chen J, Huang J, Shi J, Li M, Zhao E, Li G, Chen X, Wang T, Li Q, Li W, Ma J, Mao W, Fang R, Hao J, Huang W, Xiang AP, Zhang X. Nestin+ Peyer's patch resident MSCs enhance healing of inflammatory bowel disease through IL-22-mediated intestinal epithelial repair. Cell Prolif 2022; 56:e13363. [PMID: 36404603 PMCID: PMC9890526 DOI: 10.1111/cpr.13363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition characterized by gastrointestinal tract inflammation and still lacks satisfactory treatments. Mesenchymal stromal cells (MSCs) show promising potential for treating IBD, but their therapeutic efficacy varies depending on the tissue of origin. We aim to investigate whether intestine Peyer's patch (PP)-derived MSCs have superior immunomodulatory effects on T cells and better therapeutic effects on IBD compared with bone marrow-derived MSCs. We isolated PPs-derived Nestin+ MSCs (MSCsPP ) and bone marrow-derived Nestin+ MSCs (MSCsBM ) from Nestin-GFP transgenic mice to explore their curative effects on murine IBD model. Moreover, we tested the effects of IL-22 knockdown and IL-22 overexpression on the therapeutic efficacy of MSCsPP and MSCsBM in murine IBD, respectively. We demonstrated that Nestin+ cells derived from murine PPs exhibit MSC-like biological characteristics. Compared with MSCsBM , MSCsPP possess enhanced immunoregulatory ability to suppress T cell proliferation and inflammatory cytokine production. Moreover, we observed that MSCsPP exhibited greater therapeutic efficacy than MSCsBM in murine IBD models. Interestingly, IL-22, which was highly expressed in MSCsPP , could alleviate the severity of the intestinal inflammation, while knockdown IL-22 of MSCsPP remarkably weakened the therapeutic effects. More importantly, IL-22 overexpressing MSCsBM could significantly improve the symptoms of murine IBD models. This study systemically demonstrated that murine MSCsPP have a prominent advantage in murine IBD treatment, partly through IL-22.
Collapse
Affiliation(s)
- Jieying Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Jing Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Jiahao Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Minrong Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Erming Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Qiaojia Li
- Department of Medical Ultrasonicthe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Jianping Ma
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Wenzhe Mao
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Rui Fang
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Jiang Hao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of EducationSun Yat‐sen UniversityGuangzhouGuangdongChina,National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Grigoryan A, Zacharaki D, Balhuizen A, Côme CR, Garcia AG, Hidalgo Gil D, Frank AK, Aaltonen K, Mañas A, Esfandyari J, Kjellman P, Englund E, Rodriguez C, Sime W, Massoumi R, Kalantari N, Prithiviraj S, Li Y, Dupard SJ, Isaksson H, Madsen CD, Porse BT, Bexell D, Bourgine PE. Engineering human mini-bones for the standardized modeling of healthy hematopoiesis, leukemia, and solid tumor metastasis. Sci Transl Med 2022; 14:eabm6391. [PMID: 36223446 DOI: 10.1126/scitranslmed.abm6391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The bone marrow microenvironment provides indispensable factors to sustain blood production throughout life. It is also a hotspot for the progression of hematologic disorders and the most frequent site of solid tumor metastasis. Preclinical research relies on xenograft mouse models, but these models preclude the human-specific functional interactions of stem cells with their bone marrow microenvironment. Instead, human mesenchymal cells can be exploited for the in vivo engineering of humanized niches, which confer robust engraftment of human healthy and malignant blood samples. However, mesenchymal cells are associated with major reproducibility issues in tissue formation. Here, we report the fast and standardized generation of human mini-bones by a custom-designed human mesenchymal cell line. These resulting humanized ossicles (hOss) consist of fully mature bone and bone marrow structures hosting a human mesenchymal niche with retained stem cell properties. As compared to mouse bones, we demonstrate superior engraftment of human cord blood hematopoietic cells and primary acute myeloid leukemia samples and also validate hOss as a metastatic site for breast cancer cells. We further report the engraftment of neuroblastoma patient-derived xenograft cells in a humanized model, recapitulating clinically described osteolytic lesions. Collectively, our human mini-bones constitute a powerful preclinical platform to model bone-developing tumors using patient-derived materials.
Collapse
Affiliation(s)
- Ani Grigoryan
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Dimitra Zacharaki
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Alexander Balhuizen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christophe Rm Côme
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alejandro Garcia Garcia
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - David Hidalgo Gil
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Anne-Katrine Frank
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Javanshir Esfandyari
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Pontus Kjellman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Emelie Englund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Carmen Rodriguez
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Wondossen Sime
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Ramin Massoumi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Nasim Kalantari
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Sujeethkumar Prithiviraj
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Yuan Li
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Steven J Dupard
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, 221 85 Lund, Sweden
| | - Chris D Madsen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Paul E Bourgine
- Cell, Tissue & Organ engineering laboratory, Biomedical Centre (BMC) B11, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
20
|
Huang R, Fu R, Yan Y, Liu C, Yang J, Xie Y, Li Q. Engineering hypertrophic cartilage grafts from lipoaspirate for critical-sized calvarial bone defect reconstruction: An adipose tissue-based developmental engineering approach. Bioeng Transl Med 2022; 7:e10312. [PMID: 36176620 PMCID: PMC9472001 DOI: 10.1002/btm2.10312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Developmental engineering of living implants from different cell sources capable of stimulating bone regeneration by recapitulating endochondral ossification (ECO) is a promising strategy for large bone defect reconstruction. However, the clinical translation of these cell-based approaches is hampered by complex manufacturing procedures, poor cell differentiation potential, and limited predictive in vivo performance. We developed an adipose tissue-based developmental engineering approach to overcome these hurdles using hypertrophic cartilaginous (HyC) constructs engineered from lipoaspirate to repair large bone defects. The engineered HyC constructs were implanted into 4-mm calvarial defects in nude rats and compared with decellularized bone matrix (DBM) grafts. The DBM grafts induced neo-bone formation via the recruitment of host cells, while the HyC pellets supported bone regeneration via ECO, as evidenced by the presence of remaining cartilage analog and human NuMA-positive cells within the newly formed bone. However, the HyC pellets clearly showed superior regenerative capacity compared with that of the DBM grafts, yielding more new bone formation, higher blood vessel density, and better integration with adjacent native bone. We speculate that this effect arises from vascular endothelial growth factor and bone morphogenetic protein-2 secretion and mineral deposition in the HyC pellets before implantation, promoting increased vascularization and bone formation upon implantation. The results of this study demonstrate that adipose-derived HyC constructs can effectively heal large bone defects and present a translatable therapeutic option for bone defect repair.
Collapse
Affiliation(s)
- Ru‐Lin Huang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rao Fu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuxin Yan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chuanqi Liu
- Department of Plastic and Burn SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Jing Yang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yun Xie
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingfeng Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
21
|
Decoene I, Herpelinck T, Geris L, Luyten FP, Papantoniou I. Engineering bone-forming callus organoid implants in a xenogeneic-free differentiation medium. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.892190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The field of tissue engineering aspires to provide clinically relevant solutions for patients through the integration of developmental engineering principles with a bottom-up manufacturing approach. However, the manufacturing of cell-based advanced therapy medicinal products is hampered by protocol complexity, lack of non-invasive critical quality controls, and dependency on animal-derived components for tissue differentiation. We investigate a serum-free, chemically defined, xeno- and lipid-free chondrogenic differentiation medium to generate bone-forming callus organoids. Our results show an increase in microtissue homogeneity during prolonged differentiation and the high quality of in vivo bone-forming organoids. The low protein content of the culture medium potentially allows for the monitoring of relevant secreted biomarkers as (critical) quality attributes. Together, we envisage that this xeno- and lipid-free chondrogenic medium is compatible with industrial scale-up and automation while facilitating the implementation of non-invasive imaging and the use of quality control parameters based on secreted biomarkers.
Collapse
|
22
|
Guo C, Cao Z, Peng Y, Wu R, Xu H, Yuan Z, Xiong H, Wang Y, Wu Y, Li W, Kong Q, Wang Y, Wu J. Subchondral bone-inspired hydrogel scaffold for cartilage regeneration. Colloids Surf B Biointerfaces 2022; 218:112721. [PMID: 35905590 DOI: 10.1016/j.colsurfb.2022.112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/09/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023]
Abstract
Promoting the in situ regeneration of cartilage without additional cells or cytokines remains challenging. Here, inspired by the unique microstructures of subchondral bone, a cell and cytokine free hydrogel scaffold for cartilage regeneration was developed via a strategy of directional lyophilization and postcrosslinking. This strategy achieved intersecting microchannels in an orderly arrangement and an aligned ladder-like texture in a semi-interpenetrating hydrogel network. The resulting hydrogel had similar mechanical properties to the native cartilage extracellular matrix. Incorporating chitosan into the rigid network also endowed the hydrogel with excellent hemostatic properties. By delicately tuning the components and postcrosslinking conditions, the hydrogel was further endowed with suitable swelling and degradation properties for cartilage regeneration. In vitro tests showed that the highly biocompatible hydrogel scaffold could facilitate the migration and chondrogenic differentiation of bone marrow mesenchymal stem cells. In vivo results further verified that the hydrogel could promote the in situ regeneration of cartilage in a rat model of osteochondral defects. In summary, the subchondral bone-like hydrogel revealed promising prospects in cartilage regeneration and a variety of bioremediation applications.
Collapse
Affiliation(s)
- Chuan Guo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenxing Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Peng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hu Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhaoyang Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Xiong
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weilong Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Kong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
23
|
Cheng C, Chaaban M, Born G, Martin I, Li Q, Schaefer DJ, Jaquiery C, Scherberich A. Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue. Front Bioeng Biotechnol 2022; 10:841690. [PMID: 35350180 PMCID: PMC8957819 DOI: 10.3389/fbioe.2022.841690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Devitalized bone matrix (DBM) is currently the gold standard alternative to autologous bone grafting in maxillofacial surgery. However, it fully relies on its osteoconductive properties and therefore requires defects with healthy bone surrounding. Fractionated human adipose tissue, when differentiated into hypertrophic cartilage in vitro, was proven reproducibly osteogenic in vivo, by recapitulating endochondral ossification (ECO). Both types of bone substitutes were thus compared in an orthotopic, preclinical mandibular defect model in rat. Methods: Human adipose tissue samples were collected and cultured in vitro to generate disks of hypertrophic cartilage. After hypertrophic induction, eight samples from two donors were implanted into a mandible defect in rats, in parallel to Bio-Oss® DBM granules. After 12 weeks, the mandible samples were harvested and evaluated by Micro-CT and histology. Results: Micro-CT demonstrated reproducible ECO and complete restoration of the mandibular geometry with adipose-based disks, with continuous bone inside and around the defect, part of which was of human (donor) origin. In the Bio-Oss® group, instead, osteoconduction from the border of the defect was observed but no direct connection of the granules with the surrounding bone was evidenced. Adipose-based grafts generated significantly higher mineralized tissue volume (0.57 ± 0.10 vs. 0.38 ± 0.07, n = 4, p = 0.03) and newly formed bone (18.9 ± 3.4% of surface area with bone tissue vs. 3 ± 0.7%, p < 0.01) than Bio-Oss®. Conclusion: Our results provide a proof-of-concept that adipose-based hypertrophic cartilage grafts outperform clinical standard biomaterials in maxillofacial surgery.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Arnaud Scherberich,
| | - Dirk J. Schaefer
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Claude Jaquiery
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, Basel, Switzerland
- *Correspondence: Qingfeng Li, ; Arnaud Scherberich,
| |
Collapse
|
24
|
Wu J, Vunjak-Novakovic G. Bioengineering human cartilage-bone tissues for modeling of osteoarthritis. Stem Cells Dev 2022; 31:399-405. [PMID: 35088600 PMCID: PMC9398485 DOI: 10.1089/scd.2021.0317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease worldwide, yet we continue to lack an understanding of disease etiology and pathology, and effective treatment options. Essential to tissue homeostasis, disease pathogenesis, and therapeutic responses are the stratified organization of cartilage and the crosstalk at the osteochondral junction. Animal models may capture some of these features, but to establish clinically consistent therapeutics, there remains a need for high-fidelity models of OA that meet all the above requirements in a human, patient-specific manner. In vitro bioengineered cartilage-bone tissue models could be developed to recapitulate physiological interactions with human cells and disease initiating factors. Here we highlight human induced pluripotent stem cells (hiPSCs) as the advantageous cell source for these models and review approaches for chondrogenic fate specification from hiPSCs. To achieve native-like stratified cartilage organization with cartilage-bone interactions, spatiotemporal cues mimicking development can be delivered to engineered tissues by patterning of the cells, scaffold, and the environment. Once healthy and native-like cartilage-bone tissues are established, an OA-like state can be induced via cytokine challenge or injurious loading. Bioengineered cartilage-bone tissues fall short of recapitulating the full complexity of native tissues, but have demonstrated utility in elucidating some mechanisms of OA progression and enabled screening of candidate therapeutics in patient-specific models. With rapid progress in stem cells, tissue engineering, imaging, and high throughput -omics research in recent years, we propose that advanced human tissue models will soon offer valuable contributions to our understanding and treatment of OA.
Collapse
Affiliation(s)
- Josephine Wu
- Columbia University, 5798, Biomedical Engineering, New York, New York, United States;
| | - Gordana Vunjak-Novakovic
- Columbia University, 5798, Biomedical Engineering, 622 west 168th St, VC12-234, New York, New York, United States, 10032;
| |
Collapse
|
25
|
Zhao X, Liu Y, Coates P, Caton-Rose F, Ye L. Triple-shape memory effect of long-chain branched Poly(lactic acid)-b-poly(lactide-co-caprolactone) and its controllable shape recovery as self-fastening smart bone fixture. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Klontzas ME, Protonotarios A. High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review. Bioengineering (Basel) 2021; 8:182. [PMID: 34821748 PMCID: PMC8614770 DOI: 10.3390/bioengineering8110182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods-including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)-have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.
Collapse
Affiliation(s)
- Michail E. Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, 71110, Heraklion, Crete, Greece
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), 70013 Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, Voutes Campus, University of Crete, 71003 Heraklion, Crete, Greece
| | | |
Collapse
|