1
|
Tang H, Wan K, Zhang K, Wang A, Wang M, Xie J, Su P, Dong H, Sun J, Li Y. Realizing Dual-Mode Zinc-Ion Storage of Generic Vanadium-Based Cathodes via Organic Molecule Intercalation. ACS NANO 2024; 18:30896-30909. [PMID: 39460714 DOI: 10.1021/acsnano.4c12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Intercalation engineering is a promising strategy to promote zinc-ion storage of layered cathodes; however, is impeded by the complex fabrication routes and inert electrochemical behaviors of intercalators. Herein, an organic imidazole intercalation strategy is proposed, where V2O5 and NH4V3O8 (NVO) model materials are adopted to verify the feasibility of the imidazole intercalator in improving the zinc storage capabilities of vanadium-based cathodes. The intercalated imidazole molecules could not only expand interlayer spacing and strengthen structural stability by serving as extra "pillars" but also provide extra coordination sites for zinc storage via the coordination reaction between Zn2+ and the C═N group. This gives rise to a dual-mode ion storage mechanism and favorable electrochemical performances. As a result, imidazole-intercalated V2O5 delivers a capacity of 179.9 mAh g-1 after 5000 cycles at 20 A g-1, while the imidazole-intercalated NVO harvests a high capacity output of 170.2 mAh g-1 after 700 cycles at 2 A g-1. This work is anticipated to boost the application potentials of vanadium-based cathodes in aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Hongwei Tang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Kexin Wan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Kang Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ao Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mingkun Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Juan Xie
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Pengcheng Su
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yihui Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Niu H, Liu H, Yang L, Kang T, Shen T, Jiang B, Huang WH, Chang CC, Pei Y, Cao G, Liu C. Impacts of distorted local chemical coordination on electrochemical performance in hydrated vanadium pentoxide. Nat Commun 2024; 15:9421. [PMID: 39482299 PMCID: PMC11527994 DOI: 10.1038/s41467-024-53785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Modulating and elevating the operating voltage of a given cathode is a significant challenge to enhance the energy density of secondary batteries without sacrificing power output. The chemical coordination strongly influences the energy levels of d-orbitals of redox cations in cathode materials, which tie to their operating voltage. In contrast to concentrated studies on enhancing the specific capacity, in this study, we choose bi-layered hydrated vanadium pentoxide as the model to modulate the d-orbital energy levels through local chemical coordination manipulation, achieving a higher operating voltage in rechargeable aqueous zinc ion batteries. Here we show that, by employing X-ray absorption spectroscopy (XAS) and pair distribution function (PDF) techniques, we can analyze the distortion of [VO6] octahedra and extract chemical bond information, deciphering the correlation between the chemical coordination and operating voltage in cathode materials. The fundamentals could guide the designing and developing RAZIBs with higher energy and power density.
Collapse
Affiliation(s)
- Huanhuan Niu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Heng Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Long Yang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Te Kang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Ting Shen
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Bingqi Jiang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 300092, Taiwan
| | - Chun-Chi Chang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yanzhong Pei
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| | - Guozhong Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Chaofeng Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| |
Collapse
|
3
|
Fan S, Liu H, Chen Z, Zhang Q, Yuan C, Li Y, Peng W, Fan X. Evaluating the Intrinsic Zinc Storage Capacity of Cation-Preintercalated Cathode with Electrochemically Active Surface Area. NANO LETTERS 2024; 24:13583-13591. [PMID: 39418099 DOI: 10.1021/acs.nanolett.4c03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The guest cation preintercalation strategy has been widely adopted to improve the performance of zinc-vanadium batteries. However, existing studies always ignore the deintercalation of guest cations. This work focuses on the severe and universal deintercalation phenomenon and confirms the unaltered capacity after deintercalation, indicating that the capacity improvement mechanism cannot be attributed to the role of guest cations. Therefore, after excluding all of the previously researched factors for capacity improvement, the decisive factor is identified as the morphology (surface area). Based on the electrochemically active surface area (ECSA), a quantitative relationship with intrinsic capacity is established for the first time. This guides us to enhance battery capacity via enhancing ECSA through liquid-phase ultrasonic crushing to achieve the highest capacity of cation-preintercalated V2O5·nH2O (333.7 mAh g-1 at 10 A g-1). We believe that the enhanced ECSA is a plausible explanation for the improved performance of hydrated vanadium oxides.
Collapse
Affiliation(s)
- Shiyuan Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Huibin Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Zhuo Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Chen Yuan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
Zhang Y, Tan X, Han Z, Wang Y, Jiang H, Zhang F, Zhu X, Meng C, Huang C. Dual modification of cobalt silicate nanobelts by Co 3O 4 nanoparticles and phosphorization boosting oxygen evolution reaction properties. J Colloid Interface Sci 2024; 679:1036-1045. [PMID: 39418891 DOI: 10.1016/j.jcis.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Oxygen evolution reaction (OER) process is the "bottleneck" of water splitting, and the low-cost and high-efficient OER catalysts are of great importance and attractive but they are still challenging. Herein, a dual modification strategy is developed to tune and enrich the structure of cobalt silicate (Co2SiO4) showing boosted OER properties. Cobalt oxide (Co3O4) decorated Co2SiO4 nanobelts, denoted as CS, is firstly prepared using a Co-based precursor by a facile hydrothermal reaction. Then, cobalt phosphide (CoP) nanoparticles are in-situ grown on CS (denoted as CS-P) by the phosphorization process, which provide many active sites and boost the surface reactivity. The experimental results and density function theory (DFT) calculations both reveal that the CoP on CS can improve the conductivity and ensure fast kinetics, thus leading to boost the OER properties of Co2SiO4. When the phosphorization temperature is at 400 °C (CS-P400), it gains the lowest overpotential of 297 mV, which is much lower than CS (340 mV) and Co2SiO4 (409 mV) at 10 mA·cm-2, and even superior to the state-of-the-art transition metal silicates. CS-P400 also achieves high electrochemical active surface area (ECSA) and small Tafel slope owing to its porous structures with large specific surface area and nanosheet-like structures which are good for exposing many active sites and favorable to the fast kinetics. This work not only provides a dual modification route to boost catalytic activity of Co2SiO4 (CS-P400), but also sheds light on a new avenue for developing highly dispersed CoP on silicates to boost OER performances.
Collapse
Affiliation(s)
- Yifu Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Xianfang Tan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhixuan Han
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Hanmei Jiang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Fangfang Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xiaoming Zhu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Changgong Meng
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chi Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
5
|
Yuan G, Su Y, Zhang X, Gao B, Hu J, Sun Y, Li W, Zhang Z, Shakouri M, Pang H. Charged organic ligands inserting/supporting the nanolayer spacing of vanadium oxides for high-stability/efficiency zinc-ion batteries. Natl Sci Rev 2024; 11:nwae336. [PMID: 39430066 PMCID: PMC11487576 DOI: 10.1093/nsr/nwae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Given their high safety, environmental friendliness and low cost, aqueous zinc-ion batteries (AZIBs) have the potential for high-performance energy storage. However, issues with the structural stability and electrochemical kinetics during discharge/charge limit the development of AZIBs. In this study, vanadium oxide electrodes with organic molecular intercalation were designed based on intercalating 11 kinds of charged organic carboxylic acid ligands between 2D layers to regulate the interlayer spacing. The negatively charged carboxylic acid group can neutralize Zn2+, reduce electrostatic repulsion and enhance electrochemical kinetics. The intercalated organic molecules increased the interlayer spacing. Among them, the 0.028EDTA · 0.28NH4 + · V2O5 · 0.069H2O was employed as the cathode with a high specific capacity (464.6 mAh g-1 at 0.5 A g-1) and excellent rate performance (324.4 mAh g-1 at 10 A g-1). Even at a current density of 20 A g-1, the specific capacity after 2000 charge/discharge cycles was 215.2 mAh g-1 (capacity retention of 78%). The results of this study demonstrate that modulation of the electrostatic repulsion and interlayer spacing through the intercalation of organic ligands can enhance the properties of vanadium-based materials.
Collapse
Affiliation(s)
- Guoqiang Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yichun Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiangling Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Biao Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinliang Hu
- Jiangsu Yangnong Chemical Group Co. Ltd., Yangzhou 225009, China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon S7N 2V3, Canada
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Zhang A, Yin X, Saadoune I, Wei Y, Wang Y. Zwitterion Intercalated Manganese Dioxide Nanosheets as High-Performance Cathode Materials for Aqueous Zinc Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402811. [PMID: 38845061 DOI: 10.1002/smll.202402811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Indexed: 10/19/2024]
Abstract
In this study, a novel approach is introduced to address the challenges associated with structural instability and sluggish reaction kinetics of δ-MnO2 in aqueous zinc ion batteries. By leveraging zwitterionic betaine (Bet) for intercalation, a departure from traditional cation intercalation methods, Bet-intercalated MnO2 (MnO2-Bet) is synthesized. The positively charged quaternary ammonium groups in Bet form strong electrostatic interactions with the negatively charged oxygen atoms in the δ-MnO2 layers, enhancing structural stability and preventing layer collapse. Concurrently, the negatively charged carboxylate groups in Bet facilitate the rapid diffusion of H+/Zn2+ ions through their interactions, thus improving reaction kinetics. The resulting MnO2-Bet cathode demonstrates high specific capacity, excellent rate capability, fast reaction kinetics, and extended cycle life. This dual-function intercalation strategy significantly optimizes the electrochemical performance of δ-MnO2, establishing it as a promising cathode material for advanced aqueous zinc ion batteries.
Collapse
Affiliation(s)
- Aina Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Xiuxiu Yin
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ismael Saadoune
- Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Zhao Y, He T, Li J, Zhu C, Tan Y, Zhu K, Chou S, Chen Y. Carbon Superstructure-Supported Half-Metallic V 2O 3 Nanospheres for High-Efficiency Photorechargeable Zinc Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202408218. [PMID: 38923694 DOI: 10.1002/anie.202408218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Photorechargeable zinc ion batteries (PZIBs), which can directly harvest and store solar energy, are promising technologies for the development of a renewable energy society. However, the incompatibility requirement between narrow band gap and wide coverage has raised severe challenges for high-efficiency dual-functional photocathodes. Herein, half-metallic vanadium (III) oxide (V2O3) was first reported as a dual-functional photocathode for PZIBs. Theoretical and experimental results revealed its unique photoelectrical and zinc ion storage properties for capturing and storing solar energy. To this end, a synergistic protective etching strategy was developed to construct carbon superstructure-supported V2O3 nanospheres (V2O3@CSs). The half-metallic characteristics of V2O3, combined with the three-dimensional superstructure assembled by ultrathin carbon nanosheets, established rapid charge transfer networks and robust framework for efficient and stable solar-energy storage. Consequently, the V2O3@CSs photocathode delivered record zinc ion storage properties, including a photo-assisted discharge capacities of 463 mA ⋅ h ⋅ g-1 at 2.0 A ⋅ g-1 and long-term cycling stability over 3000 cycles. Notably, the PZIBs assembled using V2O3@CSs photocathodes could be photorecharged without an external circuit, exhibiting a high photo conversion efficiency (0.354 %) and photorecharge voltage (1.0 V). This study offered a promising direction for the direct capture and storage of solar energy.
Collapse
Affiliation(s)
- Yingying Zhao
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications (Ministry of Industry and Information Technology of China), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Tianqi He
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications (Ministry of Industry and Information Technology of China), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jinhang Li
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications (Ministry of Industry and Information Technology of China), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yujie Tan
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications (Ministry of Industry and Information Technology of China), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Kai Zhu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yujin Chen
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications (Ministry of Industry and Information Technology of China), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
8
|
Chen D, Yang M, Ming Y, Cai W, Shi S, Pan Y, Hu X, Yu R, Wang Z, Fei B. Synergetic Effect of Mo-Doped and Oxygen Vacancies Endows Vanadium Oxide with High-Rate and Long-Life for Aqueous Zinc Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405168. [PMID: 39235421 DOI: 10.1002/smll.202405168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Vanadium (V)-based oxides have garnered significant attention as cathode materials for aqueous zinc-ion batteries (AZIBs) due to their multiple valences and high theoretical capacity. However, their sluggish kinetics and low conductivity remain major obstacles to practical applications. In this study, Mo-doped V2O3 with oxygen vacancies (OVs, Mo-V2O3-x@NC) is prepared from a Mo-doped V-metal organic framework. Ex situ characterizations reveal that the cathode undergoes an irreversible phase transformation from Mo-V2O3-x to Mo-V2O5-x·nH2O and serves as an active material exhibiting excellent Zn2+ storage in subsequent charge-discharge cycles. Mo-doped helps to further improve cycling stability and increases with increasing content. More importantly, the synergistic effect of Mo-doped and OVs not only effectively reduces the Zn2+ migration energy barrier, but also enhances reaction kinetics, and electrochemical performance. Consequently, the cathode demonstrates ultrafast electrochemical kinetics, showing a superior rate performance (190.9 mAh g-1 at 20 A g-1) and excellent long-term cycling stability (147.9 mAh g-1 at 20 A g-1 after 10000 cycles). Furthermore, the assembled pouch cell exhibits excellent cycling stability (313.6 mAh g-1 at 1 A g-1 after 1000 cycles), indicating promising application prospects. This work presents an effective strategy for designing and fabricating metal and OVs co-doped cathodes for high-performance AZIBs.
Collapse
Affiliation(s)
- Daming Chen
- Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Ming Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Ming
- Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Wei Cai
- Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Shuo Shi
- Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yicai Pan
- Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Xin Hu
- Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Rujun Yu
- Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Ziqi Wang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Bin Fei
- Materials Synthesis and Processing Lab, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
9
|
Ren T, Xu A, Chen C, Wang Y, Zhang Y, Wang H, Liu X. A Synergistically Regulated Cathode/Electrolyte Interphase With High Stability and Rapid Zn 2+ Migration Toward Advanced Flexible Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405719. [PMID: 39221679 DOI: 10.1002/smll.202405719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Na3V2(PO4)3(NVP), as a representative sodium superionic conductor with a stable polyanion framework, is considered a cathode candidate for aqueous zinc-ion batteries attributed to their high discharge platform and open 3D structure. Nevertheless, the structural stability of NVP and the cathode-electrolyte interphase (CEI) layer formed on NVP can be deteriorated by the aqueous electrolyte to a certain extent, which will result in slow Zn2+ migration. To solve these problems, doping Si elements to NVP and adding sodium acetate (NaAc) to the electrolyte are utilized as a synergistic regulation route to enable a highly stable CEI with rapid Zn2+ migration. In this regard, Ac- competitively takes part in the solvation structure of Zn2+ in aqueous electrolyte, weakening the interaction between water and Zn2+, and meanwhile a highly stable CEI is formed to avoid structural damage and enable rapid Zn2+ migration. The NVPS/C@rGO electrode exhibits a notable capacity of 115.5 mAh g-1 at a current density of 50 mA g-1 in the mixed electrolyte (3 M ZnOTF2+3 M NaAc). Eventually, a collapsible "sandwich" soft pack battery is designed and fabricated and can be used to power small fans and LEDs, which proves the practical application of aqueous zinc-ion batteries in flexible batteries.
Collapse
Affiliation(s)
- Tiantian Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ao Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Chunxia Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yangyang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yuhang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
10
|
Li M, Ding Y, Zhang S, Liu M, Li J, Sun Y, Zhu L, Li H, Yu ZG, Zhang YW, Pan H, Yin B, Ma T. Organic-Inorganic Coupling Strategy: Clamp Effect to Capture Mg 2+ for Aqueous Magnesium Ion Capacitor. Angew Chem Int Ed Engl 2024:e202412735. [PMID: 39205491 DOI: 10.1002/anie.202412735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The rapid transport kinetics of divalent magnesium ions are crucial for achieving distinguished performance in aqueous magnesium-ion battery-based energy storage capacitors. However, the strong electrostatic interaction between Mg2+ with double charges and the host material significantly restricts Mg2+ diffusivity. In this study, a new composite material, EDA-Mn2O3, with double-energy storage mechanisms comprising an organic phase (ethylenediamine, EDA) and an inorganic phase (manganese sesquioxide) was successfully synthesized via an organic-inorganic coupling strategy. Inorganic-phase Mn2O3 serves as a scaffold structure, enabling the stable and reversible intercalation/deintercalation of magnesium ions. The organic phase EDA adsorbed onto the surface of Mn2O3 as an elastic matrix, works synergistically with Mn2O3, and utilizes bidentate chelating ligands to capture Mg2+. The robust coordination effect of terminal biprotonic amine in EDA enhances the structural diversity and specific capacity characteristics of the composite material, as further corroborated by density functional theory (DFT) calculations, ex situ XRD, XPS, and Raman spectroscopy. As expected, the EDA-Mn2O3 composite achieved an outstanding specific discharge capacity of 188.97 mAh/g at 0.1 A/g. Additionally, an aqueous magnesium ion capacitor with EDA-Mn2O3 serving as the cathode can reach 110.17 Wh/kg, which stands out among the aqueous magnesium ion capacitors that have been reported thus far. The abundant reversible redox sites are ensured by the strategic design concept based on the synergistic structure and composition advantages of organic and inorganic phases. This study aimed to explore the practical application value of organic-inorganic composite electrodes with double-energy storage mechanisms.
Collapse
Affiliation(s)
- Mudi Li
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Material, College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Yaxi Ding
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Material, College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Siwen Zhang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Material, College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Minghui Liu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Material, College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Jiazhuo Li
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Material, College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Material, College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Lingfeng Zhu
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Zhi Gen Yu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Republic of Singapore, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Republic of Singapore, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632
| | - Hongge Pan
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Bosi Yin
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Material, College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
11
|
Li X, Sun Y, Zhou L, Wang H, Xie B, Lu W, Ning J, Hu Y. Suppressing Jahn-Teller distortion and locking lattice water with doped Fe(III) in birnessite toward fast and stable zinc-ion batteries. MATERIALS HORIZONS 2024; 11:4133-4143. [PMID: 38895768 DOI: 10.1039/d4mh00544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Birnessite has been regarded as a promising cathode material for aqueous zinc-ion batteries (ZIBs), but severe Jahn-Teller distortion and abrupt lattice collapse at deep charged states lead to serious problems such as poor capacity retention and short cycle life, which severely impede its practical applications. We herein report the construction of an advanced layered Fe-doped Na0.55Mn2O4·xH2O (Fe-NMO·xH2O) cathode to promote zinc-ion storage performance and electrochemical stability. An outstanding capacity of 102 mA h g-1 at a high current density of 20 A g-1 and a long cycle life of 6000 cycles have been achieved, comparable to the state-of-the-art manganese oxide-based cathodes. Both experimental measurements and theoretical calculations reveal that Fe3+ substitution and lattice water cooperatively stabilize the interlayer structure, accelerate zinc-ion diffusion, and improve electronic conductivity. Notably, Fe doping is conducive to alleviating the Jahn-Teller effect and locking lattice water, which effectively prevents phase transformation and lattice collapse during the (de)intercalation process. This work sheds light on the synergistic interplay between dopants and structural water in zinc-ion storage and demonstrates instructive strategies to regulate layered structures for ZIBs.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Yanchun Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Le Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Binbin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China.
| | - Wen Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiqiang Ning
- Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yong Hu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
12
|
Liu B, Huang A, Yuan X, Chang X, Yang Z, Lyle K, Kaner RB, Li Y. Laser-Scribed Battery Electrodes for Ultrafast Zinc-Ion Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404796. [PMID: 38809576 DOI: 10.1002/adma.202404796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Aqueous Zn batteries are promising for large-scale energy storage but are plagued by the lack of high-performance cathode materials that enable high specific capacity, ultrafast charging, and outstanding cycling stability. Here, a laser-scribed nano-vanadium oxide (LNVO) cathode is designed that can simultaneously achieve these properties. The material stores charge through Faradaic redox reactions on/near the surface at fast rates owing to the small grain size of vanadium oxide and interpenetrating 3D graphene network, displaying a surface-controlled capacity contribution (90%-98%). Multiple characterization techniques unambiguously reveal that zinc and hydronium ions co-insert with minimal lattice change upon cycling. It is demonstrated that a high specific capacity of 553 mAh g-1 is achieved at 0.1 A g-1, and an impressive 264 mAh g-1 capacity is retained at 100 A g-1 within 10 s, showing excellent rate capability. The LNVO/Zn can also reach >90% capacity retention after 3000 cycles at a high rate of 30 A g-1, as well as achieving both high energy (369 Wh kg-1) and power densities (56306 W kg-1). Moreover, the LNVO cathode retains its excellent cycling performance when integrated into quasi-solid-state pouch cells, further demonstrating mechanical stability and its potential for practical application in wearable and grid-scale applications.
Collapse
Affiliation(s)
- Bo Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Ailun Huang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Xintong Yuan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Xueying Chang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Zhiyin Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Katelyn Lyle
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Richard B Kaner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
Zhang C, Wu ZH, Yang CQ, Guo XZ, Yu YX, Yang Y. Rational Regulation of Optimal Oxygen Vacancy Concentrations on VO 2 for Superior Aqueous Zinc-Ion Battery Cathodes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39068602 DOI: 10.1021/acsami.4c05618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
VO2 with its special tunnel structure and high theoretical capacity is an ideal candidate for cathode materials for aqueous zinc-ion batteries (ZIBs). However, the slow kinetics and structural instability due to the strong electrostatic interactions between the host structure of VO2 and Zn2+ hinder its application. Defect engineering is a well-recognized strategy for improving the intrinsic ion-electron dynamics and structural stability of this material. However, the preparation of oxygen vacancies poses significant difficulties, and it is challenging to control their concentration effectively. Excessive or insufficient vacancy concentration can have a negative effect on the cathode material. Herein, we propose electrode materials with controlled oxygen vacancies prepared in situ on carbon nanofibers (CNF) by a simple, one-step hydrothermal process (Ov-VO2@CNF). This method can balance the adsorption energy and migration energy barrier easily, and we maximized the adsorption energy of Zn2+ while minimizing the adsorption energy barrier. Notably, the Ov2-VO2@CNF electrode delivered a high specific capacity (over 450 mAh g-1 at 0.1 A g-1) and excellent cycle stability (318 mAh g-1 at 5 A g-1 capacity after 2000 cycles with a capacity retention of 85%). This rational design of precisely regulated defect engineering provides a way to obtain advanced electrode materials with excellent comprehensive properties.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhi-Hai Wu
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ci-Qing Yang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiao-Ze Guo
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yang-Xin Yu
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ying Yang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
14
|
Tong Y, Wei Y, Song AJ, Ma Y, Yang J. Polyaniline/Tungsten Trioxide Organic-Inorganic Hybrid Anode for Aqueous Proton Batteries. Chemistry 2024; 30:e202401257. [PMID: 38709195 DOI: 10.1002/chem.202401257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Aqueous proton batteries have received increasing attention due to their outstanding rate performance, stability and high capacity. However, the selection of anode materials in strongly acidic electrolytes poses a challenge in achieving high-performance aqueous proton batteries. This study optimized the proton reaction kinetics of layered metal oxide WO3 by introducing interlayer structural water and coating polyaniline (PANI) on its surface to prepare organic-inorganic hybrid material (WO3 ⋅ 2H2O@PANI). We constructed an aqueous proton battery with WO3 ⋅ 2H2O@PANI anode and MnO2@GF cathode. After 1500 cycles at a current density of 10 A g-1, the capacity retention rate can still reach 80.2 %. These results can inspire the development of new aqueous proton batteries.
Collapse
Affiliation(s)
- Yuhao Tong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuan Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - AJing Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
15
|
Zhang Y, Hu Y, Wang H, Tian J, Niu Z. A H 2O 2 Self-Charging Zinc Battery with Ultrafast Power Generation and Storage. Angew Chem Int Ed Engl 2024; 63:e202405166. [PMID: 38600042 DOI: 10.1002/anie.202405166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Self-charging power systems are considered as promising alternatives for off-grid energy devices to provide sustained electricity supply. However, the conventional self-charging systems are severely restricted by the energy availability and time-consuming charging process as well as insufficient capacity. Herein, we developed an ultrafast H2O2 self-charging aqueous Zn/NaFeFe(CN)6 battery, which simultaneously integrates the H2O2 power generation and energy storage into a battery configuration. In such battery, the chemical energy conversion of H2O2 can generate electrical energy to self-charge the battery to 1.7 V through the redox reaction between H2O2 and NaFeFe(CN)6 cathode. The thermodynamically and kinetically favorable redox reaction contributes to the ultrafast H2O2 self-charging rate and the extremely short self-charging time within 60 seconds. Moreover, the rapid H2O2 power generation can promptly compensate the energy consumption of battery to provide continuous electricity supply. Impressively, this self-charging battery shows excellent scalability of device architecture and can be designed to a H2O2 single-flow battery of 7.06 Ah to extend the long-term energy supply. This work not only provides a route to design self-charging batteries with fast charging rate and high capacity, but also pushes forward the development of self-charging power systems for advanced large-scale energy storage applications.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Hu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jinlei Tian
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
16
|
Ma X, Zhang D, Wen J, Fan L, Rao AM, Lu B. Sustainable Electrolytes: Design Principles and Recent Advances. Chemistry 2024; 30:e202400332. [PMID: 38654511 DOI: 10.1002/chem.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Today, rechargeable batteries are omnipresent and essential for our existence. In order to improve the electrochemical performance of electric fields, the introduction of electrolytes with fluorine (F)-based inorganic elemental compositions is a direction of exploration. However, most fluorocarbons have a high global warming potential and ozone depletion potential, which do not meet the sustainability requirements of the battery industry. Therefore, developing sustainable electrolytes is a viable option for future battery development. Although researchers have made much progress in electrolyte optimization, little attention has been paid to developing low-toxic and safe electrolytes. This review aims to elucidate the design principles and recent advances in this direction for solvents and salts. It concludes with a summary and outlook on future research directions for the molecular design of green electrolytes for practical high-voltage rechargeable batteries.
Collapse
Affiliation(s)
- Xuemei Ma
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Dianwei Zhang
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Jie Wen
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Ling Fan
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, USA
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
17
|
Dan X, Yin X, Ba J, Li J, Cheng Y, Duan F, Wei Y, Wang Y. Hydrophobic Two-Dimensional Layered Superstructure of a Polyoxometalate Cluster as the Cathode Material for Aqueous Zinc-Ion Batteries. NANO LETTERS 2024; 24:6881-6888. [PMID: 38813995 DOI: 10.1021/acs.nanolett.4c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Aqueous zinc-ion batteries hold promise for sustainable energy storage, yet challenges in finding high-performance cathode materials persist. Polyoxovanadates (POVs) are emerging as potential candidates due to their structural diversity and robust redox activity. Despite their potential, issues like dissolution in electrolytes, structural degradation, and byproduct accumulation persist. This work introduces a POV-based hydrophobic two-dimensional (2D) layered superstructure that addresses these challenges. The hydrophobic nature minimizes POV dissolution, enhancing structural stability and inhibiting phase transitions during cycling. The 2D arrangement ensures a larger surface area and improved electronic conductivity, resulting in faster kinetics and higher specific capacity. The superstructure demonstrates improved cycle life and an increased operating voltage, marking a significant advancement in POV-based cathode materials for aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Xinxing Dan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Xiuxiu Yin
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Junjie Ba
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Junpeng Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yingjie Cheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Fengxue Duan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- Chongqing Research Institute, Jilin University, Chongqing 401135, China
| |
Collapse
|
18
|
Zhao X, Li L, Zhang G, Yi Y, Yang T, Han C, Li B. Discovering the Order-Disorder Transition in Quinoline Intercalated Vanadium Oxide with Superior Calcium Storage via Polyhedral Distortion. SMALL METHODS 2024; 8:e2400097. [PMID: 38703024 DOI: 10.1002/smtd.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/10/2024] [Indexed: 05/06/2024]
Abstract
Calcium-ion batteries (CIBs) are considered as potential next-generation energy storage systems due to their abundant reserves and relatively low cost. However, irreversible structural changes and weak conductivity still hinder in current CIBs cathode materials. Herein, an organic molecular intercalation strategy is proposed, in which V2O5 regulated with quinoline, pyridine, and water molecules are studied as cathode material to provide fast ion diffusion channels, large storage host, and high conductivity for Ca ions. Among them, V2O5-quinoline (QVO) owns the largest interplanar spacing of 1.25 nm and the V-O chains are connected with organic molecular by hydrogen bond, which stabilizes the crystal structure. As a result, QVO exhibits a specific capacity of 168 mAh g-1 at 1 A g-1 and capacity retention of 80% after 500 cycles at 5 A g-1 than the other materials. Furthermore, X-Ray diffraction and X-ray absorption spectroscopy results reveal a reversible order-disorder transformation mechanism of Ca2+ for QVO, which can make full use of the abundant active sites for high capacity and simultaneously achieve fast reaction kinetics for excellent rate performance. These results demonstrate that QVO is a promising cathode material for CIBs, providing more choices for the development of high-performance CIBs.
Collapse
Affiliation(s)
- Xu Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Linyuan Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guobin Zhang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518055, China
| | - Yong Yi
- Shenzhen Power Supply Co., Ltd, Shenzhen, 518020, China
| | - Tao Yang
- Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Cuiping Han
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Baohua Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
19
|
Tang L, Peng H, Kang J, Chen H, Zhang M, Liu Y, Kim DH, Liu Y, Lin Z. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem Soc Rev 2024; 53:4877-4925. [PMID: 38595056 DOI: 10.1039/d3cs00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Batteries play a pivotal role in various electrochemical energy storage systems, functioning as essential components to enhance energy utilization efficiency and expedite the realization of energy and environmental sustainability. Zn-based batteries have attracted increasing attention as a promising alternative to lithium-ion batteries owing to their cost effectiveness, enhanced intrinsic safety, and favorable electrochemical performance. In this context, substantial endeavors have been dedicated to crafting and advancing high-performance Zn-based batteries. However, some challenges, including limited discharging capacity, low operating voltage, low energy density, short cycle life, and complicated energy storage mechanism, need to be addressed in order to render large-scale practical applications. In this review, we comprehensively present recent advances in designing high-performance Zn-based batteries and in elucidating energy storage mechanisms. First, various redox mechanisms in Zn-based batteries are systematically summarized, including insertion-type, conversion-type, coordination-type, and catalysis-type mechanisms. Subsequently, the design strategies aiming at enhancing the electrochemical performance of Zn-based batteries are underscored, focusing on several aspects, including output voltage, capacity, energy density, and cycle life. Finally, challenges and future prospects of Zn-based batteries are discussed.
Collapse
Affiliation(s)
- Lei Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Haojia Peng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Jiarui Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
20
|
Tian Z, Liu H, Cheng M, Cui L, Zhang R, Yang X, Wu D, Wang D, Xia J. Ethanol as Solvent Additives with Competitive Effect for High-Stable Aqueous Zinc Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21857-21867. [PMID: 38635974 DOI: 10.1021/acsami.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Aqueous zinc-ion batteries are emerging as promising sustainable energy-storage devices. However, their cyclic stability is still a great challenge due to the inevitable parasitic reaction and dendrite growth induced by water. Herein, a cosolvent strategy based on competitive effect is proposed to address the aforementioned challenges. Ethanol with a higher Gutmann donor number demonstrates lower polarity and better wettability on the Zn surface compared with water, which endows ethanol with the ability of minimizing water activity by weakening H bonds and preferentially adsorbing on the Zn electrode. The above competitive advantages synergistically contribute to inhibiting the decomposition of free water and dendrite growth. Besides, an organic-inorganic hybrid solid-electrolyte interphase layer is in situ built based on ethanol additives, where organic matrix suppresses water corrosion while inorganic fillers promote fast Zn2+ diffusion. Consequently, the electrolyte with ethanol additives boosts a high reversibility of Zn deposition, long-term durability, as well as superior Zn2+ diffusibility in both Zn half-cells (Zn||Cu and Zn||Zn batteries) and Zn full cells (Zn||PTCDA and Zn||VO2 batteries). This work sheds light on a universal strategy to design a high-reversible and dendrite-free Zn anode for stable aqueous batteries.
Collapse
Affiliation(s)
- Zhuocheng Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Hang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Mengyuan Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Lianmeng Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Rongyu Zhang
- College of Science, Shenyang Aerospace University, Shenyang 110135, P.R. China
| | - Xu Yang
- College of Science, Shenyang Aerospace University, Shenyang 110135, P.R. China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Dongxue Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P.R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P.R. China
| |
Collapse
|
21
|
Ma Y, Cao W, Liu Y, Li Q, Cai S, Bao SJ, Xu M. Amorphous Vanadium Oxides with Dual ion Storage Mechanism for High-Performance Aqueous Zinc ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306790. [PMID: 38126896 DOI: 10.1002/smll.202306790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Owing to the extremely limited structural deformation caused by the introduction of guest ions that their rigid structure can sustain, crystalline materials typically fail owing to structural collapse when utilized as electrode materials. Amorphous materials, conversely, are more resistant to volume expansion during dynamic ion transport and can introduce a lot of defects as active sites. Here, The amorphous polyaniline-coated/intercalated V2O5·nH2O (PVOH) nanowires are prepared by in situ chemical oxidation combined with self-assembly strategy, which exhibited impressive electrochemical properties because of its short-range ordered crystal structure, oxygen vacancy/defect-rich, improved electronic channels, and ionic channels. Through in situ techniques, the energy storage mechanism of its Zn2+/H+ co-storage is investigated and elucidated. Additionally, this work provides new insights and perspectives for the investigation and application of amorphous cathodes for aqueous zinc ion batteries.
Collapse
Affiliation(s)
- Yandong Ma
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, P. R. China
| | - Weinan Cao
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, P. R. China
| | - Yonghang Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, P. R. China
| | - Qiulin Li
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, P. R. China
| | - Shinan Cai
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, P. R. China
| | - Shu-Juan Bao
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, P. R. China
| | - Maowen Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, 400715, P. R. China
| |
Collapse
|
22
|
Xie J, Lin D, Lei H, Wu S, Li J, Mai W, Wang P, Hong G, Zhang W. Electrolyte and Interphase Engineering of Aqueous Batteries Beyond "Water-in-Salt" Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306508. [PMID: 37594442 DOI: 10.1002/adma.202306508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Aqueous batteries are promising alternatives to non-aqueous lithium-ion batteries due to their safety, environmental impact, and cost-effectiveness. However, their energy density is limited by the narrow electrochemical stability window (ESW) of water. The "Water-in-salts" (WIS) strategy is an effective method to broaden the ESW by reducing the "free water" in the electrolyte, but the drawbacks (high cost, high viscosity, poor low-temperature performance, etc.) also compromise these inherent superiorities. In this review, electrolyte and interphase engineering of aqueous batteries to overcome the drawbacks of the WIS strategy are summarized, including the developments of electrolytes, electrode-electrolyte interphases, and electrodes. First, the main challenges of aqueous batteries and the problems of the WIS strategy are comprehensively introduced. Second, the electrochemical functions of various electrolyte components (e.g., additives and solvents) are summarized and compared. Gel electrolytes are also investigated as a special form of electrolyte. Third, the formation and modification of the electrolyte-induced interphase on the electrode are discussed. Specifically, the modification and contribution of electrode materials toward improving the WIS strategy are also introduced. Finally, the challenges of aqueous batteries and the prospects of electrolyte and interphase engineering beyond the WIS strategy are outlined for the practical applications of aqueous batteries.
Collapse
Affiliation(s)
- Junpeng Xie
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Dewu Lin
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Hang Lei
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Shuilin Wu
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Jinliang Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Guo Hong
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
23
|
Zhang D, Lu H, Duan C, Qin Y, Zhu Z, Zhang Z, Lyu N, Jin Y. Inorganic Oxide-Based "Hydrophobic-Hydrophilic-Hydrophobic" Separators Systems for Long-Life Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307357. [PMID: 38012538 DOI: 10.1002/smll.202307357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Indexed: 11/29/2023]
Abstract
Hydrogen reduction reaction (HER) and corrosion limit the long-life cycle of zinc-ion batteries. However, hydrophilic separators are unable to prevent direct contact between water and electrodes, and hydrophobic separators have difficulty in transporting electrolytes. In this work, an inorganic oxide-based "hydrophobic-hydrophilic-hydrophobic" self-assembled separator system is proposed. The hydrophobic layer consists of a porous structure, which can isolate a large amount of free water to avoid HER and corrosion reactions, and can transport electrolyte by binding water. The middle hydrophilic layer acts as a storage layer consisting of the GF separator, storing large amounts of electrolyte for proper circulation. By using this structure separator, Zn||Zn symmetric cell achieve 2200 h stable cycle life at 5 mA cm-2 and 1mAh cm-2 and still shows a long life of 1800 h at 10 mA cm-2 and 1mAh cm-2. The assembled Zn||VO2 full cell displays high specific capacity and excellent long-term durability of 60.4% capacity retention after 1000 cycles at 2C. The assembled Zn||VO2 pouch full cell displays high specific capacity of 172.5mAh g-1 after 40 cycles at 0.5C. Changing the inorganic oxide materials, the hydrophobic-hydrophilic-hydrophobic structure of the separators still has excellent performance. This work provides a new idea for the engineering of water-based battery separators.
Collapse
Affiliation(s)
- Di Zhang
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hongfei Lu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Chenxu Duan
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yi Qin
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhenjie Zhu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zili Zhang
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Nawei Lyu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yang Jin
- Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
24
|
Wu M, Hu X, Zheng W, Chen L. Cobalt ion doping and morphology tailoring enable superior zinc-ion storage in sodium vanadate nanoflowers. J Colloid Interface Sci 2024; 658:553-561. [PMID: 38134664 DOI: 10.1016/j.jcis.2023.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Layered sodium vanadium materials have aroused increasing interest owing to their open layered structures and high theoretical capacity. Nevertheless, the strong electrostatic interactions between vanadium oxide layers and intercalated Zn2+ and the weak electronic conductivity severely limit their further development. Here, we design a series of cobalt ion-doped sodium vanadium electrode materials with nanoflower-like morphologies. Due to the open interlayer space and improved electron transfer enabled by cobalt ion preintercalation and sufficient contact area between the electrode and electrolyte provided by the three-dimensional (3D) flower-like morphology, the cobalt ion-doped sodium vanadate (CNVO-2) cathode exhibits excellent electrochemical performance, including an exceptional specific capacity (411 mA h g-1 at 0.5 A g-1) and ultrahigh structural stability (90.4 % capacity retention after 3000 cycles at 10 A g-1), outperforming many advanced ZIBs cathode materials. In addition, through various ex situ characterization techniques, an ionic exchange and multiple ion cointercalation mechanism is first revealed in sodium vanadate cathode material.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
25
|
Peng Y, Mo L, Wei T, Wang Y, Zhang X, Li Z, Huang Y, Yang G, Hu L. Oxygen Vacancies on NH 4 V 4 O 10 Accelerate Ion and Charge Transfer in Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306972. [PMID: 38143291 DOI: 10.1002/smll.202306972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Indexed: 12/26/2023]
Abstract
Vanadium-based compounds are identified as promising cathode materials for aqueous zinc ion batteries due to their high specific capacity. However, the low intrinsic conductivity and sluggish Zn2+ diffusion kinetics seriously impede their further practical application. Here, oxygen vacancies on NH4 V4 O10 is reported as a high-performing cathode material for aqueous zinc ion batteries via a facile hydrothermal strategy. The introduction of oxygen vacancy accelerates the ion and charge transfer kinetics, reduces the diffusion barrier of zinc ions, and establishes a stable crystal structure during zinc ion (de-intercalation). As a result, the oxygen vacancy enriched NH4 V4 O10 exhibits a high specific capacity of ≈499 mA h g-1 at 0.2 A g-1 , an excellent rate capability of 296 mA h g-1 at 10 A g-1 and the specific capacity cycling stability with 95.1% retention at 5 A g-1 for 4000 cycles, superior to the NVO sample (186.4 mAh g-1 at 5 A g-1 , 66% capacity retention).
Collapse
Affiliation(s)
- Yuqi Peng
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, 96 Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Li'e Mo
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, 96 Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Tingting Wei
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, 96 Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Yifan Wang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, 96 Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P.R. China
| | - Zhaoqian Li
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Yang Huang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, 96 Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Guang Yang
- College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Linhua Hu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
- University of Science and Technology of China, 96 Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
26
|
Liu H, Xin Z, Cao B, Zhang B, Fan HJ, Guo S. Versatile MXenes for Aqueous Zinc Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305806. [PMID: 37985557 PMCID: PMC10885665 DOI: 10.1002/advs.202305806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Aqueous zinc-ion batteries (AZIBs) are gaining popularity for their cost-effectiveness, safety, and utilization of abundant resources. MXenes, which possess outstanding conductivity, controllable surface chemistry, and structural adaptability, are widely recognized as a highly versatile platform for AZIBs. MXenes offer a unique set of functions for AZIBs, yet their significance has not been systematically recognized and summarized. This review article provides an up-to-date overview of MXenes-based electrode materials for AZIBs, with a focus on the unique functions of MXenes in these materials. The discussion starts with MXenes and their derivatives on the cathode side, where they serve as a 2D conductive substrate, 3D framework, flexible support, and coating layer. MXenes can act as both the active material and a precursor to the active material in the cathode. On the anode side, the functions of MXenes include active material host, zinc metal surface protection, electrolyte additive, and separator modification. The review also highlights technical challenges and key hurdles that MXenes currently face in AZIBs.
Collapse
Affiliation(s)
- Huan Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Zijun Xin
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Bin Cao
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Bao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
27
|
Song Z, Zhao Y, Zhou A, Wang H, Jin X, Huang Y, Li L, Wu F, Chen R. Organic Intercalation Induced Kinetic Enhancement of Vanadium Oxide Cathodes for Ultrahigh-Loading Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305030. [PMID: 37649169 DOI: 10.1002/smll.202305030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Vanadium-based oxides have attracted much attention because of their rich valences and adjustable structures. The high theoretical specific capacity contributed by the two-electron-transfer process (V5+ /V3+ ) makes it an ideal cathode material for aqueous zinc-ion batteries. However, slow diffusion kinetics and poor structural stability limit the application of vanadium-based oxides. Herein, a strategy for intercalating organic matter between vanadium-based oxide layers is proposed to attain high rate performance and long cycling life. The V3 O7 ·H2 O is synthesized in situ on the carbon cloth to form an open porous structure, which provides sufficient contact areas with electrolyte and facilitates zinc ion transport. On the molecular level, the added organic matter p-aminophenol (pAP) not only plays a supporting role in the V3 O7 ·H2 O layer, but also shows a regulatory effect on the V5+ /V4+ redox process due to the reducing functional group on pAP. The novel composite electrode with porous structure exhibits outstanding reversible specific capacity (386.7 mAh g-1 , 0.1 A g-1 ) at a high load of 6.5 mg cm-2 , and superior capacity retention of 80% at 3 A g-1 for 2100 cycles.
Collapse
Affiliation(s)
- Zhihang Song
- Department Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yi Zhao
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Anbin Zhou
- Department Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Huirong Wang
- Department Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyu Jin
- Department Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongxin Huang
- Department Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
| | - Li Li
- Department Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Feng Wu
- Department Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Renjie Chen
- Department Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| |
Collapse
|
28
|
Huang X, Qiu X, Wang W, Li J, Li Z, Yu X, Ma J, Wang Y. Activating Organic Electrode via Trace Dissolved Organic Molecules. J Am Chem Soc 2023; 145:25604-25613. [PMID: 37968563 DOI: 10.1021/jacs.3c06668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Organic electrode materials have gained attention for their tunable structures and sustainability, but their low electronic conductivity requires the use of large amounts of carbon additives (30 wt %) and low mass loadings (<2 mg cm-2) in electrodes. Here, we synthesize dibenzo[b,i]phenazine-5,7,12,14-tetrone (DPT) as a cathode active material for an aqueous Zn battery and find that Zn2+ storage dominates the cathode reaction. This battery demonstrates high capacity (367 mAh g-1), high-rate performance, and superlong life (12000 cycles). Remarkably, despite DPT's insulative nature, even with a high mass loading (10 mg cm-2) and only 10 wt % carbon additives, the DPT-based cathode exhibits promising performance due to trace dissolved discharge product (DPTx-). During discharge, the DPT is reduced to trace amounts of dissolved DPTx- at the cathode surface, which in turn reduces the remaining solid DPT as a redox mediator. Furthermore, dissolution-redeposition results in the reduction of DPT size and the formation of pores, further activating the electrode.
Collapse
Affiliation(s)
- Xin Huang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Xuan Qiu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Wei Wang
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junjie Li
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhi Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Xiaomeng Yu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| |
Collapse
|
29
|
Zhang K, Wang L, Ma C, Yuan Z, Wu C, Ye J, Wu Y. A Comprehensive Evaluation of Battery Technologies for High-Energy Aqueous Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309154. [PMID: 37967335 DOI: 10.1002/smll.202309154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/21/2023] [Indexed: 11/17/2023]
Abstract
Aqueous batteries have garnered significant attention in recent years as a viable alternative to lithium-ion batteries for energy storage, owing to their inherent safety, cost-effectiveness, and environmental sustainability. This study offers a comprehensive review of recent advancements, persistent challenges, and the prospects of aqueous batteries, with a primary focus on energy density compensation of various battery engineering technologies. Additionally, cutting-edge high-energy aqueous battery designs are emphasized as a reference for future endeavors in the pursuit of high-energy storage solutions. Finally, a dual-compatibility battery configuration perspective aimed at concurrently optimizing cycle stability, redox potential, capacity utilization for both anode and cathode materials, as well as the selection of potential electrode candidates, is proposed with the ultimate goal of achieving cell-level energy densities exceeding 400 Wh kg-1 .
Collapse
Affiliation(s)
- Kaiqiang Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Luoya Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Changlong Ma
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Zijie Yuan
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Chao Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Jilei Ye
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yuping Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| |
Collapse
|
30
|
Zhong Y, Xie X, Zeng Z, Lu B, Chen G, Zhou J. Triple-function Hydrated Eutectic Electrolyte for Enhanced Aqueous Zinc Batteries. Angew Chem Int Ed Engl 2023; 62:e202310577. [PMID: 37578644 DOI: 10.1002/anie.202310577] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
Aqueous rechargeable zinc-ion batteries (ARZBs) are impeded by the mutual problems of unstable cathode, electrolyte parasitic reactions, and dendritic growth of zinc (Zn) anode. Herein, a triple-functional strategy by introducing the tetramethylene sulfone (TMS) to form a hydrated eutectic electrolyte is reported to ameliorate these issues. The activity of H2 O is inhibited by reconstructing hydrogen bonds due to the strong interaction between TMS and H2 O. Meanwhile, the preferentially adsorbed TMS on the Zn surface increases the thickness of double electric layer (EDL) structure, which provides a shielding buffer layer to suppress dendrite growth. Interestingly, TMS modulates the primary solvation shell of Zn2+ ultimately to achieve a novel solvent co-intercalation ((Zn-TMS)2+ ) mechanism, and the intercalated TMS works as a "pillar" that provides more zincophilic sites and stabilizes the structure of cathode (NH4 V4 O10 , (NVO)). Consequently, the Zn||NVO battery exhibits a remarkably high specific capacity of 515.6 mAh g-1 at a low current density of 0.2 A g-1 for over 40 days. This multi-functional electrolytes and solvent co-intercalation mechanism will significantly propel the practical development of aqueous batteries.
Collapse
Affiliation(s)
- Yunpeng Zhong
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xuesong Xie
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
31
|
Tay IR, Xue J, Lee WSV. Methods for Characterizing Intercalation in Aqueous Zinc Ion Battery Cathodes: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303211. [PMID: 37424052 PMCID: PMC10502642 DOI: 10.1002/advs.202303211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 07/11/2023]
Abstract
Aqueous zinc ion batteries have gained research attention as a safer, economical and more environmentally friendly alternative to lithium-ion batteries. Similar to lithium batteries, intercalation processes play an important role in the charge storage behaviour of aqueous zinc ion batteries, with the pre-intercalation of guest species in the cathode being also employed as a strategy to improve battery performance. In view of this, proving hypothesized mechanisms of intercalation, as well as rigorously characterizing intercalation processes in aqueous zinc ion batteries is crucial to achieve advances in battery performance. This review aims to evaluate the range of techniques commonly used to characterize intercalation in aqueous zinc ion battery cathodes, providing a perspective on the approaches that can be utilized to rigorously understand such intercalation processes.
Collapse
Affiliation(s)
- Ian Rongde Tay
- Department of Materials Science and EngineeringNational University of Singapore. Block E3A #03‐147 Engineering Drive 1Singapore117574Singapore
| | - Junmin Xue
- Department of Materials Science and EngineeringNational University of Singapore. Block E3A #03‐147 Engineering Drive 1Singapore117574Singapore
| | - Wee Siang Vincent Lee
- Department of Materials Science and EngineeringNational University of Singapore. Block E3A #03‐147 Engineering Drive 1Singapore117574Singapore
| |
Collapse
|
32
|
Wang W, Tang Y, Liu J, Li H, Wang R, Zhang L, Liang F, Bai W, Zhang L, Zhang C. Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy. Chem Sci 2023; 14:9033-9040. [PMID: 37655030 PMCID: PMC10466338 DOI: 10.1039/d3sc03435f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Organic materials offer great potential as electrodes for batteries due to their high theoretical capacity, flexible structural design, and easily accessible materials. However, one significant drawback of organic electrode materials is their tendency to dissolve in the electrolyte. Resazurin sodium salt (RSS) has demonstrated remarkable charge/discharge performance characterized by a voltage plateau and high capacity when utilized as a cathode in aqueous zinc-ion batteries (AZIBs). Unfortunately, the solubility of RSS as a sodium salt continues to pose challenges in AZIBs. In this study, we introduce an RSS-containing organic compound, triresazurin-triazine (TRT), with a porous structure prepared by a desalinization method from the RSS and 2,4,6-trichloro-1,3,5-triazine (TCT). This process retained active groups (carbonyl and nitroxide radical) while generating a highly conjugated structure, which not only inhibits the dissolution in the electrolyte, but also improves the electrical conductivity, enabling TRT to have excellent electrochemical properties. When evaluated as a cathode for AZIBs, TRT exhibits a high reversible capacity of 180 mA h g-1, exceptional rate performance (78 mA h g-1 under 2 A g-1), and excellent cycling stability with 65 mA h g-1 at 500 mA g-1 after 1000 cycles.
Collapse
Affiliation(s)
- Wei Wang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Ying Tang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Jun Liu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology Guangzhou 510640 China
| | - Hongbao Li
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Rui Wang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Longhai Zhang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Fei Liang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Wei Bai
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Lin Zhang
- Institute for Solid State Physics Laboratory of Nano and Quantum Engineering, Leibniz University Hannover Appelstrasse 2 30167 Hannover Germany
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| |
Collapse
|
33
|
Guo J, He B, Gong W, Xu S, Xue P, Li C, Sun Y, Wang C, Wei L, Zhang Q, Li Q. Emerging Amorphous to Crystalline Conversion Chemistry in Ca-Doped VO 2 Cathodes for High-Capacity and Long-Term Wearable Aqueous Zinc-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2303906. [PMID: 37560808 DOI: 10.1002/adma.202303906] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Amorphous transition metal oxides have attracted significant attention in energy storage devices owing to their potentially desirable electrochemical properties caused by abundant unsaturated dangling bonds. However, the amorphization further amplifies the shortcoming of the poor intrinsic electronic conductivity of the metal oxides, resulting in unsatisfying rate capability and power density. Herein, freestanding amorphous Ca-doped V2 O5 (a-Ca-V2 O5 ) cathodes are successfully prepared via in situ electrochemical oxidation of Ca-doped VO2 nanoarrays for wearable aqueous zinc-ion batteries. The doping of Ca and construction of freestanding structure effectively uncover the potential of amorphous V2 O5 , which can make full use of the abundant active sites for high volumetric capacity and simultaneously achieve fast reaction kinetics for excellent rate performance. More importantly, the introduction of Ca can notably reduce the formation energy of VO2 according to theoretical calculation results and realizes amorphous to crystalline reversible conversion chemistry in the charge/discharge procedure, thereby facilitating the reversible capacity of the newly developed a-Ca-V2 O5 . This work provides an innovative design strategy to construct high-rate capacity amorphous metal oxides as freestanding electrodes for low-cost and high-safe wearable energy-storage technology.
Collapse
Affiliation(s)
- Jiabin Guo
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Shuhong Xu
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province, 215009, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province, 215009, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province, 215009, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province, 215009, China
| | - Chunlei Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
34
|
Xia Y, Wang X, Zhou J. N-Methylpyrrolidone assisted tetrachlorobenzoquinone intercalating V 2O 5 as cathode for aqueous zinc-ion battery. Chem Commun (Camb) 2023; 59:6199-6202. [PMID: 37128927 DOI: 10.1039/d3cc01266b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vanadium oxide (V2O5) is intercalated by tetrachlorobenzoquinone (TCB) through a one-step solvothermal method in an N-methylpyrrolidone (NMP)/water solvent mixture. The insertion and synergy of TCB and NMP widen the lattice and expand crystal particles, promoting Zn2+ ion transfer and coordination, which endow s-NMP-TCB-V2O5 with an improved capacity of 452 mA h g-1 as well as outstanding capacity retention of 85.6% after 1500 cycles.
Collapse
Affiliation(s)
- Yuanhao Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xinlei Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jie Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
35
|
Liu Y, Gong Y. Dopamine-intercalated vanadate hollow microtube arrays with S-doping for high-performance zinc-ion batteries: disorder/defect-induced clusters and a reversible phase transition. NANOSCALE 2023; 15:6273-6284. [PMID: 36911922 DOI: 10.1039/d2nr06786b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
S-undoped or -doped (C8H9NO2)0.18V2O5 (DA-VO) was synthesized by a facile one-step hydrothermal reaction of dopamine (DA) and V2O5 or VS2. Rietveld refinement reveals the intercalation of DA into V2O5 with a large interlayer spacing of 11.0 Å. The S-doped sample DA-VO (S) was obtained based on the transformation of VS2 → V2O5 and the doping of the in situ released S element. DA-VO (S) exhibits a unique morphology of hollow microtube arrays built by cross-linked nanoribbons and provides a high specific capacity (476 mA h g-1 at 0.1 A g-1) and excellent long-term cycling durability with capacity retention of ∼95.3% over 3000 cycles at 5 A g-1 and ∼77.7% over 1000 cycles at 1 A g-1. It is associated with the intercalated DA, which not only increases the interlayer spacing of vanadium oxide, but also offers extra capacity due to the phenol-keto conversion. Furthermore, the disorders/defects and polyoxovanadate clusters induced by S-doping lead to a pseudo-reversible partial phase transition of DA-VO (S) ↔ Zn-doped HxV2O5. However, the undoped counterpart only experiences a transformation of DA-VO → Zn3(OH)2V2O7·2H2O due to the irreversible capture of Zn2+, as evidenced by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yang Liu
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
| | - Yun Gong
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
| |
Collapse
|
36
|
Zuo Y, Meng T, Tian H, Ling L, Zhang H, Zhang H, Sun X, Cai S. Enhanced H + Storage of a MnO 2 Cathode via a MnO 2 Nanolayer Interphase Transformed from Manganese Phosphate. ACS NANO 2023; 17:5600-5608. [PMID: 36926831 DOI: 10.1021/acsnano.2c11469] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The MnO2 cathode has attracted extensive attention in aqueous zinc ion battery research due to its environmental benignity, low cost, and high capacity. However, sluggish kinetics of hydrated zinc ion and manganese dissolution lead to insufficient rate and cycle performances. In this study, a manganese phosphate nanolayer synthesized in situ on a MnO2 cathode can be transformed into a δ-MnO2 nanolayer interphase after activation upon cycling, endowing the interphase with abundant interlayer water. As a result, the δ-MnO2 nanolayer interphase with the function of H+ topochemistry significantly enhances H+ (de)insertion in the MnO2 cathode, which leads to a kinetics conversion from Zn2+-dominated (de)insertion to H+-dominated (de)insertion, thus endowing the MnO2 cathode with superior rate and cycle performances (85.9% capacity retention after 1000 cycles at 10 A g-1). This strategy can be highly scalable for other manganese-based cathodes and provides an insight for developing high-performance aqueous zinc ion batteries.
Collapse
Affiliation(s)
- You Zuo
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tengfei Meng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hao Tian
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lei Ling
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huanlin Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hang Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaohong Sun
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shu Cai
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
37
|
Guo Y, Chua R, Chen Y, Cai Y, Tang EJJ, Lim JJN, Tran TH, Verma V, Wong MW, Srinivasan M. Hybrid Electrolyte Design for High-Performance Zinc-Sulfur Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207133. [PMID: 36971296 DOI: 10.1002/smll.202207133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long-term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co-solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g-1 and an excellent energy density of 730 Wh kg-1 at 0.1 Ag-1 . In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag-1 . Moreover, the cathode charge-discharge mechanism studies demonstrate a multi-step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2- ( S 8 → S x 2 - → S 2 2 - + S 2 - ) ${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}}})$ , forming ZnS. On charging, the ZnS and short-chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi-step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.
Collapse
Affiliation(s)
- Yuqi Guo
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore, 639977, Singapore
| | - Rodney Chua
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore, 639977, Singapore
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50 Singapore, Nanyang Drive, Singapore, 637553, Singapore
| | - Yingqian Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yi Cai
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore, 639977, Singapore
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50 Singapore, Nanyang Drive, Singapore, 637553, Singapore
| | - Ernest Jun Jie Tang
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore, 639977, Singapore
| | - J J Nicholas Lim
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore, 639977, Singapore
| | - Thu Ha Tran
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore, 639977, Singapore
| | - Vivek Verma
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore, 639977, Singapore
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50 Singapore, Nanyang Drive, Singapore, 637553, Singapore
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Madhavi Srinivasan
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore, 639977, Singapore
- Energy Research Institute at Nanyang Technological University, Research Techno Plaza, 50 Singapore, Nanyang Drive, Singapore, 637553, Singapore
| |
Collapse
|
38
|
Shi J, Mao K, Zhang Q, Liu Z, Long F, Wen L, Hou Y, Li X, Ma Y, Yue Y, Li L, Zhi C, Gao Y. An Air-Rechargeable Zn Battery Enabled by Organic-Inorganic Hybrid Cathode. NANO-MICRO LETTERS 2023; 15:53. [PMID: 36795246 PMCID: PMC9935787 DOI: 10.1007/s40820-023-01023-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/01/2023] [Indexed: 06/18/2023]
Abstract
Self-charging power systems collecting energy harvesting technology and batteries are attracting extensive attention. To solve the disadvantages of the traditional integrated system, such as highly dependent on energy supply and complex structure, an air-rechargeable Zn battery based on MoS2/PANI cathode is reported. Benefited from the excellent conductivity desolvation shield of PANI, the MoS2/PANI cathode exhibits ultra-high capacity (304.98 mAh g-1 in N2 and 351.25 mAh g-1 in air). In particular, this battery has the ability to collect, convert and store energy simultaneously by an air-rechargeable process of the spontaneous redox reaction between the discharged cathode and O2 from air. The air-rechargeable Zn batteries display a high open-circuit voltage (1.15 V), an unforgettable discharge capacity (316.09 mAh g-1 and the air-rechargeable depth is 89.99%) and good air-recharging stability (291.22 mAh g-1 after 50 air recharging/galvanostatic current discharge cycle). Most importantly, both our quasi-solid zinc ion batteries and batteries modules have excellent performance and practicability. This work will provide a promising research direction for the material design and device assembly of the next-generation self-powered system.
Collapse
Affiliation(s)
- Junjie Shi
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Ke Mao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Qixiang Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Zunyu Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Fei Long
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Li Wen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Yixin Hou
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Xinliang Li
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, People's Republic of China
| | - Yanan Ma
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China
| | - Yang Yue
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, People's Republic of China.
| | - Luying Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Chunyi Zhi
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, People's Republic of China
| | - Yihua Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| |
Collapse
|
39
|
Bozzini B, Boniardi M, Caielli T, Casaroli A, Emanuele E, Mancini L, Sodini N, Strada J. Electrochemical Cycling Behaviour and Shape Changes of Zn Electrodes in Mildly Acidic Aqueous Electrolytes Containing Quaternary Ammonium Salts. ChemElectroChem 2023. [DOI: 10.1002/celc.202201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Benedetto Bozzini
- Department of Energy Politecnico di Milano via Lambruschini 4 20156 Milano Italy
| | - Marco Boniardi
- Department of Mechanical Engineering Politecnico di Milano via la Masa 1 20156 Milano Italy
| | - Tommaso Caielli
- Department of Energy Politecnico di Milano via Lambruschini 4 20156 Milano Italy
| | - Andrea Casaroli
- Department of Mechanical Engineering Politecnico di Milano via la Masa 1 20156 Milano Italy
| | - Elisa Emanuele
- Department of Energy Politecnico di Milano via Lambruschini 4 20156 Milano Italy
| | - Lucia Mancini
- Slovenian National Building and Civil Engineering Institute (ZAG) Dimičeva ulica 12 SI-1000 1000 Ljubljana Slovenia
- Elettra – Sincrotrone Trieste S.C.p.A. S.S. 14–km 163.5 in Area Science Park 34149, Basovizza Trieste Italy
| | - Nicola Sodini
- Elettra – Sincrotrone Trieste S.C.p.A. S.S. 14–km 163.5 in Area Science Park 34149, Basovizza Trieste Italy
| | - Jacopo Strada
- Department of Energy Politecnico di Milano via Lambruschini 4 20156 Milano Italy
| |
Collapse
|
40
|
Hu Z, Zhou L, Meng D, Zhao L, Wang W, Li Y, Huang Y, Wu Y, Yang S, Li L, Hong Z. Surface Engineering for Ultrathin Metal Anodes Enabling High-Performance Zn-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5161-5171. [PMID: 36648156 DOI: 10.1021/acsami.2c18836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Zn-ion batteries with low cost and high safety have been regarded as a promising energy storage technology for grid storage. It is well-known that the metal anode surface orientation is vital to its reversibility. Herein, we demonstrate a facile route to control the Zn metal anode surface orientation through electrodeposition with electrolyte additives. An ultrathin (101)-inclined Zn metal anode (down to 2 μm) is obtained by adding a small amount of dimethyl sulfoxide (DMSO) in the ZnSO4 aqueous electrolyte. Scanning electron microscopy indicates the formation of flat terrace-like surfaces, while in situ optical observations demonstrate the reversible plating and stripping. DFT calculations reveal that the large reconstruction of the Zn-(101) surface with DMSO and H2O adsorption to lower the interface energy is the main driving force for surface preference. Raman, XPS, and ToF-SIMS characterizations are performed to unveil the surface SEI components. Exceptional electrochemical performance is demonstrated for the (101)-inclined Zn metal anode in a half cell, which could cycle for 200 h with a low overpotential (<50 mV). The Zn||V2O full cells are assembled, showing much better cycle performance for the 5 μm (101)-inclined Zn metal anode as compared to the commercialized 10 μm Zn metal foil, with a maximum specific capacity of 359 mAh/g and >170 mAh/g after over 300 cycles. We hope this study will spur further interest in the control of surface crystallographic orientation for a stable ultrathin Zn metal anode.
Collapse
Affiliation(s)
- Ziyi Hu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linming Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dechao Meng
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liyan Zhao
- Lab of Composite Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weina Wang
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yihua Li
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuhui Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongjun Wu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Lab of Composite Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linsen Li
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zijian Hong
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
41
|
Chen D, Wang B, Cui X, Yang H, Lu M, Cai D, Han W. Intercalation-induced amorphous hydrated vanadium oxide for boosted aqueous Zn 2+ storage. Chem Commun (Camb) 2023; 59:1365-1368. [PMID: 36649100 DOI: 10.1039/d2cc06667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An amorphous hydrated vanadium oxide induced by Zn2+ intercalation in Mg-ion inserted V2O5·nH2O (MgVOH) is developed as a high-performance cathode for ZIBs. In particular, zinc pyrovanadate as the product of the second phase transition is found to suppress the dissolution issue of the vanadium species for the cathode to facilitate long lifespan.
Collapse
Affiliation(s)
- Duo Chen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. .,College of Physics, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin university, Changchun, 130012, P. R. China.
| | - Boran Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xueliang Cui
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Hang Yang
- College of Physics, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin university, Changchun, 130012, P. R. China.
| | - Mengjie Lu
- College of Physics, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin university, Changchun, 130012, P. R. China.
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Wei Han
- College of Physics, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin university, Changchun, 130012, P. R. China.
| |
Collapse
|
42
|
Lv T, Zhu G, Dong S, Kong Q, Peng Y, Jiang S, Zhang G, Yang Z, Yang S, Dong X, Pang H, Zhang Y. Co-Intercalation of Dual Charge Carriers in Metal-Ion-Confining Layered Vanadium Oxide Nanobelts for Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202216089. [PMID: 36409041 DOI: 10.1002/anie.202216089] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Vanadium-based oxides with high theoretical specific capacities and open crystal structures are promising cathodes for aqueous zinc-ion batteries (AZIBs). In this work, the confined synthesis can insert metal ions into the interlayer spacing of layered vanadium oxide nanobelts without changing the original morphology. Furthermore, we obtain a series of nanomaterials based on metal-confined nanobelts, and describe the effect of interlayer spacing on the electrochemical performance. The electrochemical properties of the obtained Al2.65 V6 O13 ⋅ 2.07H2 O as cathodes for AZIBs are remarkably improved with a high initial capacity of 571.7 mAh ⋅ g-1 at 1.0 A g-1 . Even at a high current density of 5.0 A g-1 , the initial capacity can still reach 205.7 mAh g-1 , with a high capacity retention of 89.2 % after 2000 cycles. This study demonstrates that nanobelts confined with metal ions can significantly improve energy storage applications, revealing new avenues for enhancing the electrochemical performance of AZIBs.
Collapse
Affiliation(s)
- Tingting Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Shengyang Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Qingquan Kong
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Shu Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Zilin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Shengyang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xiaochen Dong
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
43
|
Ruan J, Ma D, Ouyang K, Shen S, Yang M, Wang Y, Zhao J, Mi H, Zhang P. 3D Artificial Array Interface Engineering Enabling Dendrite-Free Stable Zn Metal Anode. NANO-MICRO LETTERS 2023; 15:37. [PMID: 36648582 PMCID: PMC9845508 DOI: 10.1007/s40820-022-01007-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The ripple effect induced by uncontrollable Zn deposition is considered as the Achilles heel for developing high-performance aqueous Zn-ion batteries. For this problem, this work reports a design concept of 3D artificial array interface engineering to achieve volume stress elimination, preferred orientation growth and dendrite-free stable Zn metal anode. The mechanism of MXene array interface on modulating the growth kinetics and deposition behavior of Zn atoms were firstly disclosed on the multi-scale level, including the in-situ optical microscopy and transient simulation at the mesoscopic scale, in-situ Raman spectroscopy and in-situ X-ray diffraction at the microscopic scale, as well as density functional theory calculation at the atomic scale. As indicated by the electrochemical performance tests, such engineered electrode exhibits the comprehensive enhancements not only in the resistance of corrosion and hydrogen evolution, but also the rate capability and cyclic stability. High-rate performance (20 mA cm-2) and durable cycle lifespan (1350 h at 0.5 mA cm-2, 1500 h at 1 mA cm-2 and 800 h at 5 mA cm-2) can be realized. Moreover, the improvement of rate capability (214.1 mAh g-1 obtained at 10 A g-1) and cyclic stability also can be demonstrated in the case of 3D MXene array@Zn/VO2 battery. Beyond the previous 2D closed interface engineering, this research offers a unique 3D open array interface engineering to stabilize Zn metal anode, the controllable Zn deposition mechanism revealed is also expected to deepen the fundamental of rechargeable batteries including but not limited to aqueous Zn metal batteries.
Collapse
Affiliation(s)
- Jianbin Ruan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Dingtao Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Kefeng Ouyang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Sicheng Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ming Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yanyi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jinlai Zhao
- College of of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Hongwei Mi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Center, Shenzhen, 518060, People's Republic of China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Center, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
44
|
Ferrocene Preintercalated Vanadium Oxides with Rich Oxygen Vacancies for Ultrahigh Rate and Durable Zn-Ion Storage. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Li K, Liu Y, Tang R, Gong Y. Synergistic zinc-ion storage enabled by Cu ion in anthraquinone-preinserted vanadate: structural integrity and H +-promoted reversible phase conversion. Dalton Trans 2023; 52:5212-5225. [PMID: 36971137 DOI: 10.1039/d2dt04129d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Oxygen-deficient anthraquinone (2-M-AQ)-intercalated vanadium oxide shows an outstanding long lifespan in electrolyte with Cu2+ due to the dual-pillar of 2-M-AQ/Cu2+ and H+-promoted reversible phase conversion.
Collapse
Affiliation(s)
- Kai Li
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
| | - Yang Liu
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
| | - Rui Tang
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
| | - Yun Gong
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.
| |
Collapse
|
46
|
Organic-inorganic interface chemistry for sustainable materials. Z KRIST-CRYST MATER 2022. [DOI: 10.1515/zkri-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
This mini-review focuses on up-to-date advances of hybrid materials consisting of organic and inorganic components and their applications in different chemical processes. The purpose of forming such hybrids is mainly to functionalize and stabilize inorganic supports by attaching an organic linker to enhance their performance towards a target application. The interface chemistry is present with the emphasis on the sustainability of their components, chemical changes in substrates during synthesis, improvements of their physical and chemical properties, and, finally, their implementation. The latter is the main sectioning feature of this review, while we present the most prosperous applications ranging from catalysis, through water purification and energy storage. Emphasis was given to materials that can be classified as green to the best in our consideration. As the summary, the current situation on developing hybrid materials as well as directions towards sustainable future using organic-inorganic hybrids are presented.
Collapse
|
47
|
Liang H, Liu Y, Zuo F, Zhang C, Yang L, Zhao L, Li Y, Xu Y, Wang T, Hua X, Zhu Y, Li H. Fe 2(MoO 4) 3 assembled by cross-stacking of porous nanosheets enables a high-performance aluminum-ion battery. Chem Sci 2022; 13:14191-14197. [PMID: 36540814 PMCID: PMC9728561 DOI: 10.1039/d2sc05479e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/11/2022] [Indexed: 09/10/2024] Open
Abstract
Rechargeable aluminum-ion batteries have attracted increasing attention owing to the advantageous multivalent ion storage mechanism thus high theoretical capacity as well as inherent safety and low cost of using aluminum. However, their development has been largely impeded by the lack of suitable positive electrodes to provide both sufficient energy density and satisfactory rate capability. Here we report a candidate positive electrode based on ternary metal oxides, Fe2(MoO4)3, which was assembled by cross-stacking of porous nanosheets, featuring superior rate performance and cycle stability, and most importantly a well-defined discharge voltage plateau near 1.9 V. Specifically, the positive electrode is able to deliver reversible capacities of 239.3 mA h g-1 at 0.2 A g-1 and 73.4 mA h g-1 at 8.0 A g-1, and retains 126.5 mA h g-1 at 1.0 A g-1 impressively, after 2000 cycles. Furthermore, the aluminum-storage mechanism operating on Al3+ intercalation in this positive electrode is demonstrated for the first time via combined in situ and ex situ characterization studies and density functional theory calculations. This work not only explores potential positive electrodes for aluminum-based batteries but also sheds light on the fundamental charge storage mechanism within the electrode.
Collapse
Affiliation(s)
- Huanyu Liang
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Yongshuai Liu
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Fengkai Zuo
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Cunliang Zhang
- School of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Henan Key Laboratory of Bimolecular Recognition and Sensing, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Li Yang
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Linyi Zhao
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Yuhao Li
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Yifei Xu
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Tiansheng Wang
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Xia Hua
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| | - Yue Zhu
- Max Planck Institute for Solid State Research Heisenbergstraße 1 70569 Stuttgart Germany
| | - Hongsen Li
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao 266071 P. R. China
| |
Collapse
|
48
|
Wang X, Liu Y, Wei Z, Hong J, Liang H, Song M, Zhou Y, Huang X. MXene-Boosted Imine Cathodes with Extended Conjugated Structure for Aqueous Zinc-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206812. [PMID: 36269022 DOI: 10.1002/adma.202206812] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Organic molecules have been considered promising energy-storage materials in aqueous zinc-ion batteries (ZIBs), but are plagued by poor conductivity and structural instability because of the short-range conjugated structure and low molecular weight. Herein, an imine-based tris(aza)pentacene (TAP) with extended conjugated effects along the CN backbones is proposed, which is in situ injected into layered MXene to form a TAP/Ti3 C2 Tx cathode. Theoretical and electrochemical analyses reveal a selective H+ /Zn2+ co-insertion/extraction mechanism in TAP, which is ascribed to the steric effect on the availability of active CN sites. Moreover, Ti3 C2 Tx , as a conductive scaffold, favors fast Zn2+ diffusion to boost the electrode kinetics of TAP. Close electronic interactions between TAP and Ti3 C2 Tx preserve the structural integrity of TAP/Ti3 C2 Tx during the repeated charge/discharge. Accordingly, the TAP/Ti3 C2 Tx cathode delivers a high reversible capacity of 303 mAh g-1 at 0.04 A g-1 in aqueous ZIBs, which also realizes an ultralong lifetime over 10 000 cycles with a capacity retention of 81.6%. Furthermore, flexible Zn||TAP/Ti3 C2 Tx batteries with a quasi-solid-state electrolyte demonstrate potential application in wearable electronic devices. This work offers pivotal guidance to create highly stable organic electrodes for advanced ZIBs.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yanan Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zengyan Wei
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jingzhe Hong
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Hongbo Liang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Meixiu Song
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yu Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoxiao Huang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
49
|
Zhao M, Lv Y, Zhao S, Xiao Y, Niu J, Yang Q, Qiu J, Wang F, Chen S. Simultaneously Stabilizing Both Electrodes and Electrolytes by a Self-Separating Organometallics Interface for High-Performance Zinc-Ion Batteries at Wide Temperatures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206239. [PMID: 36255143 DOI: 10.1002/adma.202206239] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Rechargeable aqueous zinc-ion batteries are of great potential as one of the next-generation energy-storage devices due to their low cost and high safety. However, the development of long-term stable electrodes and electrolytes still suffers from great challenges. Herein, a self-separation strategy is developed for an interface layer design to optimize both electrodes and electrolytes simultaneously. Specifically, the coating with an organometallics (sodium tricyanomethanide) evolves into an electrically responsive shield layer composed of nitrogen, carbon-enriched polymer network, and sodium ions, which not only modulates the zinc-ion migration pathways to inhibit interface side reactions but also adsorbs onto Zn perturbations to induce planar zinc deposition. Additionally, the separated ions from the coating can diffuse to the electrolyte to affect the Zn2+ solvation structure and maintain the cathode structural stability by forming a stable cathode-electrolyte interface and sodium ions' equilibrium, confirmed by in situ spectroscopy and electrochemical analysis. Due to these unique advantages, the symmetric zinc batteries exhibit an extralong cycling lifespan of 3000 h and rate performance at 20 mA cm-2 at wide temperatures. The efficiency of the self-separation strategy is further demonstrated in practical full batteries with an ultralong lifespan over 10 000 cycles from -35 to 60 °C.
Collapse
Affiliation(s)
- Ming Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Yanqun Lv
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shunshun Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Ying Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Jin Niu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Shimou Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, China
| |
Collapse
|
50
|
Li S, Huang C, Gao L, Shen Q, Li P, Qu X, Jiao L, Liu Y. Unveiling the “Proton Lubricant” Chemistry in Aqueous Zinc‐MoS
2
Batteries. Angew Chem Int Ed Engl 2022; 61:e202211478. [DOI: 10.1002/anie.202211478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Shengwei Li
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China
| | - Chao Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China
| | - Qiuyu Shen
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China
| | - Ping Li
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China
| | - Xuanhui Qu
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China
| | - Yongchang Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China
| |
Collapse
|