1
|
Wu L, Song Y. Recent innovations in interfacial strategies for DLP 3D printing process optimization. MATERIALS HORIZONS 2024. [PMID: 39470616 DOI: 10.1039/d4mh01160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, is capable of transforming computer-aided designs into intricate structures directly and on demand. This technology has garnered significant attention in recent years. Among the various approaches, digital light processing (DLP) 3D printing, which utilizes polymers or prepolymers as the ink, has emerged as the leading new technology, driven by high demand across diverse fields such as customized production, healthcare, education, and art design. DLP 3D printing technology employs cured slices as molding units and is recognized for its potential to achieve both high printing speed and resolution. Recent insights into the DLP printing process highlight its inherent interface transformations between liquid and solid states. This review summarizes key aspects of the printing process, speed, precision, and material diversity optimization, from the view of interfacial interactions between solid and liquid phases which are influenced by resin formation, curing surfaces and light source properties. These interactions include those at the liquid resin-UV pattern interface, the cured structure-curing surface interface, the liquid resin-curing surface interface, and the liquid resin-cured structure interface, each contributing to the unique characteristics of the printed results. Finally, this review addresses the current challenges and limitations of DLP 3D printing, providing valuable insights for future improvements and guiding potential innovations in the field.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yanlin Song
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
2
|
Hisham M, Butt H. Vat photopolymerization printing of functionalized hydrogels on commercial contact lenses. Sci Rep 2024; 14:13860. [PMID: 38879685 PMCID: PMC11180191 DOI: 10.1038/s41598-024-63846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Contact lenses are widely used for vision correction and cosmetic purposes. Smart contact lenses offer further opportunities as functionalized non-invasive devices capable of simultaneous vision correction, real-time health monitoring and patient specific drug delivery. Herein, a low-cost vat photopolymerization technique is developed for directly 3D printing functionalized structures on commercially available contact lenses. The process enables controlled deposition of functionalized hydrogels, in customizable patterns, on the commercial contact lens surface with negligible optical losses. Multi-functional contact lenses can also be 3D printed with multiple materials deposited at different regions of the contact lens. Herein, the functionalities of colour blindness correction and real-time UV monitoring are demonstrated, by employing three suitable dyes incorporated into 2-hydroxyethyl methacrylate (HEMA) hydrogel structures printed on contact lenses. The results suggest that 3D printing can pave the way towards simple production of low-cost patient specific smart contact lenses.
Collapse
Affiliation(s)
- Muhammed Hisham
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| | - Haider Butt
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| |
Collapse
|
3
|
Tay RY, Song Y, Yao DR, Gao W. Direct-Ink-Writing 3D-Printed Bioelectronics. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 71:135-151. [PMID: 38222250 PMCID: PMC10786343 DOI: 10.1016/j.mattod.2023.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The development of wearable and implantable bioelectronics has garnered significant momentum in recent years, driven by the ever-increasing demand for personalized health monitoring, remote patient management, and real-time physiological data collection. The elevated sophistication and advancement of these devices have thus led to the use of many new and unconventional materials which cannot be fulfilled through traditional manufacturing techniques. Three-dimension (3D) printing, also known as additive manufacturing, is an emerging technology that opens new opportunities to fabricate next-generation bioelectronic devices. Some significant advantages include its capacity for material versatility and design freedom, rapid prototyping, and manufacturing efficiency with enhanced capabilities. This review provides an overview of the recent advances in 3D printing of bioelectronics, particularly direct ink writing (DIW), encompassing the methodologies, materials, and applications that have emerged in this rapidly evolving field. This review showcases the broad range of bioelectronic devices fabricated through 3D printing including wearable biophysical sensors, biochemical sensors, electrophysiological sensors, energy devices, multimodal systems, implantable devices, and soft robots. This review will also discuss the advantages, existing challenges, and outlook of applying DIW 3D printing for the development of bioelectronic devices toward healthcare applications.
Collapse
Affiliation(s)
- Roland Yingjie Tay
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Dickson R. Yao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
4
|
Wang J, Huang J, Li Z, Chen K, Ren H, Wu X, Ren J, Li Z. Whole Model Path Planning-Guided Multi-Axis and Multi-Material Printing of High-Performance Intestinal Implantable Stent. Adv Healthc Mater 2023; 12:e2301313. [PMID: 37220875 DOI: 10.1002/adhm.202301313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/16/2023] [Indexed: 05/25/2023]
Abstract
The problems of step effects, supporting material waste, and conflict between flexibility and toughness for 3D printed intestinal fistula stents are not yet resolved. Herein, the fabrication of a support-free segmental stent with two types of thermoplastic polyurethane (TPU) using a homemade multi-axis and multi-material conformal printer guided with advanced whole model path planning is demonstrated. One type of TPU segment is soft to increase elasticity, and the other is used to achieve toughness. Owing to advancements in stent design and printing, the obtained stents present three unprecedented properties compared to previous three-axis printed stents: i) Overcoming step effects; ii) Presenting comparable axial flexibility to a stent made of a single soft TPU 87A material, thus increasing the feasibility of implantation; and iii) Showing equivalent radial toughness to a stent made of a single hard TPU 95A material. Hence, the stent can resist the intestinal contractive force and maintain intestinal continuity and patency. Through implanting such stents to the rabbit intestinal fistula models, therapeutic mechanisms of reducing fistula output and improving nutritional states and intestinal flora abundance are revealed. Overall, this study develops a creative and versatile method to improve the poor quality and mechanical properties of medical stents.
Collapse
Affiliation(s)
- Jiahang Wang
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, P. R. China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Ze Li
- School of Medicine, Nanjing University, Nanjing, 210008, P. R. China
| | - Kang Chen
- School of Medicine, Nanjing University, Nanjing, 210008, P. R. China
| | - Huajian Ren
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- School of Medicine, Nanjing University, Nanjing, 210008, P. R. China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- School of Medicine, Nanjing University, Nanjing, 210008, P. R. China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, P. R. China
| |
Collapse
|
5
|
Xu H, Chen S, Hu R, Hu M, Xu Y, Yoon Y, Chen Y. Continuous Vat Photopolymerization for Optical Lens Fabrication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300517. [PMID: 37246277 DOI: 10.1002/smll.202300517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Optical lenses require feature resolution and surface roughness that are beyond most (3D) printing methods. A new continuous projection-based vat photopolymerization process is reported that can directly shape polymer materials into optical lenses with microscale dimensional accuracy (< 14.7 µm) and nanoscale surface roughness (< 20 nm) without post-processing. The main idea is to utilize frustum layer stacking, instead of the conventional 2.5D layer stacking, to eliminate staircase aliasing. A continuous change of mask images is achieved using a zooming-focused projection system to generate the desired frustum layer stacking with controlled slant angles. The dynamic control of image size, objective and imaging distances, and light intensity involved in the zooming-focused continuous vat photopolymerization are systematically investigated. The experimental results reveal the effectiveness of the proposed process. The 3D-printed optical lenses with various designs, including parabolic lenses, fisheye lenses, and a laser beam expander, are fabricated with a surface roughness of 3.4 nm without post-processing. The dimensional accuracy and optical performance of the 3D-printed compound parabolic concentrators and fisheye lenses within a few millimeters are investiagted. These results highlight the rapid and precise nature of this novel manufacturing process, demonstrating a promising avenue for future optical component and device fabrication.
Collapse
Affiliation(s)
- Han Xu
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shuai Chen
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Renzhi Hu
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Muqun Hu
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yang Xu
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yeowon Yoon
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yong Chen
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
6
|
Fonseca N, Thummalapalli SV, Jambhulkar S, Ravichandran D, Zhu Y, Patil D, Thippanna V, Ramanathan A, Xu W, Guo S, Ko H, Fagade M, Kannan AM, Nian Q, Asadi A, Miquelard-Garnier G, Dmochowska A, Hassan MK, Al-Ejji M, El-Dessouky HM, Stan F, Song K. 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302718. [PMID: 37501325 DOI: 10.1002/smll.202302718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Lithium-ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e., safety due to dendrite propagation, manufacturing cost, random porosities, and basic & planar geometries) that hinder their widespread applications as the demand for LIBs rapidly increases in all sectors due to their high energy and power density values compared to other batteries. Additive manufacturing (AM) is a promising technique for creating precise and programmable structures in energy storage devices. This review first summarizes light, filament, powder, and jetting-based 3D printing methods with the status on current trends and limitations for each AM technology. The paper also delves into 3D printing-enabled electrodes (both anodes and cathodes) and solid-state electrolytes for LIBs, emphasizing the current state-of-the-art materials, manufacturing methods, and properties/performance. Additionally, the current challenges in the AM for electrochemical energy storage (EES) applications, including limited materials, low processing precision, codesign/comanufacturing concepts for complete battery printing, machine learning (ML)/artificial intelligence (AI) for processing optimization and data analysis, environmental risks, and the potential of 4D printing in advanced battery applications, are also presented.
Collapse
Affiliation(s)
- Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Shenghan Guo
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Hyunwoong Ko
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Mofe Fagade
- Mechanical Engineering, School of Engineering for Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Arunchala M Kannan
- Fuel Cell Laboratory, The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Qiong Nian
- School of Engineering for Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85287, USA
| | - Amir Asadi
- Department of Engineering Technology and Industrial Distribution (ETID), Texas A&M University, College Station, TX, 77843, USA
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Anna Dmochowska
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Mohammad K Hassan
- Center for Advanced Materials, Qatar University, P.O. BOX 2713, Doha, Qatar
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, P.O. BOX 2713, Doha, Qatar
| | - Hassan M El-Dessouky
- Physics Department, Faculty of Science, Galala University, Galala City, 43511, Egypt
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Felicia Stan
- Center of Excellence Polymer Processing & Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, Galati, 800008, Romania
| | - Kenan Song
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Mechanical Engineering, University of Georgia, 302 E. Campus Rd, Athens, Georgia, 30602, United States
| |
Collapse
|
7
|
Wang B, Zhao P, Zhang P, Hu J, Liu Y, Xie M, He Y. 3D-printed tortuous vessels with Photodissociable and morphology-controllable ink. J Biomater Appl 2023:8853282231183984. [PMID: 37485893 DOI: 10.1177/08853282231183984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Acute ischemic stroke (AIS) is a high mortality cerebrovascular disease associated with vessel curvature. However, the relevant mechanism remains unclear due to a lack of appropriate tortuous vascular models to investigate and validate. This study explores the combination of projection-based 3D bioprinting (PBP) with photo-stimulus-responsive techniques to fabricate a sodium alginate (SA)/acrylamide (AAM) hydrogel vascular scaffold capable of bending deformation. The coordination of Fe3+ ions with carboxylate groups in the alginate chains of the vascular scaffold acts as a molecular switch, which can be dissociated through photoreduction to enable the deformation response. Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS) results verified the deformation principle. By subjecting the scaffold to UV light exposure, Fe3+ is reduced to Fe2+ in spatially selected regions, resulting in the release of strain and subsequent deformation. Furthermore, it also controlled the degree and direction of curvature of the vessels. The cell seeding experiment verified that the vascular scaffold showed excellent biocompatibility. Overall, our approach could be used to generate an in vitro model of curved vascular pathology to investigate the pathogenesis and provide new directions for the diagnosis and treatment of vascular diseases in the future.
Collapse
Affiliation(s)
- Biling Wang
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, China
- Engineering for Life Group (EFL), Suzhou, China
| | - Pengcheng Zhao
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, China
| | - Peng Zhang
- Engineering for Life Group (EFL), Suzhou, China
| | - Jun Hu
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, China
| | - Yande Liu
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, China
| | - Mingjun Xie
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yong He
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, China
- Engineering for Life Group (EFL), Suzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
He X, Cheng J, Sun Z, Ye H, Liu Q, Zhang B, Ge Q. A volatile microemulsion method of preparing water-soluble photo-absorbers for 3D printing of high-resolution, high-water-content hydrogel structures. SOFT MATTER 2023; 19:3700-3710. [PMID: 37183429 DOI: 10.1039/d2sm01709a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Digital light processing (DLP)-based three-dimensional (3D) printing is an ideal tool to manufacture hydrogel structures in complex 3D forms. Using DLP to print hydrogel structures with high resolution requires the addition of water-soluble photo-absorbers to absorb excess light and confine photopolymerization to the desired area. However, the current photo-absorbers for hydrogel printing are neither efficient to absorb the excess light nor water-soluble. Herein, we report a volatile microemulsion template method that converts a wide range of commercial non-water-soluble photo-absorbers including Sudan orange G, quercetin, and many others to water-soluble nanoparticles with solubility above 1.0 g mL-1. After using these water-soluble photo-absorber nanoparticles, the highest lateral and vertical resolutions of printing high-water-content (70-80 wt%) hydrogels can be improved to 5 μm and 20 μm, respectively. Moreover, the quercetin nanoparticle can be easily washed out so that we achieve colorless and transparent printed hydrogel structures with excellent mechanical deformability and biocompatibility as well as thermally controllable variations on transparency and actuation. The proposed methods pave a new efficient way to develop water-soluble photo-absorbers, which helps to greatly improve the printing resolution of the high-water-content hydrogel structure and would be beneficial to extend the application scope of hydrogels.
Collapse
Affiliation(s)
- Xiangnan He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianxiang Cheng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zechu Sun
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haitao Ye
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingjiang Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Biao Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Qi Ge
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Wu L, Dong Z. Interfacial Regulation for 3D Printing based on Slice-Based Photopolymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300903. [PMID: 37147788 DOI: 10.1002/adma.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Indexed: 05/07/2023]
Abstract
3D printing, also known as additive manufacturing, can turn computer-aided designs into delicate structures directly and on demand by eliminating expensive molds, dies, or lithographic masks. Among the various technical forms, light-based 3D printing mainly involved the control of polymer-based matter fabrication and realized a field of manufacturing with high tunability of printing format, speed, and precision. Emerging slice- and light-based 3D-printing methods have prosperously advanced in recent years but still present challenges to the versatility of printing continuity, printing process, and printing details control. Herein, the field of slice- and light-based 3D printing is discussed and summarized from the view of interfacial regulation strategies to improve the printing continuity, printing process control, and the character of printed results, and several potential strategies to construct complex 3D structures of distinct characteristics with extra external fields, which are favorable for the further improvement and development of 3D printing, are proposed.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Hai R, Shao G, Ware HOT, Jones EH, Sun C. 3D Printing a Low-Cost Miniature Accommodating Optical Microscope. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208365. [PMID: 36624569 PMCID: PMC10198847 DOI: 10.1002/adma.202208365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Indexed: 05/04/2023]
Abstract
This decade has witnessed the tremendous progress in miniaturizing optical imaging systems. Despite the advancements in 3D printing optical lenses at increasingly smaller dimensions, challenges remain in precisely manufacturing the dimensionally compatible optomechanical components and assembling them into a functional imaging system. To tackle this issue, the use of 3D printing to enable digitalized optomechanical component manufacturing, part-count-reduction design, and the inclusion of passive alignment features is reported here, all for the ease of system assembly. The key optomechanical components of a penny-sized accommodating optical microscope are 3D printed in 50 min at a significantly reduced unit cost near $4. By actuating a built-in voice-coil motor, its accommodating capability is validated to focus on specimens located at different distances, and a focus-stacking function is further utilized to greatly extend depth of field. The microscope can be readily customized and rapidly manufactured to respond to task-specific needs in form factor and optical characteristics.
Collapse
Affiliation(s)
- Rihan Hai
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Guangbin Shao
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Henry Oliver T Ware
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Evan Hunter Jones
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Sun
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
11
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Zhu L, Rong Y, Wang Y, Bao Q, An J, Huang D, Huang X. DLP printing of tough organogels for customized wearable sensors. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Fang Y, Chen F, Wu H, Chen B. Progress in the application of 3D printing technology in ophthalmology. Graefes Arch Clin Exp Ophthalmol 2022; 261:903-912. [PMID: 36520184 DOI: 10.1007/s00417-022-05908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional printing (3DP) technology is a rapid prototyping technology that is widely used in the medical field. It can be combined with computer-aided design, material manufacturing, and other technologies to construct medical-related appliances, human implants and even cell-based models or biological tissues. In the field of ophthalmology, the technology can be used to manufacture ocular anatomical models, glasses, intraocular implants, microsurgical instruments, drugs, etc. It can also enable future 'bioprinting', involving the refractive and nervous systems of the eyeball, with excellent development prospects in the field. This review introduces the development of 3DP technology in ophthalmology and discusses its application and potential.
Collapse
Affiliation(s)
- Yan Fang
- Department of Ophthalmology, The PLA Navy Anqing Hospital, Anqing, 246000, Anhui, China
| | - Fan Chen
- Department of Ophthalmology, Anqing Municipal Hospital, No. 87 of Tianzhu Mountain East Road, Yixiu District, Anqing, 246000, Anhui, China
| | - Huarong Wu
- Department of Ophthalmology, Anqing Municipal Hospital, No. 87 of Tianzhu Mountain East Road, Yixiu District, Anqing, 246000, Anhui, China
| | - Bei Chen
- Department of Ophthalmology, Anqing Municipal Hospital, No. 87 of Tianzhu Mountain East Road, Yixiu District, Anqing, 246000, Anhui, China.
| |
Collapse
|
14
|
Zhang Q, Wang X, Kuang G, Yu Y, Zhao Y. Photopolymerized 3D Printing Scaffolds with Pt(IV) Prodrug Initiator for Postsurgical Tumor Treatment. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9784510. [PMID: 36111316 PMCID: PMC9448443 DOI: 10.34133/2022/9784510] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 12/20/2022]
Abstract
Biomedical scaffolds have shown great success in postsurgical tumor treatment; their current efforts are focusing on eradicating residual tumor cells and circulating tumor cells and simultaneously repairing postoperative tissue defects. Herein, we report a novel photopolymerized 3D scaffold with Pt(IV) prodrug initiator to achieve the desired features for tumor comprehensive therapy. The Pt-GelMA scaffold was fabricated from the microfluidic 3D printing of methacrylate gelatin (GelMA) bioinks through a Pt(IV)-induced photocrosslinked process without any other additional photoinitiator and chemotherapeutic drug. Thus, the resultant scaffold displayed efficient cell killing ability against breast cancer cells in vitro and significantly inhibited the local tumor growth and distant metastases on an orthotopic postoperative breast cancer model in vivo. Besides, benefiting from their ordered porous structures and favorable biocompatibility, the scaffolds supported the cell attachment, spreading, and proliferation of normal cells in vitro; could facilitate the nutrient transportation; and induced new tissue ingrowth for repairing tissue defects caused by surgery. These properties indicate that such 3D printing scaffold is a promising candidate for efficient postoperative tumor treatment in the practical application.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xiaocheng Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Gaizhen Kuang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yunru Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|