1
|
Li Z, Chen R, Hao Z, E Y, Guo Q, Li J, Zhu S. Hydrogel inspired by "adobe" with antibacterial and antioxidant properties for diabetic wound healing. Mater Today Bio 2025; 31:101477. [PMID: 39885943 PMCID: PMC11780960 DOI: 10.1016/j.mtbio.2025.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
With the aging population, the incidence of diabetes is increasing. Diabetes often leads to restricted neovascularization, antibiotic-resistant bacterial infections, reduced wound perfusion, and elevated reactive oxygen species, resulting in impaired microenvironments and prolonged wound healing. Hydrogels are important tissue engineering materials for wound healing, known for their high water content and good biocompatibility. However, most hydrogels suffer from poor mechanical properties and difficulty in achieving sustained drug release, hindering their clinical application. Inspired by the incorporation of fibers to enhance the mechanical properties of "adobe," core-shell fibers were introduced into the hydrogel. This not only improves the mechanical strength of the hydrogel but also enables the possibility of sustained drug release. In this study, we first prepared core-shell fibers with PLGA (poly(lactic-co-glycolic acid)) and PCL (polycaprolactone). PLGA was loaded with P2 (Parathyroid hormone-related peptides-2), developed by our group, which promotes angiogenesis and cell proliferation. We then designed a QTG (QCS/TA/Gel, quaternary ammonium chitosan/tannic acid/gelatin) hydrogel, incorporating the core-shell fibers and the anti-inflammatory drug celecoxib into the QTG hydrogel. This hydrogel exhibits excellent antibacterial properties and biocompatibility, along with good mechanical performance. This hydrogel demonstrates excellent water absorption and swelling capabilities. In the early stages of wound healing, the hydrogel can absorb the wound exudate, maintaining the stability of the wound microenvironment. This hydrogel promotes neovascularization and collagen deposition, accelerating the healing of diabetic wounds, with a healing rate exceeding 95 % by day 14. Overall, this study provides a promising strategy for developing tissue engineering scaffolds for diabetic wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Qi Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shaobo Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
2
|
Bi X, Mao Z, Li L, Zhang Y, Yang L, Hou S, Guan J, Zheng Y, Li X, Fan Y. Janus decellularized membrane with anisotropic cell guidance and anti-adhesion silk-based coatings for spinal dural repair. Nat Commun 2025; 16:1674. [PMID: 39955276 PMCID: PMC11829971 DOI: 10.1038/s41467-025-56872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
The repair of soft tissues with anisotropic structures, such as spinal dura mater, requires the use of biomaterials to guide tissue directional growth while minimizing epidural fibrotic adhesion. Herein, we construct the Janus small intestinal submucosa (SIS) via silk-based hydrogel coatings, which provides extracellular matrix-mimicking features and anti-adhesion performance for spinal dural defect repair. We demonstrate that the silk fibroin and methacrylated silk fibroin (SilMA) composite microgroove hydrogel coating at the inner surface via water vapor annealing treatment exhibits excellent structure stability, stable attachment to SIS substrate, and shows orientated cell morphology and extracellular matrix produced by fibroblasts, good histocompatibility and promotes the polarization of macrophages towards the anti-inflammatory phenotype. The methacrylated hyaluronic acid and SilMA composite coating outer surface serves as favorable physical barrier shows effective resistance to protein adsorption, cell and tissue adhesion, and can mitigate fibrosis reactions. Spinal dura mater defect experiments on male rats demonstrate that the Janus SIS simultaneously promotes dural regeneration and inhibits epidural fibrosis.
Collapse
Affiliation(s)
- Xuewei Bi
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, China
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhinan Mao
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Materials Science & Engineering, Beihang University, Beijing, China
| | - Linhao Li
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China.
| | - Yilin Zhang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Lingbing Yang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Sen Hou
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Juan Guan
- School of Materials Science & Engineering, Beihang University, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiaoming Li
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China.
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, China.
| | - Yubo Fan
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China.
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, China.
| |
Collapse
|
3
|
Chen G, Wu Y, Yao Y, Zhu Y, Shi H, Zhao M, Wang S, Zou M, Cheng G. A sesbania gum/γ-polyglutamic acid photo-crosslinking composite hydrogel loaded with multi-component traditional Chinese medicine extract synergizes microenvironment amelioration in infected diabetic wound healing. Int J Biol Macromol 2025; 305:140965. [PMID: 39952501 DOI: 10.1016/j.ijbiomac.2025.140965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The intricate physiological microenvironment of the diabetic wound characterized by overexpressed reactive oxygen species (ROS), persistent inflammation, angiogenetic dysfunction, and bacterial infection impeded the healing process. Herein, a photo-crosslinking composite hydrogel was fabricated based on the methacrylate modification of sesbania gum (SG) and γ-polyglutamic acid (γ-PGA), which could trigger free radical polymerization to form interpenetrating polymer network under 365 nm UV. Meanwhile, the micronized traditional Chinese medicine Huoxue Tongluo extract (HXTL) was encapsulated into the hydrogel to prepare the wound dressing (H-SGPGA). The 1H NMR and FT-IR successfully confirmed the synthesis of the methacrylate SG (SGMA) and γ-PGA (γ-PGAMA). Then, the enhanced mechanical properties, ROS scavenging (DPPH: 88.2 % ± 0.9 %; ABTS+: 90.5 % ± 0.4 %) and the antibacterial capacity (97.04 % ± 0.58 % against S. aureus) of H-SGPGA was investigated and confirmed in vitro. Finally, in the S. aureus infected diabetic wound model, the in vivo result demonstrated that the H-SGPGA significantly accelerated the diabetic wound repair process (8.31 % ± 5.54 % wound area on day 12) by promoting epidermis regeneration (79.13 % ± 5.99 %), collagen deposition (71.4 % ± 9.1 %), and angiogenesis (294.1 % ± 29.6 % of control group). Therefore, the composite H-SGPGA provided a potential treatment as the hydrogel dressing for the diabetic wound.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yanan Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yichen Yao
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yumeng Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Hongmei Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Minqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Shuo Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Meijuan Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Gang Cheng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Xiang C, Wen C, Wang Z, Tian Y, Li Y, Liao Y, Liu M, Zhong Y, Lin Y, Ning C, Zhou L, Fu R, Tan G. Multifunctional Conductive Hydrogel for Sensing Underwater Applications and Wearable Electroencephalogram Recording. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8327-8339. [PMID: 39841890 DOI: 10.1021/acsami.4c19660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions. The hydrogel has a commendable linear operating range (∼200% strain, GF = 1.44), stability of electrical signals for 200 cycles, excellent conductivity (2.18 S m-1), self-healing properties (∼30 min), and durable underwater adhesion stability. The conductive hydrogel can be developed into a flexible electronic sensor for detecting motion signals, such as joint flexion and swallowing, as well as for real-time underwater communication using Morse code. Additionally, the integration of this polymer with a low contact impedance facilitates real-time, high-fidelity detection of electroencephalogram (EEG) signals, serving as a flexible electrode. It is believed that our hydrogel will have good prospects in future wearable electronics.
Collapse
Affiliation(s)
- Chuyang Xiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chaoyao Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ziqi Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yu Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ying Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yuantao Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Mingjie Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yangengchen Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yeying Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, P. R. China
| | - Rumin Fu
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Li Q, Hou Y, Sun D, Zhu C, Wu R, Feng G, Zhang L, Song Y. Natural Protein-Based Multifunctional Hydrogel Dressing Formed by Rapid Photocuring and Zinc Ion Coordination to Accelerate Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5719-5734. [PMID: 39804051 DOI: 10.1021/acsami.4c16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
This study explores the use of chicken egg white (EW), a rich source of natural proteins, to address challenges in wound healing management. Herein, a novel Zn2+-infused EW/GelMA (EW/Gel) hybrid hydrogel is developed, featuring an interpenetrating network (IPN) structure, where the first network consists of photo-cross-linked GelMA and the second network consists of Zn2+-infused EW (Zn-EW) through ion-protein binding. By optimizing the design and formulation, the resulting Zn-EW/Gel hydrogel exhibited enhanced mechanical stability and self-adhesive properties. In vitro experiments demonstrated that the combined effects of functional proteins and active ions within the Zn-EW/Gel hydrogel promote fibroblast proliferation and type I collagen expression, modulate the immune microenvironment, and enhance angiogenesis. The hydrogel also demonstrated excellent biocompatibility and bioactivity in vivo, showing strong promise for restoring the physiological properties of the damaged wound tissue.
Collapse
Affiliation(s)
- Qiujiang Li
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Hou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5AH, U.K
| | - Ce Zhu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruibang Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ganjun Feng
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Li Y, Lu X, Zhang Y, Zhu X, Ma L, Ma N, Zhang X, Zhang H, Abd-El-Aziz AS. Nanoarchitectonics of a Skin-Like Polymeric Hydrogel with High Anti-Swelling and Self-Adhesion Performance for Underwater Communication. Macromol Rapid Commun 2025:e2400987. [PMID: 39812385 DOI: 10.1002/marc.202400987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Hydrogels are flexible materials characterized by a 3D network structure, which possess high water content and adjustable physicochemical properties. They have found widespread applications in tissue engineering, electronic skin, drug delivery, flexible sensors, and photothermal therapy. However, hydrogel networks often exhibit swelling behavior in aqueous environments, which can result in structural degradation and a loss of gel performance. In this study, polyacrylic acid is utilized as the primary network structure with the incorporation of the natural polymer chitosan. Furthermore, a conductive hydrogel exhibiting good mechanical strength similar to human skin and excellent anti-swelling properties is developed by integrating phytic acid into the hydrogel network. The as-prepared hydrogels exhibited maximum swelling in pure water, achieving an equilibrium swelling rate of 15%. Additionally, a dopamine-grafted polyacrylic acid binder is synthesized through a coupling reaction to enhance the adhesion of the hydrogels to various substrates. The hydrogels demonstrated strong adhesion properties with different substrates. Whether in the air or underwater, the hydrogel sensor effectively monitors human movement behaviors. Furthermore, by utilizing the sensing signals to send Morse code, the hydrogel sensor can facilitate underwater communication. This type of hydrogel sensor is anticipated to play a significant role in wearable sensing applications and underwater communication.
Collapse
Affiliation(s)
- Yunjin Li
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyi Lu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yihan Zhang
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, 266237, China
| | - Xu Zhu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Li Ma
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, 266237, China
| | - Ning Ma
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyue Zhang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Haibing Zhang
- National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, 266237, China
| | - Alaa S Abd-El-Aziz
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
7
|
Lama M, Merle M, Bessot E, Bussola Tovani C, Laurent G, Bouland N, Kerdjoudj H, Azaïs T, Ducouret G, Bortolotto T, Nassif N. Hierarchical Collagen/Apatite Co-assembly for Injection of Mineralized Fibrillar Tissue Analogues. ACS Biomater Sci Eng 2025; 11:564-576. [PMID: 39670834 DOI: 10.1021/acsbiomaterials.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Mineralized biological tissues rich in type I collagen (e.g., bone and dentin) exhibit complex anisotropic suprafibrillar organizations in which the organic and inorganic moieties are intimately coassembled over several length scales. Above a critical size, a defect in such tissue cannot be self-repaired. Biomimetic materials with a composition and microstructure similar to that of bone have been shown to favorably influence bone regeneration. This highlights the value of developing a similar formulation in an injectable form to enable minimally invasive techniques. Here, we report on the fabrication and application potential of an injectable collagen/CHA (carbonated hydroxyapatite) cell-free hydrogel. The organic part consists of spray-dried nondenatured and dense collagen microparticles, while the inorganic part consists of biomimetic apatite mineral. By mixing both powders at desired tissue-like ratios with an aqueous solvent in one step, spontaneous co-self-assembly occurs, leading to the formation of a mineralized matrix with suprafibrillar tissue-like features thanks to the induced liquid crystalline properties of collagen on one hand and apatite on the other hand. When injected into soft tissue, the mineralized collagen hydrogel free of chemical cross-linking agents exhibits suitable cohesion and is biocompatible. Preliminary in vitro tests in a tooth cavity model show its integration onto dentin with a biomimetic interface. Based on the results, this versatile injectable mineralized collagen hydrogel shows promising potential as a biomaterial for bone tissue repair and mineralized tissue-like ink for bioprinting applications.
Collapse
Affiliation(s)
- Milena Lama
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Marion Merle
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Elora Bessot
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Camila Bussola Tovani
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Guillaume Laurent
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Nicole Bouland
- University of Reims Champagne-Ardennes, 3 avenue du Maréchal Juin, 51100 Reims, France
| | - Halima Kerdjoudj
- University of Reims Champagne-Ardennes, 3 avenue du Maréchal Juin, 51100 Reims, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| | - Guylaine Ducouret
- Soft Matter Science and Engineering, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Tissiana Bortolotto
- Division of Cariology and Endodontology, University Clinic of Dental Medicine, Faculty of Medicine, University of Geneva, rue Michel-Servet 1, Genève 4, 1211 Geneva, Switzerland
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
8
|
Chen H, Zhao Z, Zhang R, Zhang G, Liang X, Xu C, Sun Y, Li Y, Boyer C, Xu FJ. Adaptable Hydrogel with Strong Adhesion of Wet Tissue for Long-Term Protection of Periodontitis Wound. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413373. [PMID: 39568256 DOI: 10.1002/adma.202413373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Periodontitis is a severe gum infection characterized by inflammation of the tissues surrounding the teeth. The disease is challenging to manage due to its exposure to a wet and dynamic oral environment, where conventional hydrogels often suffer from weak adhesion, short residence time, and vulnerability to bacterial invasion. In this study, an innovative hydrogel system based on in situ light curing is proposed. The hydrogel precursor, comprising sodium alginate and a calcium ion network, is designed and adhere to the irregular and smooth surfaces of periodontal tissue before curing. Upon light irradiation, a second network polymerizes rapidly, establishing multiple interactions with the tissue, which enhances adhesion strength. Benefited from this engineering strategy, the hydrogel exhibits a low swelling rate, effectively mitigating adhesion loss in the moist oral environment. Additionally, the hydrogel demonstrates excellent long-lasting wet adhesion, maintaining its presence in periodontal tissue over 120 hours. It also serves as an effective physical barrier against bacterial invasion, achieving a blocking efficiency of 99.9%. This novel design concept offers a promising approach for developing advanced medical dressings for periodontitis, providing sustained therapeutic benefits.
Collapse
Affiliation(s)
- Honggui Chen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zifan Zhao
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Key Laboratory of Digital Stomatology, Beijing Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, Beijing, 100081, China
| | - Rui Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyang Liang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuchun Sun
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Key Laboratory of Digital Stomatology, Beijing Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, Beijing, 100081, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Zhang W, Zhao J, Zou X, Yu J, Liao J, Huang F. Multifunctional hydrogels for the healing of oral ulcers. J Biomed Mater Res A 2025; 113:e37776. [PMID: 39210659 DOI: 10.1002/jbm.a.37776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Oral ulcers are one of the most common oral diseases in clinical practice. Its etiology is complex and varied. Due to the dynamic nature of the oral environment, the wound surface is painful due to contact and wear, which seriously affects the quality of life of patients. Oral ulcers are often treated with topical drug therapy. Studies have shown that functional hydrogels play a positive role in promoting wound healing, showing unique advantages in wound dressings. In this paper, the causes and healing characteristics of oral ulcers are discussed in depth, and then the common treatment methods for oral ulcers are summarized and compared. Finally, the potential of functional hydrogels in the treatment of oral ulcers is discussed and projected through a review of the literature in recent years.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Zhao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinxin Zou
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jingrong Yu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jinlong Liao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Saber S, Abdelhady R, Elhemely MA, Elmorsy EA, Hamad RS, Abdel-Reheim MA, El-kott AF, AlShehri MA, Morsy K, Negm S, Kira AY. Nanoscale Systems for Local Activation of Hypoxia-Inducible Factor-1 Alpha: A New Approach in Diabetic Wound Management. Int J Nanomedicine 2024; 19:13735-13762. [PMID: 39723173 PMCID: PMC11669355 DOI: 10.2147/ijn.s497041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/03/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic wounds in diabetic patients experience significant clinical challenges due to compromised healing processes. Hypoxia-inducible factor-1 alpha (HIF-1α) is a critical regulator in the cellular response to hypoxia, enhancing angiogenesis and tissue restoration. Nevertheless, the cellular response to the developed chronic hypoxia within diabetes is impaired, likely due to the destabilization of HIF-1α via degradation by prolyl hydroxylase domain (PHD) enzymes. Researchers have extensively explored HIF-1α activation as a potential pathway for diabetic wound management, focusing mainly on deferoxamine (DFO) as a potent agent to stabilize HIF-1α. This review provides an update of the other recent pharmacological agents managing HIF-1α activation, including novel PHD inhibitors (roxadustat and daprodustat) and Von Hippel-Lindau protein (VHL) antagonists, which could be potential alternatives for the local treatment of diabetic wounds. Furthermore, it highlights how localized delivery via advanced nanostructures can enhance the efficacy of these novel therapies. Importantly, by addressing these points, the current review can offer a promising area for research. Given that, these novel drugs have minimal applications in diabetic wound healing, particularly in the context of local application through nanomaterials. This gap presents an exciting opportunity for further investigation, as combining these drugs with localized nanotechnology could avoid undesired systemic side effects and sustain drug release within wound site, offering a transformative platform for diabetes wound treatment.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Mai A Elhemely
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M20 4BX, UK
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Attalla F El-kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
11
|
Xu Z, Wang J, Gao L, Zhang W. Hydrogels in Alveolar Bone Regeneration. ACS Biomater Sci Eng 2024; 10:7337-7351. [PMID: 39571179 DOI: 10.1021/acsbiomaterials.4c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Alveolar bone defects caused by oral trauma, alveolar fenestration, periodontal disease, and congenital malformations can severely affect oral function and facial aesthetics. Despite the successful clinical applications of bone grafts or bone substitutes, optimal alveolar bone regeneration continues to be challenging due to the complex oral environment and its unique physiological functions. Hydrogels that serve as promising candidates for tissue regeneration are under development to meet the specific needs for increased bone regeneration capacity and improved operational efficiency in alveolar bone repair. In this review, we emphasize the considerations in hydrogel design for alveolar bone regeneration and summarize the latest applications of hydrogels in prevalent clinical diseases related to alveolar bone defects. The future perspectives and challenges for the application of hydrogels in the field of alveolar bone regeneration are also discussed. Deepening our understanding of these biomaterials will facilitate the advent of novel inventions to improve the outcome of alveolar bone tissue regeneration.
Collapse
Affiliation(s)
- Zhuoran Xu
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Junyi Wang
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Liheng Gao
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
12
|
Li S, Liu L, Qiao F, Ma J, Miao H, Gao S, Ma Y, Yu X, Liu S, Yuan H, Dong A. Bioinspired Asymmetric-Adhesion Janus Hydrogel Patch Regulating by Zwitterionic Polymers for Wet Tissues Adhesion and Postoperative Adhesion Prevention. Adv Healthc Mater 2024; 13:e2402268. [PMID: 39295481 DOI: 10.1002/adhm.202402268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Indexed: 09/21/2024]
Abstract
Asymmetrically adhesive hydrogel patch with robust wet tissue adhesion simultaneously anti-postoperative adhesion is essential for clinical applications in internal soft-tissue repair and postoperative anti-adhesion. Herein, inspired by the lubricative role of serosa and the underwater adhesion mechanism of mussels, an asymmetrically adhesive hydrogel Janus patch is developed with adhesion layer (AL) and anti-adhesion layer (anti-AL) through an in situ step-by-step polymerization process in the mold. The AL exhibits excellent adhesion to internal soft-tissues. In contrast, the anti-AL demonstrated ultralow fouling property against protein and fibroblasts, which hinders the early and advanced stages of development of the adhesion. Moreover, the Janus patch simultaneously promotes tissue regeneration via ROS clearance capability of catechol moieties in the AL. Results from in vivo experiments with rabbits and rats demonstrate that the AL strongly adheres to traumatized tissue, while the anti-AL surface demonstrate efficacy in preventing of post-abdominal surgery adhesions in contrast to clinical patches. Considering the advantages in terms of therapeutic efficacy and off the shelf, the Janus patch developed in this work presents a promise for preventing postoperative adhesions and promoting regeneration of internal tissue defects.
Collapse
Affiliation(s)
- Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lingyuan Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fengtao Qiao
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jinzhu Ma
- NMPA Key Laboratory for Quality Evaluation of Non-active Implant Devices, Tianjin, 300384, China
| | - Hui Miao
- NMPA Key Laboratory for Quality Evaluation of Non-active Implant Devices, Tianjin, 300384, China
| | - Shangdong Gao
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yongqiang Ma
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xinghui Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Siyuan Liu
- School of Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Haicheng Yuan
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
13
|
Cheng QS, Xu PY, Luo SC, Chen AZ. Advances in Adhesive Materials for Oral and Maxillofacial Soft Tissue Diseases. Macromol Biosci 2024:e2400494. [PMID: 39588806 DOI: 10.1002/mabi.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Oral diseases represent a prevalent global health burden, profoundly affecting patients' quality of life. Given the involvement of oral mucosa and muscles in diverse physiological functions, coupled with clinical aesthetics considerations, repairing oral and maxillofacial soft tissue defects poses a formidable challenge. Wet-adhesive materials are regarded as promising oral repair materials due to their unique advantages in easily overcoming physical and biological barriers in the oral cavity. This review first introduces the intricate wet-state environment prevalent in the oral cavity, meticulously explaining the fundamental physical and chemical adhesion mechanisms that underpin adhesive materials. It then comprehensively summarizes the diverse types of adhesives utilized in stomatology, encompassing polysaccharide, protein, and synthetic polymer adhesive materials. The review further evaluates the latest research advancements in utilizing these materials to treat various oral and maxillofacial soft tissue diseases, including oral mucosal diseases, periodontitis, peri-implantitis, oral and maxillofacial skin defects, and maxillofacial tumors. Finally, it also highlights the promising future prospects and pivotal challenges related to stomatology application of multifunctional adhesive materials.
Collapse
Affiliation(s)
- Qiu-Shuang Cheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| |
Collapse
|
14
|
Kuddushi M, Malek N, Xu BB, Wang X, Zheng B, Unsworth LD, Xu J, Zhang X. Transparent and Mechanically Robust Janus Nanofiber Membranes for Open Wound Healing and Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63389-63403. [PMID: 39509431 DOI: 10.1021/acsami.4c16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The electrospun nanofiber membrane has demonstrated great potential for wound management due to its porous structure, large surface area, mechanical strength, and barrier properties. However, there is a need to develop transparent bioactive nanofibers with strong mechanical properties to facilitate the monitoring of the healing process. In this study, we present an electrospinning-based method for creating transparent (∼80-90%), strong (∼11-13 MPa), and Janus nanofiber membranes. The innovative square pattern architecture of the membrane includes a thin hydrophobic polycaprolactone layer on top of a layer of hydrophilic ethylene-vinyl alcohol nanofiber, which enables the absorption of excess biofluid from the wound and exhibits Janus wettability for water. Furthermore, incorporating 5% chitosan into the composition of the nanofibers accelerates the healing process through its antioxidant properties and antimicrobial activity against various bacteria, including drug-resistant strains. The developed membrane also demonstrates skin-repairing function, quick blood clotting (around 145 ± 12 s), and biocompatibility with keratinocyte (≥90%), as well as in vitro quick cell migration (∼24 h). With a tensile strength of 11-13 MPa, the membrane effectively adheres to the knee joint even after running 4 km. These optimal properties of the electrospun nanofiber membrane make it suitable for effective wound management and inspection of the healing process, without the need for frequent dressing changes.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Naved Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, U.K
| | - Xihua Wang
- Department of Electrical and Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Bin Zheng
- Surgical Simulation Research Lab, Department of Surgery, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW, Australia, Sydney, NSW 2052, Australia
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
15
|
Wu J, He W, Xu R, Li Y, Wu D, Yang Z, Li Y. Asymmetric porous hydrogel encapsulating vulcanized molecular brushes with anti-bacterial adhesion, anti-infection, and pro-healing properties towards infected wound treatment. NANOSCALE 2024; 16:20489-20495. [PMID: 39420797 DOI: 10.1039/d4nr02343a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Inspired by the hierarchical structure of the skin, asymmetric porous hydrogel encapsulating vulcanized molecular brushes (VMB@APH) as multifunctional wound dressing has been integrally constructed. The as-obtained VMB@APH effectively combines the anti-bacterial adhesion, anti-infection, and pro-healing properties, which is of great significance for accelerating the recovery of infected wounds.
Collapse
Affiliation(s)
- Jinlun Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Wenyi He
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ruijun Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Yang Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zifeng Yang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Yong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
16
|
Chee HL, M Y, Kim J, Koo JW, Luo P, Ramli MFH, Young JL, Wang F. Mechanical and Dimensional Stability of Gelatin-Based Hydrogels Through 3D Printing-Facilitated Confined Space Assembly. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61105-61114. [PMID: 39460703 DOI: 10.1021/acsami.4c15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Hydrogels have emerged as promising biomaterials for tissue regeneration; yet, their inherent swelling can cause deformation and reduced mechanical properties, posing challenges for practical applications in biomedical engineering. Traditional methods to reduce hydrogel swelling often involve complex synthesis procedures with limited flexibility. Inspired by nature's efficient designs, we present here the approach to improve hydrogel performance using 3D printing-assisted microstructure engineering. By utilizing polymerization-induced phase separation of hydrogel from copolymerization of gelatin methacrylate and hydroxyethyl methacrylate (poly(GelMA-co-HEMA)) in the confined space during vat photopolymerization (VPP) 3D printing, we replicate the cuttlebone-like microstructure of hydrogels with enhanced mechanical properties and swelling resistance. We demonstrate here a 4-fold increase in elastic modulus compared to bulk polymerization of poly(GelMA-co-HEMA), together with improved mechanical and dimensional stability. This method offers promising opportunities for practical biomedical and tissue engineering applications, overcoming previous limitations in the design and performance.
Collapse
Affiliation(s)
- Heng Li Chee
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yashaaswini M
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jaedeok Kim
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jing Wen Koo
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Ping Luo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - M Faris H Ramli
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Jennifer L Young
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
17
|
Yang Y, Ma Y, Wang H, Li C, Li C, Zhang R, Zhong S, He W, Cui X. Chitosan-based hydrogel dressings with antibacterial and antioxidant for wound healing. Int J Biol Macromol 2024; 280:135939. [PMID: 39317283 DOI: 10.1016/j.ijbiomac.2024.135939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bacterial infection and free radical oxidative stress at the wound site could easily cause cascade inflammation and hinder the healing process of the wound. In this study, chitosan-cysteine-gallic acid (CCG) hydrogel with antibacterial and antioxidant properties was synthesized by chitosan (CS), cysteine (Cys), and gallic acid (GA) for a preliminary evaluation of its therapeutic efficacy in a mouse model of full-layer skin defect. In vitro analysis showed that the CCG hydrogel had good antibacterial activity and blood compatibility. In vivo, the CCG hydrogel wound dressings accelerated wound healing, stimulate angiogenesis, increase collagen deposition and anti-inflammatory factor expression. The CCG hydrogel wound dressing is designed to promote the regeneration of damaged skin tissue and is expected to become a potential candidate for clinical treatment.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China; Henan Academy of Sciences, Zhengzhou 450046, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Haodong Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chongruihan Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chaoqun Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
18
|
Wang Y, Gao X, Wu J, Jiang M, Zhang H, Yan C. Antifreezing/Antiswelling Hydrogels: Synthesis Strategies and Applications as Flexible Motion Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58100-58120. [PMID: 39422229 DOI: 10.1021/acsami.4c13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hydrogels are excellent materials for fabricating flexible electronic devices, such as flexible sensors. However, obtaining hydrogels with superior swelling capacity and good hydrophilicity suitable for use under extreme environments, such as cold and underwater conditions, is still challenging due to the occurrence of freezing and excessive swelling. Alternatively, hydrogels with antifreezing and antiswelling capacities exhibit minimal changes in their physical and chemical properties under extreme conditions with retained original performance, such as mechanical properties, conductivity, and adhesiveness, making them suitable for various applications. Accordingly, various multifunctional antifreezing/antiswelling hydrogels meeting practical application requirements have been developed thanks to the advancement of hydrogel technology. Examples include flexible sensors for monitoring various motion signals, such as changes during sports events. However, comprehensive reviews describing these hydrogels in terms of synthesis and application in sensors are still lacking. Herein, the design and synthetic strategies of antifreezing/antiswelling hydrogels reported in recent years are comprehensively analyzed along with their mechanisms and applications in flexible motion sensors. This review aims to provide a comprehensive understanding of the research of antifreezing/antiswelling hydrogels and offer valuable insights for researchers engaged in the development of advanced materials suitable for practical applications.
Collapse
Affiliation(s)
- Yutong Wang
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Xing Gao
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Jie Wu
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hongchao Zhang
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Chufan Yan
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| |
Collapse
|
19
|
Zheng Z, Chen X, Wang Y, Wen P, Duan Q, Zhang P, Shan L, Ni Z, Feng Y, Xue Y, Li X, Zhang L, Liu J. Self-Growing Hydrogel Bioadhesives for Chronic Wound Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408538. [PMID: 39149779 DOI: 10.1002/adma.202408538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Hydrogel bioadhesives have emerged as a promising alternative to wound dressings for chronic wound management. However, many existing bioadhesives do not meet the functional requirements for efficient wound management through dynamically mechanical modulation, due to the reduced wound contractibility, frequent wound recurrence, incapability to actively adapt to external microenvironment variation, especially for those gradually-expanded chronic wounds. Here, a self-growing hydrogel bioadhesive (sGHB) patch that exhibits instant adhesion to biological tissues but also a gradual increase in mechanical strength and interfacial adhesive strength within a 120-h application is presented. The gradually increased mechanics of the sGHB patch could effectively mitigate the stress concentration at the wound edge, and also resist the wound expansion at various stages, thus mechanically contracting the chronic wounds in a programmable manner. The self-growing hydrogel patch demonstrated enhanced wound healing efficacy in a mouse diabetic wound model, by regulating the inflammatory response, promoting the faster re-epithelialization and angiogenesis through mechanical modulation. Such kind of self-growing hydrogel bioadhesives have potential clinical utility for a variety of wound management where dynamic mechanical modulation is indispensable.
Collapse
Affiliation(s)
- Ziman Zheng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yafei Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ping Wen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingfang Duan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liangjie Shan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
20
|
Chen L, Tang S, Zhang J, Zhong C, Xu X, Yan J, Hu K, Guo Z, Zhang F. Prussian Blue Nanohybridized Multicellular Spheroids as Composite Engraftment for Antioxidant Bone Regeneration and Photoacoustic Tomography. ACS NANO 2024; 18:24770-24783. [PMID: 39164631 DOI: 10.1021/acsnano.3c06835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Regulating the complex microenvironment after tooth extraction to promote alveolar bone regeneration is a pressing challenge for restorative dentistry. In this study, through modulating the mechanical properties of the cellular matrix, we guided various types of cells by self-organizing to form multicellular spheroids (MCSs) and hybridized MCSs with Prussian Blue nanoparticles (PBNPs) in the process. The constructed Prussian Blue nanohybridized multicellular spheroids (PBNPs@MCSs) with empowered antioxidant functions effectively reduced cell apoptosis under peroxidative conditions and exhibited enhanced ability to regulate the microenvironment and promote bone repair both in vitro and in vivo. In addition, the PBNPs@MCSs exhibited enhanced photoacoustic imaging ability to trace low doses of PBNPs. Therefore, the constructed PBNPs@MCSs based on the biomimetic hydrogel can be used as a form of an engraftment building block, with a greater potential for pro-bone repair application in the complex microenvironment of the oral cavity.
Collapse
Affiliation(s)
- Lu Chen
- Department of Prosthodontics, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
- Shaoxing Stomatological Hospital, Shaoxing 312000, Zhejiang, China
| | - Shijia Tang
- Department of Prosthodontics, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jiamin Zhang
- School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiying Zhong
- School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xueqin Xu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Jia Yan
- Department of Prosthodontics, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ke Hu
- School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhaobin Guo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feimin Zhang
- Department of Prosthodontics, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
21
|
Xiang Y, Pan Z, Qi X, Ge X, Xiang J, Xu H, Cai E, Lan Y, Chen X, Li Y, Shi Y, Shen J, Liu J. A cuttlefish ink nanoparticle-reinforced biopolymer hydrogel with robust adhesive and immunomodulatory features for treating oral ulcers in diabetes. Bioact Mater 2024; 39:562-581. [PMID: 38883310 PMCID: PMC11179175 DOI: 10.1016/j.bioactmat.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024] Open
Abstract
Oral ulcers can be managed using a variety of biomaterials that deliver drugs or cytokines. However, many patients experience minimal benefits from certain medical treatments because of poor compliance, short retention times in the oral cavity, and inadequate drug efficacy. Herein, we present a novel hydrogel patch (SCE2) composed of a biopolymer matrix (featuring ultraviolet-triggered adhesion properties) loaded with cuttlefish ink nanoparticles (possessing pro-healing functions). Applying a straightforward local method initiates the formation of a hydrogel barrier that adheres to mucosal injuries under the influence of ultraviolet light. SCE2 then demonstrates exceptional capabilities for near-infrared photothermal sterilization and neutralization of reactive oxygen species. These properties contribute to the elimination of bacteria and the management of the oxidation process, thus accelerating the healing phase's progression from inflammation to proliferation. In studies involving diabetic rats with oral ulcers, the SCE2 adhesive patch significantly quickens recovery by altering the inflamed state of the injured area, facilitating rapid re-epithelialization, and fostering angiogenesis. In conclusion, this light-sensitive hydrogel patch offers a promising path to expedited wound healing, potentially transforming treatment strategies for clinical oral ulcers.
Collapse
Affiliation(s)
- Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhuge Pan
- Department of Otolaryngology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - XinXin Ge
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Junbo Xiang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Hangbin Xu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Erya Cai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yulong Lan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaojing Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Ying Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yizuo Shi
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jinsong Liu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
22
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
23
|
Zhang Q, Chen J, Zhang T, Liu D, Long X, Li J, Jiang L, Wang Y, Tan H. A Bilayer Polyurethane Patch with Sustained Growth Factor Release and Antibacteria for Re-epithelization of Large-Scale Oral Mucosal Defects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44561-44574. [PMID: 39152904 DOI: 10.1021/acsami.4c09841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
In the field of oral and maxillofacial surgery, extensive oral soft-tissue injuries occur repeatedly in clinical practice; however, effective restorative materials are lacking. In this study, a biodegradable waterborne polyurethane patch featuring a mucosa bionic bilayer structure is presented. This patch consists of a porous scaffold layer that faces the lesion, incorporating a polydopamine coating to achieve sustained release of epidermal growth factors (EGFs) for mucosal defect reconstruction. Additionally, there is a dense barrier layer toward the oral cavity loaded with silver nanoparticles, which prevents bacteria from entering the wound and simultaneously acts as a physical barrier. This patch can sustainably release EGF in vitro for 2 weeks, thereby facilitating the proliferation and migration of HaCaT and L929 cells, while effectively killing common oral cavity bacteria. In a rabbit buccal mucosal full-thickness defect model, the patch demonstrates better efficacy than the clinical benchmark, decellularized extracellular matrix (dECM). It effectively reduces wound inflammation and significantly upregulates gene expression associated with epithelialization by activating the EGF/epidermal growth factor receptor (EGFR) pathway. These mechanisms promote the proliferation, differentiation, and migration of epithelial/keratinocyte cells, ultimately expediting mucosal defect healing and wound closure.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Jinlin Chen
- Yu-Yue Pathology Scientific Research Center, Jinfeng Laboratory, Chongqing 401329, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tianyu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xirui Long
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
24
|
Zhong Y, Wei ET, Wu L, Wang Y, Lin Q, Wu N, Chen H, Tang N. Novel Biomaterials for Wound Healing and Tissue Regeneration. ACS OMEGA 2024; 9:32268-32286. [PMID: 39100297 PMCID: PMC11292631 DOI: 10.1021/acsomega.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024]
Abstract
Skin is the first defense barrier of the human body, which can resist the invasion of external dust, microorganisms and other pollutants, and ensure that the human body maintains the homeostasis of the internal environment. Once the skin is damaged, the health threat to the human body will increase. Wound repair and the human internal environment are a dynamic process. How to effectively accelerate the healing of wounds without affecting the internal environment of the human body and guarantee that the repaired tissue retains its original function as much as possible has become a research hotspot. With the advancement of technology, researchers have combined new technologies to develop and prepare various types of materials for wound healing. This article will introduce the wound repair materials developed and prepared in recent years from three types: nanofibers, composite hydrogels, and other new materials. The paper aims to provide reference for researchers in related fields to develop and prepare multifunctional materials. This may be helpful to design more ideal materials for clinical application, and then achieve better wound healing and regeneration effects.
Collapse
Affiliation(s)
- Yi Zhong
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Er-ting Wei
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Leran Wu
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Yong Wang
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Qin Lin
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Nihuan Wu
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Hongpeng Chen
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Nan Tang
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| |
Collapse
|
25
|
Xia Y, Yan S, Wei H, Zhang H, Hou K, Chen G, Cao R, Zhu M. Multifunctional Porous Bilayer Artificial Skin for Enhanced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34578-34590. [PMID: 38946497 DOI: 10.1021/acsami.4c05074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Meeting the exacting demands of wound healing encompasses rapid coagulation, superior exudate absorption, high antibacterial efficacy, and imperative support for cell growth. In this study, by emulating the intricate structure of natural skin, we prepare a multifunctional porous bilayer artificial skin to address these critical requirements. The bottom layer, mimicking the dermis, is crafted through freeze-drying a gel network comprising carboxymethyl chitosan (CMCs) and gelatin (GL), while the top layer, emulating the epidermis, is prepared via electrospinning poly(l-lactic acid) (PLLA) nanofibers. With protocatechuic aldehyde and gallium ion complexation (PA@Ga) as cross-linking agents, the bottom PA@Ga-CMCs/GL layer featured an adjustable pore size (78-138 μm), high hemostatic performance (67s), and excellent bacterial inhibition rate (99.9%), complemented by an impressive liquid-absorbing capacity (2000% swelling rate). The top PLLA layer, with dense micronanostructure and hydrophobic properties, worked as a shield to effectively thwarted liquid or bacterial penetration. Furthermore, accelerated wound closure, reduced inflammatory responses, and enhanced formation of hair follicles and blood vessels are achieved by the porous artificial skin covered on the surface of wound. Bilayer artificial skin integrates the advantages of nanofibers and freeze-drying porous materials to effectively replicate the protective properties of the epidermal layer of the skin, as well as the cell migration and tissue regeneration of the dermis. This bioabsorbable artificial skin demonstrates structural and functional comparability to real skin, which would advance the field of wound care through its multifaceted capabilities.
Collapse
Affiliation(s)
- Yuhan Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Sai Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huidan Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Han Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
26
|
Li H, Zhang D, Bao P, Li Y, Liu C, Meng T, Wang C, Wu H, Pan K. Recent Advances in Functional Hydrogels for Treating Dental Hard Tissue and Endodontic Diseases. ACS NANO 2024; 18:16395-16412. [PMID: 38874120 DOI: 10.1021/acsnano.4c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Oral health is the basis of human health, and almost everyone has been affected by oral diseases. Among them, endodontic disease is one of the most common oral diseases. Limited by the characteristics of oral biomaterials, clinical methods for endodontic disease treatment still face large challenges in terms of reliability and stability. The hydrogel is a kind of good biomaterial with an adjustable 3D network structure, excellent mechanical properties, and biocompatibility and is widely used in the basic and clinical research of endodontic disease. This Review discusses the recent advances in functional hydrogels for dental hard tissue and endodontic disease treatment. The emphasis is on the working principles and therapeutic effects of treating different diseases with functional hydrogels. Finally, the challenges and opportunities of hydrogels in oral clinical applications are discussed and proposed. Some viewpoints about the possible development direction of functional hydrogels for oral health in the future are also put forward. Through systematic analysis and conclusion of the recent advances in functional hydrogels for dental hard tissue and endodontic disease treatment, this Review may provide significant guidance and inspiration for oral disease and health in the future.
Collapse
Affiliation(s)
- Huixu Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Pingping Bao
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Ying Li
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Chaoge Liu
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
- Department of Oramaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
| | - Tingting Meng
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Chao Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, P. R. China
| | - Heting Wu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, P. R. China
| | - Keqing Pan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
| |
Collapse
|
27
|
Chen J, Zhang T, Liu D, Yang F, Feng Y, Wang A, Wang Y, He X, Luo F, Li J, Tan H, Jiang L. General Semi-Solid Freeze Casting for Uniform Large-Scale Isotropic Porous Scaffolds: An Application for Extensive Oral Mucosal Reconstruction. SMALL METHODS 2024; 8:e2301518. [PMID: 38517272 DOI: 10.1002/smtd.202301518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Ice-templated porous biomaterials possess transformative potential in regenerative medicine; yet, scaling up ice-templating processes for broader applications-owing to inconsistent pore formation-remains challenging. This study reports an innovative semi-solid freeze-casting technique that draws inspiration from semi-solid metal processing (SSMP) combined with ice cream-production routines. This versatile approach allows for the large-scale assembly of various materials, from polymers to inorganic particles, into isotropic 3D scaffolds featuring uniformly equiaxed pores throughout the centimeter scale. Through (cryo-)electron microscopy, X-ray tomography, and finite element modeling, the structural evolution of ice grains/pores is elucidated, demonstrating how the method increases the initial ice nucleus density by pre-fabricating a semi-frozen slurry, which facilitates a transition from columnar to equiaxed grain structures. For a practical demonstration, as-prepared scaffolds are integrated into a bilayer tissue patch using biodegradable waterborne polyurethane (WPU) for large-scale oral mucosal reconstruction in minipigs. Systematic analyses, including histology and RNA sequencing, prove that the patch modulates the healing process toward near-scarless mucosal remodeling via innate and adaptive immunomodulation and activation of pro-healing genes converging on matrix synthesis and epithelialization. This study not only advances the field of ice-templating fabrication but sets a promising precedent for scaffold-based large-scale tissue regeneration.
Collapse
Affiliation(s)
- Jinlin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Tianyu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Ao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, P. R. China
| | - Xueling He
- Editorial Board of Journal of Sichuan University (Medical Sciences), Sichuan University, Chengdu, Sichuan, 610000, P. R. China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
28
|
He G, Xian Y, Lin H, Yu C, Chen L, Chen Z, Hong Y, Zhang C, Wu D. An injectable and coagulation-independent Tetra-PEG hydrogel bioadhesive for post-extraction hemostasis and alveolar bone regeneration. Bioact Mater 2024; 37:106-118. [PMID: 39022616 PMCID: PMC11252469 DOI: 10.1016/j.bioactmat.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 07/20/2024] Open
Abstract
Effective control of post-extraction hemorrhage and alveolar bone resorption is critical for successful extraction socket treatment, which remains an unmet clinical challenge. Herein, an injectable Tetra-PEG hydrogel that possesses rapid gelation, firm tissue adhesion, high mechanical strength, suitable degradability, and excellent biocompatibility is developed as a sutureless and coagulation-independent bioadhesive for the management of extraction sockets. Our results demonstrate that the rapid and robust adhesive sealing of the extraction socket by the Tetra-PEG hydrogel can provide reliable protection for the underlying wound and stabilize blood clots to facilitate tissue healing. In vivo experiments using an anticoagulated rat tooth extraction model show that the hydrogel significantly outperformed clinically used cotton and gelatin sponge in hemostatic efficacy, wound closure, alveolar ridge preservation, and in situ alveolar bone regeneration. Histomorphological evaluations reveal the mechanisms for accelerated bone repair through suppressed long-term inflammation, elevated collagen deposition, higher osteoblast activity, and enhanced angiogenesis. Together, our study highlights the clinical potential of the developed injectable Tetra-PEG hydrogel for treating anticoagulant-related post-extraction hemorrhage and improving socket healing.
Collapse
Affiliation(s)
- Gang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Huajun Lin
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Chengcheng Yu
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Luyuan Chen
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Zhihui Chen
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Yonglong Hong
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District, Shenzhen, Guangdong, 518101, China
| | - Chong Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
29
|
Li S, Zhi L, Chen Q, Zhao W, Zhao C. Reversibly Adhesive, Anti-Swelling, and Antibacterial Hydrogels for Tooth-Extraction Wound Healing. Adv Healthc Mater 2024; 13:e2400089. [PMID: 38354105 DOI: 10.1002/adhm.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Oral wound treatment faces challenges due to the complex oral environment, thus, sealing the wound quickly becomes necessary. Although some materials have achieved adhesion and sterilization, how to effectively solve the contradiction between strong adhesion and on-demand removal remains a challenge. Herein, a reversibly adhesive hydrogel is designed by free radical copolymerization of cationic monomer [2-(acryloyloxy) ethyl] trimethylammonium chloride (ATAC), hydrophobic monomer ethylene glycol phenyl ether acrylate (PEA) and N-isopropylacrylamide (NIPAAm). The cationic quaternary ammonium salts provide electrostatic interactions, the hydrophobic groups provide hydrophobic interactions, and the PNIPAAm chain segments provide hydrogen bonding, leading to strong adhesion. Therefore, the hydrogel obtains an adhesion strength of 18.67 KPa to oral mucosa and can seal wounds fast within 10 s. Furthermore, unlike pure PNIPAAm, the hydrogel has a lower critical solution temperature of 40.3 °C due to the contribution of ATAC and PEA, enabling rapid removal with 40 °C water after treatment. In addition, the hydrogel realizes excellent anti-swelling ratio (≈80%) and antibacterial efficiency (over 90%). Animal experiments prove that the hydrogel effectively reduces inflammation infiltration, promotes collagen deposition and vascular regeneration. Thus, hydrogel as a multi-functional dressing has great application prospects in oral wound management.
Collapse
Affiliation(s)
- Siyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lunhao Zhi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qin Chen
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
30
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
31
|
Yang W, Zhong W, Yan S, Wang S, Xuan C, Zheng K, Qiu J, Shi X. Mechanical Stimulation of Anti-Inflammatory and Antioxidant Hydrogels for Rapid Re-Epithelialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312740. [PMID: 38272455 DOI: 10.1002/adma.202312740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The epithelium, an essential barrier to protect organisms against infection, exists in many organs. However, rapid re-epithelialization to restore tissue integrity and function in an adverse environment is challenging. In this work, a long-term anti-inflammatory and antioxidant hydrogel with mechanical stimulation for rapid re-epithelialization, mainly composed of the small molecule thioctic acid, biocompatible glycine, and γ-Fe2O3 nanoparticles is reported. Glycine-modified supramolecular thioctic acid is stable and possesses outstanding mechanical properties. The incorporating γ-Fe2O3 providing the potential contrast function for magnetic resonance imaging observation, can propel hydrogel reconfiguration to enhance the mechanical properties of the hydrogel underwater due to water-initiated release of Fe3+. In vitro experiments show that the hydrogels effectively reduced intracellular reactive oxygen species, guided macrophages toward M2 polarization, and alleviated inflammation. The effect of rapid re-epithelialization is ultimately demonstrated in a long urethral injury model in vivo, and the mechanical stimulation of hydrogels achieves effective functional replacement and ultimately accurate remodeling of the epithelium. Notably, the proposed strategy provides an advanced alternative treatment for patients in need of large-area epithelial reconstruction.
Collapse
Affiliation(s)
- Wei Yang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Wenwen Zhong
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Shengtao Yan
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Shuting Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Chengkai Xuan
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Jianguang Qiu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
32
|
Fang M, Wang Y, Yang T, Zhang J, Yu H, Luo Z, Su B, Lin X. Nucleic Acid Plate Culture: Label-Free and Naked-Eye-Based Digital Loop-Mediated Isothermal Amplification in Hydrogel with Machine Learning. ACS Sens 2024; 9:2010-2019. [PMID: 38602267 DOI: 10.1021/acssensors.3c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Digital nucleic acid amplification enables the absolute quantification of single molecules. However, due to the ultrasmall reaction volume in the digital system (i.e., short light path), most digital systems are limited to fluorescence signals, while label-free and naked-eye readout remain challenging. In this work, we report a digital nucleic acid plate culture method for label-free, ultrasimple, and naked-eye nucleic acid analysis. As simple as the bacteria culture, the nanoconfined digital loop-mediated isothermal amplification was performed by using polyacrylamide (PAM) hydrogel as the amplification matrix. The nanoconfinement of PAM hydrogel with an ionic polymer chain can remarkably accelerate the amplification of target nucleic acids and the growth of inorganic byproducts, namely, magnesium pyrophosphate particles (MPPs). Compared to that in aqueous solutions, MPPs trapped in the hydrogel with enhanced light scattering characteristics are clearly visible to the naked eye, forming white "colony" spots that can be simply counted in a label-free and instrument-free manner. The MPPs can also be photographed by a smartphone and automatically counted by a machine-learning algorithm to realize the absolute quantification of antibiotic-resistant pathogens in diverse real samples.
Collapse
Affiliation(s)
- Mei Fang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Yiru Wang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Jing Zhang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
33
|
Zhao Q, Leng C, Lau M, Choi K, Wang R, Zeng Y, Chen T, Zhang C, Li Z. Precise healing of oral and maxillofacial wounds: tissue engineering strategies and their associated mechanisms. Front Bioeng Biotechnol 2024; 12:1375784. [PMID: 38699431 PMCID: PMC11063293 DOI: 10.3389/fbioe.2024.1375784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Precise healing of wounds in the oral and maxillofacial regions is usually achieved by targeting the entire healing process. The rich blood circulation in the oral and maxillofacial regions promotes the rapid healing of wounds through the action of various growth factors. Correspondingly, their tissue engineering can aid in preventing wound infections, accelerate angiogenesis, and enhance the proliferation and migration of tissue cells during wound healing. Recent years, have witnessed an increase in the number of researchers focusing on tissue engineering, particularly for precise wound healing. In this context, hydrogels, which possess a soft viscoelastic nature and demonstrate exceptional biocompatibility and biodegradability, have emerged as the current research hotspot. Additionally, nanofibers, films, and foam sponges have been explored as some of the most viable materials for wound healing, with noted advantages and drawbacks. Accordingly, future research is highly likely to explore the application of these materials harboring enhanced mechanical properties, reduced susceptibility to external mechanical disturbances, and commendable water absorption and non-expansion attributes, for superior wound healing.
Collapse
Affiliation(s)
- Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Changyun Leng
- School of stomatology, Jinan University, Guangzhou, China
| | - Manting Lau
- Department of Stomatology, Baoan Central Hospital of Shenzhen, Shenzhen, China
| | - Kawai Choi
- School of stomatology, Jinan University, Guangzhou, China
| | - Ruimin Wang
- School of stomatology, Jinan University, Guangzhou, China
| | - Yuyu Zeng
- School of stomatology, Jinan University, Guangzhou, China
| | - Taiying Chen
- School of stomatology, Jinan University, Guangzhou, China
| | - Canyu Zhang
- School of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
34
|
Zhou X, Cai Y, Zhao J. The hemostatic and comforting effects of oral adhesive bandages in tooth extraction: a randomized controlled clinical study. Clin Oral Investig 2024; 28:244. [PMID: 38583113 PMCID: PMC10999378 DOI: 10.1007/s00784-024-05648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVES To compare oral adhesive bandages with the classic compression method and evaluate the clinical efficacy of this wound dressing material in improving postoperative comfort, wound healing, and hemostasis in tooth extraction. MATERIALS AND METHODS The study was designed as a randomized controlled clinical trial. A total of 120 patients were recruited and randomly assigned to the study group and the control group. In the study group, oral adhesive bandages were used as wound dressing. In the control group, patients bit on cotton balls and gauze, as usual. Hemorrhage, comfort, and healing levels were evaluated at postoperative 1 h, 24 h, and 7 days. The adhesion time of the oral adhesive bandages was also recorded. RESULTS The average adhesion time of the oral adhesive bandages was 26.6 h. At postoperative 1 and 24 h, the hemostatic levels of the oral adhesive bandage group were significantly higher than those of the control group. The oral adhesive bandage group also reported significantly higher comfort scores than the control group. Both groups had similar healing levels and side effects. But the mean score for wound healing was slightly higher in the oral adhesive bandage group. CONCLUSIONS Oral adhesive bandages were more effective than cotton balls and gauze in providing hemostatic and comfort effects on extraction wounds. CLINICAL RELEVANCE Oral adhesive bandages possess clinical value in the management of extraction wounds.
Collapse
Affiliation(s)
- Xiaocheng Zhou
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Yu Cai
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China.
| | - Jihong Zhao
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
35
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
36
|
Wang J, Zhang L, Wang L, Tang J, Wang W, Xu Y, Li Z, Ding Z, Jiang X, Xi K, Chen L, Gu Y. Ligand-Selective Targeting of Macrophage Hydrogel Elicits Bone Immune-Stem Cell Endogenous Self-Healing Program to Promote Bone Regeneration. Adv Healthc Mater 2024; 13:e2303851. [PMID: 38226706 PMCID: PMC11468030 DOI: 10.1002/adhm.202303851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Targeting macrophages can facilitate the site-specific repair of critical bone defects. Herein, a composite hydrogel, gelatin-Bletilla striata polysaccharide-mesoporous bioactive glass hydrogel (GBMgel), is constructed via the self-assembly of mesoporous bioactive glass on polysaccharide structures, through the Schiff base reaction. GBMgel can efficiently capture macrophages and drive the recruitment of seed stem cells and vascular budding required for regeneration in the early stages of bone injury, and the observed sustained release of inorganic silicon ions further enhances bone matrix deposition, mineralization, and vascular maturation. Moreover, the use of macrophage-depleted rat calvarial defect models further confirms that GBMgel, with ligand-selective macrophage targeting, increases the bone regeneration area and the proportion of mature bone. Mechanistic studies reveal that GBMgel upregulates the TLR4/NF-κB and MAPK macrophage pathways in the early stages and the JAK/STAT3 pathway in the later stages; thus initiating macrophage polarization at different time points. In conclusion, this study is based on the endogenous self-healing properties of bone macrophages, which enhances stem cell homing, and provides a research and theoretical basis upon which bone tissue can be reshaped and regenerated using the body's immune power, providing a new strategy for the treatment of critical bone defects.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Liang Zhang
- Department of OrthopedicsBeijing Friendship HospitalCapital Medical UniversityNo. 95, Yong An Road, XiCheng DistrictBeijing100050P. R. China
| | - Lingjun Wang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Jincheng Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Wei Wang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Yichang Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Ziang Li
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Zhouye Ding
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Xinzhao Jiang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Kun Xi
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Liang Chen
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| | - Yong Gu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow University188 Shizi Road, Gusu DistrictSuzhouJiangsu215006P. R. China
| |
Collapse
|
37
|
Deng H, Jiang Y, Deng J, Chang F, Chen J, Sun X, Cheng D, Wang Z, Li R, Liu J, Li Y, Zhang L, Yin P. Extracellular vesicles produced by 3D cultured MSCs promote wound healing by regulating macrophage activation through ANXA1. Biomater Sci 2024; 12:1761-1770. [PMID: 38375617 DOI: 10.1039/d3bm02035e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The conundrum of wound healing has transformed into an imminent medical challenge. Presently, cell-free therapy centered around extracellular vesicles (EVs) has become a pivotal and promising research avenue. EVs generated from three-dimensional (3D) cell cultures have been previously established to possess enhanced tissue regeneration potential, although the underlying mechanisms remain elusive. In this study, we observed higher expression of annexin ANXA1 in 3D-cultured EVs. Remarkably, 3D-EVs with elevated ANXA1 expression demonstrated a more potent capacity to promote macrophage polarization from the M1 phenotype to the M2 phenotype. Concurrently, they exhibited superior abilities to enhance cell migration and tube formation, facilitating expedited wound healing in animal experiments. Conversely, the application of an ANXA1 inhibitor counteracted the positive effects of 3D-EVs. Taken together, our data validate that extracellular vesicles derived from 3D-cultured MSCs regulate macrophage polarization via ANXA1, thereby fostering wound healing.
Collapse
Affiliation(s)
- Hao Deng
- Medical School of Chinese PLA, Beijing, China
- The Third Affiliated Hospital of Jinzhou Medical University, Department of Orthopedics, Jinzhou, Liaoning, China
| | - Yuheng Jiang
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Orthopedics, Beijing, China.
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
- General Hospital of Southern Theater Command of PLA, Department of Orthopedics, Guangzhou, China
| | - Junhao Deng
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Orthopedics, Beijing, China.
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Feifan Chang
- Nankai University School of Medicine, Tianjin, China
| | - Junyu Chen
- Nankai University School of Medicine, Tianjin, China
| | - Xinyu Sun
- Medical School of Chinese PLA, Beijing, China
| | - Dongliang Cheng
- Medical School of Chinese PLA, Beijing, China
- General Hospital of Northern Theater Command, Department of Urology, Shenyang, Liaoning, China
| | | | - Ran Li
- Medical School of Chinese PLA, Beijing, China
| | - Jiang Liu
- Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Li
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Orthopedics, Beijing, China.
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Licheng Zhang
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Orthopedics, Beijing, China.
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- The Fourth Medical Center of Chinese PLA General Hospital, Senior Department of Orthopedics, Beijing, China.
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
38
|
Bi Y, Sun M, Zhang Y, Sun F, Du Y, Wang J, Zhou M, Ma CB. Seconds Timescale Synthesis of Highly Stretchable Antibacterial Hydrogel for Skin Wound Closure and Epidermal Strain Sensor. Adv Healthc Mater 2024; 13:e2302810. [PMID: 37992675 DOI: 10.1002/adhm.202302810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Effective wound healing is critical for patient care, and the development of novel wound dressing materials that promote healing, prevent infection, and are user-friendly is of great importance, particularly in the context of point-of-care testing (POCT). This study reports the synthesis of a hydrogel material that can be produced in less than 10 s and possesses antibacterial activity against both gram-negative and gram-positive microorganisms, as well as the ability to inhibit the growth of eukaryotic cells, such as yeast. The hydrogel is formed wholly based on covalent-like hydrogen bonding interactions and exhibits excellent mechanical properties, with the ability to stretch up to more than 600% of its initial length. Furthermore, the hydrogel demonstrates ultra-fast self-healing properties, with fractures capable of being repaired within 10 s. This hydrogel can promote skin wound healing, with the added advantage of functioning as a strain sensor that generates an electrical signal in response to physical deformation. The strain sensor composed of a rubber shell realizes fast and responsive strain sensing. The findings suggest that this hydrogel has promising applications in the field of POCT for wound care, providing a new avenue for improved patient outcomes.
Collapse
Affiliation(s)
- Yanni Bi
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, 530001, China
| | - Yuanyuan Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Fuxin Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jingjuan Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
39
|
Xiao JH, Zhang ZB, Li J, Chen SM, Gao HL, Liao Y, Chen L, Wang Z, Lu Y, Hou Y, Wu H, Zou D, Yu SH. Bioinspired polysaccharide-based nanocomposite membranes with robust wet mechanical properties for guided bone regeneration. Natl Sci Rev 2024; 11:nwad333. [PMID: 38333231 PMCID: PMC10852990 DOI: 10.1093/nsr/nwad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
Abstract
Polysaccharide-based membranes with excellent mechanical properties are highly desired. However, severe mechanical deterioration under wet conditions limits their biomedical applications. Here, inspired by the structural heterogeneity of strong yet hydrated biological materials, we propose a strategy based on heterogeneous crosslink-and-hydration (HCH) of a molecule/nano dual-scale network to fabricate polysaccharide-based nanocomposites with robust wet mechanical properties. The heterogeneity lies in that the crosslink-and-hydration occurs in the molecule-network while the stress-bearing nanofiber-network remains unaffected. As one demonstration, a membrane assembled by bacterial cellulose nanofiber-network and Ca2+-crosslinked and hydrated sodium alginate molecule-network is designed. Studies show that the crosslinked-and-hydrated molecule-network restricts water invasion and boosts stress transfer of the nanofiber-network by serving as interfibrous bridge. Overall, the molecule-network makes the membrane hydrated and flexible; the nanofiber-network as stress-bearing component provides strength and toughness. The HCH dual-scale network featuring a cooperative effect stimulates the design of advanced biomaterials applied under wet conditions such as guided bone regeneration membranes.
Collapse
Affiliation(s)
- Jian-Hong Xiao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhen-Bang Zhang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - JiaHao Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - YinXiu Liao
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Lu Chen
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - ZiShuo Wang
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - YiFan Lu
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - YuanZhen Hou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - DuoHong Zou
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials (I2M), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
40
|
Guo Y, Shao Z, Wang W, Liu H, Zhao W, Wang L, Bao C. Periodontium-Mimicking, Multifunctional Biomass-Based Hydrogel Promotes Full-Course Socket Healing. Biomacromolecules 2024; 25:1246-1261. [PMID: 38305191 DOI: 10.1021/acs.biomac.3c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Preserving stable tooth-periodontal tissue integration is vital for maintaining alveolar bone stability under physiological conditions. However, tooth extraction compromises this integration and impedes socket healing. Therefore, it becomes crucial to provide early stage coverage of the socket to promote optimal healing. Drawing inspiration from the periodontium, we have developed a quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel, termed the quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel (QDL hydrogel). Through blue-light-induced cross-linking, the QDL hydrogel serves as a comprehensive wound dressing for socket healing. The QDL hydrogel exhibits remarkable efficacy in closing irregular tooth extraction wounds. Its favorable mechanical properties, flexible formability, and strong adhesion are achieved through modifications of chitosan and sodium alginate derived from biomass sources. Moreover, the QDL hydrogel demonstrates a superior hemostatic ability, facilitating swift blood clot formation. Additionally, the inherent antibacterial properties of the QDL hydrogel effectively inhibit oral microorganisms. Furthermore, the QDL hydrogel promotes angiogenesis, which facilitates the nutrient supply for subsequent tissue regeneration. Notably, the hydrogel accelerates socket healing by upregulating the expression of genes associated with wound healing. In conclusion, the periodontium-mimicking multifunctional hydrogel exhibits significant potential as a clinical tooth extraction wound dressing.
Collapse
Affiliation(s)
- Yuxuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Zijian Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wenjie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Huaze Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Liao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| |
Collapse
|
41
|
Li S, Li X, Xu Y, Fan C, Li ZA, Zheng L, Luo B, Li ZP, Lin B, Zha ZG, Zhang HT, Wang X. Collagen fibril-like injectable hydrogels from self-assembled nanoparticles for promoting wound healing. Bioact Mater 2024; 32:149-163. [PMID: 37822915 PMCID: PMC10563012 DOI: 10.1016/j.bioactmat.2023.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Soft hydrogels are excellent candidate materials for repairing various tissue defects, yet the mechanical strength, anti-swelling properties, and biocompatibility of many soft hydrogels need to be improved. Herein, inspired by the nanostructure of collagen fibrils, we developed a strategy toward achieving a soft but tough, anti-swelling nanofibrillar hydrogel by combining the self-assembly and chemical crosslinking of nanoparticles. Specifically, the collagen fibril-like injectable hydrogel was subtly designed and fabricated by self-assembling methylacrylyl hydroxypropyl chitosan (HM) with laponite (LAP) to form nanoparticles, followed by the inter-nanoparticle bonding through photo-crosslinking. The assembly mechanism of nanoparticles was elucidated by both experimental and simulation techniques. Due to the unique structure of the crosslinked nanoparticles, the nanocomposite hydrogels exhibited low stiffness (G'< 2 kPa), high compressive strength (709 kPa), and anti-swelling (swelling ratio of 1.07 in PBS) properties. Additionally, by harnessing the photo-crosslinking ability of the nanoparticles, the nanocomposite hydrogels were processed as microgels, which can be three-dimensionally (3D) printed into complex shapes. Furthermore, we demonstrated that these nanocomposite hydrogels are highly biocompatible, biodegradability, and can effectively promote fibroblast migration and accelerate blood vessel formation during wound healing. This work presents a promising approach to develop biomimetic, nanofibrillar soft hydrogels for regenerative medicine applications.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Yidi Xu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Chaoran Fan
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lu Zheng
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Bichong Luo
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Zhi-Peng Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| |
Collapse
|
42
|
An H, Zhang M, Huang Z, Xu Y, Ji S, Gu Z, Zhang P, Wen Y. Hydrophobic Cross-Linked Chains Regulate High Wet Tissue Adhesion Hydrogel with Toughness, Anti-hydration for Dynamic Tissue Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310164. [PMID: 37925614 DOI: 10.1002/adma.202310164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Indexed: 11/06/2023]
Abstract
Hydrogel adhesion materials are widely reported for tissue engineering repair applications, however, wet tissue surface moisture can reduce the wet-adhesion properties and mechanical strength of hydrogels limiting their application. Here, anti-hydration gelatin-acrylic acid-ethylene dimethacrylate (GAE) hydrogels with hydrophobic cross-linked chains are constructed. The prepared GAE hydrogel is soaked in PBS (3 days) with a volume change of 0.6 times of the original and the adhesive strength, Young's modulus, toughness, and burst pressure are maintained by ≈70% of the original. A simple and universal method is used to introduce hydrophobic chains as cross-linking points to prepare hydrogels with anti-hydration, toughness, and high wet state adhesion. The hydrophobic cross-linked chains not only restrict the movement of molecular chains but also hinder the intrusion of water molecules. Antihydration GAE hydrogels exhibit good biocompatibility, slow drug release, and dynamic oral wet-state tissue repair properties. Therefore, the anti-hydration hydrogel has excellent toughness, wet tissue adhesion properties, and good prospects for biological applications.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Qingdao Hospital, Peking University People's Hospital, Beijing, 100044, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center ofStomatology & National Clinical Research Center for Oral Diseases & NationalEngineering Laboratory for Digital and Material Technology of Stomatology & BeijingKey Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratoryfor Dental Materials, Beijing, 100081, China
| | - Shen Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Qingdao Hospital, Peking University People's Hospital, Beijing, 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
43
|
Wang F, Sun Q, Li Y, Xu R, Li R, Wu D, Huang R, Yang Z, Li Y. Hydrogel Encapsulating Wormwood Essential Oil with Broad-spectrum Antibacterial and Immunomodulatory Properties for Infected Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305078. [PMID: 38030556 PMCID: PMC10797468 DOI: 10.1002/advs.202305078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Indexed: 12/01/2023]
Abstract
The integration of hydrogels with bio-friendly functional components through simple and efficient strategies to construct wound dressings with broad-spectrum antibacterial and immunomodulatory properties to promote the healing of infected diabetic wounds is highly desirable but remains a major challenge. Here, wormwood essential oil (WEO) is effectively encapsulated in the hydrogel via an O/W-Pickering emulsion during the polymerization of methacrylic anhydride gelatin (GelMA), acrylamide (AM), and acrylic acid N-hydroxysuccinimide ester (AAc-NHS) to form a multifunctional hydrogel dressing (HD-WEO). Compared with conventional emulsions, Pickering emulsions not only improve the encapsulation stability of the WEO, but also enhance the tensile and swelling properties of hydrogel. The synergistic interaction of WEO's diverse bioactive components provides a broad-spectrum antibacterial activity against S. aureus, E. coli, and MRSA. In addition, the HD-WEO can induce the polarization of macrophages from M1 to M2 phenotype. With these advantages, the broad-spectrum antibacterial and immunomodulatory HD-WEO effectively promotes the collagen deposition and neovascularization, thereby accelerating the healing of MRSA-infected diabetic wounds.
Collapse
Affiliation(s)
- Feng Wang
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Key Laboratory of Biowaste Resources for Selenium‐Enriched Functional Utilization, College of Petroleum and Chemical EngineeringBeibu Gulf UniversityQinzhou535011China
| | - Qi Sun
- School of MedicineSouth China University of TechnologyGuangzhou510006China
| | - Yang Li
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhou510006China
| | - Ruijun Xu
- School of MedicineSouth China University of TechnologyGuangzhou510006China
| | - Renjie Li
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Dingcai Wu
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006China
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Rongkang Huang
- Department of General Surgery (Colorectal Surgery)Guangdong Institute of GastroenterologyBiomedical Innovation CenterGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Zifeng Yang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yong Li
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| |
Collapse
|
44
|
Miao Y, Liu X, Luo J, Yang Q, Chen Y, Wang Y. Double-Network DNA Macroporous Hydrogel Enables Aptamer-Directed Cell Recruitment to Accelerate Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303637. [PMID: 37949678 PMCID: PMC10767401 DOI: 10.1002/advs.202303637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Indexed: 11/12/2023]
Abstract
Recruiting endogenous bone marrow mesenchymal stem cells (BMSCs) in vivo to bone defect sites shows great promise in cell therapies for bone tissue engineering, which tackles the shortcomings of delivering exogenous stem cells, including limited sources, low retention, stemness loss, and immunogenicity. However, it remains challenging to efficiently recruit stem cells while simultaneously directing cell differentiation in the dynamic microenvironment and promoting neo-regenerated tissue ingrowth to achieve augmented bone regeneration. Herein, a synthetic macroporous double-network hydrogel presenting nucleic acid aptamer and nano-inducer enhances BMSCs recruitment, and osteogenic differentiation is demonstrated. An air-in-water template enables the rapid construction of highly interconnective macroporous structures, and the physical self-assembly of DNA strands and chemical cross-linking of gelatin chains synergistically generate a resilient double network. The aptamer Apt19S and black phosphorus nanosheets-specific macroporous hydrogel demonstrate highly efficient endogenous BMSCs recruitment, cell differentiation, and extracellular matrix mineralization. Notably, the enhanced calvarial bone healing with promising matrix mineralization and new bone formation is accompanied by adapting this engineered hydrogel to the bone defects. The findings suggest an appealing material approach overcoming the traditional limitations of cell-delivery therapy that can inspire the future design of next-generation hydrogel for enhanced bone tissue regeneration.
Collapse
Affiliation(s)
- Yali Miao
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Department of OrthopedicsGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Xiao Liu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
| | - Jinshui Luo
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
| | - Qian Yang
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
| | - Yunhua Chen
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhou510006China
| | - Yingjun Wang
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhou510006China
| |
Collapse
|
45
|
Cui C, Mei L, Wang D, Jia P, Zhou Q, Liu W. A self-stabilized and water-responsive deliverable coenzyme-based polymer binary elastomer adhesive patch for treating oral ulcer. Nat Commun 2023; 14:7707. [PMID: 38001112 PMCID: PMC10673908 DOI: 10.1038/s41467-023-43571-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Oral ulcer can be treated with diverse biomaterials loading drugs or cytokines. However, most patients do not benefit from these materials because of poor adhesion, short-time retention in oral cavity and low drug therapeutic efficacy. Here we report a self-stabilized and water-responsive deliverable coenzyme salt polymer poly(sodium α-lipoate) (PolyLA-Na)/coenzyme polymer poly(α-lipoic acid) (PolyLA) binary synergistic elastomer adhesive patch, where hydrogen bonding cross-links between PolyLA and PolyLA-Na prevents PolyLA depolymerization and slow down the dissociation of PolyLA-Na, thus allowing water-responsive sustainable delivery of bioactive LA-based small molecules and durable adhesion to oral mucosal wound due to the adhesive action of PolyLA. In the model of mice and mini-pig oral ulcer, the adhesive patch accelerates the healing of the ulcer by regulating the damaged tissue inflammatory environment, maintaining the stability of oral microbiota, and promoting faster re-epithelialization and angiogenesis. This binary synergistic patch provided a therapeutic strategy to treat oral ulcer.
Collapse
Affiliation(s)
- Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Li Mei
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Danyang Wang
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Pengfei Jia
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
46
|
Lee H, Jung Y, Lee N, Lee I, Lee JH. Nature-Derived Polysaccharide-Based Composite Hydrogels for Promoting Wound Healing. Int J Mol Sci 2023; 24:16714. [PMID: 38069035 PMCID: PMC10706343 DOI: 10.3390/ijms242316714] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Numerous innovative advancements in dressing technology for wound healing have emerged. Among the various types of wound dressings available, hydrogel dressings, structured with a three-dimensional network and composed of predominantly hydrophilic components, are widely used for wound care due to their remarkable capacity to absorb abundant wound exudate, maintain a moisture environment, provide soothing and cooling effects, and mimic the extracellular matrix. Composite hydrogel dressings, one of the evolved dressings, address the limitations of traditional hydrogel dressings by incorporating additional components, including particles, fibers, fabrics, or foams, within the hydrogels, effectively promoting wound treatment and healing. The added elements enhance the features or add specific functionalities of the dressings, such as sensitivity to external factors, adhesiveness, mechanical strength, control over the release of therapeutic agents, antioxidant and antimicrobial properties, and tissue regeneration behavior. They can be categorized as natural or synthetic based on the origin of the main components of the hydrogel network. This review focuses on recent research on developing natural polysaccharide-based composite hydrogel wound dressings. It explores their preparation and composition, the reinforcement materials integrated into hydrogels, and therapeutic agents. Furthermore, it discusses their features and the specific types of wounds where applied.
Collapse
Affiliation(s)
| | | | | | | | - Jin Hyun Lee
- School of Bio-Convergence Science, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
47
|
Li W, Wu S, Ren L, Feng B, Chen Z, Li Z, Cheng B, Xia J. Development of an Antiswelling Hydrogel System Incorporating M2-Exosomes and Photothermal Effect for Diabetic Wound Healing. ACS NANO 2023; 17:22106-22120. [PMID: 37902250 DOI: 10.1021/acsnano.3c09220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Diabetic wounds represent a persistent global health challenge with a substantial impact on patients' health and overall well-being. Herein, a hydrogel system that integrates functionalized gold nanorods (AuNRs) and M2 macrophage-derived exosomes (M2-Exos) was developed to achieve an efficient and synergistic therapy for diabetic wounds. We introduced an ion-cross-linked dissipative network into a prefabricated covalent cross-linked network (long-chain polymer network), which was prepared using AuNRs as a specific cross-linker. The ion network was then cross-linked with the long-chain polymer in situ to form a specific network structure, imparting antiswelling and photothermal effects to the hydrogel. This integrated hydrogel system effectively scavenged reactive oxygen species levels, inhibited inflammation, promoted angiogenesis, and stimulated photothermal antibacterial activity through near-infrared (NIR) irradiation. To demonstrate the potential of the hydrogel, we established experimental animal models of oral mucosa ulceration and full-thickness skin defects. In vivo results confirmed that M2-Exos released from the hydrogels played a crucial role in wound closure. Furthermore, the synergistic effect of AuNRs and NIR photothermal effects eradicated bacterial infections in the wound area. Overall, our integrated hydrogel system is a promising tool for accelerating chronic diabetic wound healing and tissue regeneration. This study highlights the potential benefits of combining bioactive M2-Exos and the photothermal effect of AuNRs into an antiswelling hydrogel platform to achieve satisfactory wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Bingyu Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Zhipei Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Zongtai Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, People's Republic of China
| |
Collapse
|
48
|
Liu C, Peng K, Wu Y, Fu F. Functional adhesive hydrogels for biological interfaces. SMART MEDICINE 2023; 2:e20230024. [PMID: 39188302 PMCID: PMC11235964 DOI: 10.1002/smmd.20230024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/09/2023] [Indexed: 08/28/2024]
Abstract
Hydrogel adhesives are extensively employed in biological interfaces such as epidermal flexible electronics, tissue engineering, and implanted device. The development of functional hydrogel adhesives is a critical, yet challenging task since combining two or more attributes that seem incompatible into one adhesive hydrogel without sacrificing the hydrogel's pristine capabilities. In this Review, we highlight current developments in the fabrication of functional adhesive hydrogels, which are suitable for a variety of application scenarios, particularly those that occur underwater or on tissue/organ surface conditions. The design strategies for a multifunctional adhesive hydrogel with desirable properties including underwater adhesion, self-healing, good biocompatibility, electrical conductivity, and anti-swelling are discussed comprehensively. We then discuss the challenges faced by adhesive hydrogels, as well as their potential applications in biological interfaces. Adhesive hydrogels are the star building blocks of bio-interface materials for individualized healthcare and other bioengineering areas.
Collapse
Affiliation(s)
- Changyi Liu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Kexin Peng
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
49
|
Zhao X, Li M, Li M, Li W, Li A, Cheng Y, Pei D. Adhesive and biodegradable polymer mixture composed of high -biosafety pharmaceutical excipients as non-setting periodontal dressing. Biomater Sci 2023; 11:7067-7076. [PMID: 37724849 DOI: 10.1039/d3bm01314f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Periodontal dressing is a surgical dressing applied to oral wounds after periodontal surgery. Currently, all commercially available setting periodontal dressings are stiff, uncomfortable, with poor aesthetics, and need to be removed at the patient's follow-up visit, which may cause secondary damage. A periodontal dressing with soft texture, biodegradable properties, and that could balance both comfort and aesthetics is urgently desired. Hence, non-setting and degradable dressings were developed using sodium carboxymethyl cellulose, Eudragit S 100 and povidone K30, which were compared with the commercial degradable dressing Reso-pac®. The mucosal adhesion of the dressings was evaluated by lap shear tests, which indicated adequate adhesion. The in vitro swelling rates of the dressings were approximately half that of Reso-pac®, which led to less saliva adsorption and better dimensional stability. The dressings also exhibited satisfactory biocompatibility according to the results of CCK-8, Live/Dead staining, hemolysis, and subcutaneous implantation assays. Moreover, the dressing promoted the healing of full-thickness mucosal wounds in the palatal gingivae of SD rats and contributed to better therapeutic effect than Reso-pac®. Considering the multiple advantages and the pure pharmaceutical excipient formula, we anticipate that this dressing could be a promising product and may enter clinical practice in the near future.
Collapse
Affiliation(s)
- Xiaodan Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Meiwen Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Meng Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Wenbo Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
50
|
Xiao L, Feng M, Chen C, Xiao Q, Cui Y, Zhang Y. Microenvironment-Regulating Drug Delivery Nanoparticles for Treating and Preventing Typical Biofilm-Induced Oral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304982. [PMID: 37875431 DOI: 10.1002/adma.202304982] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Indexed: 10/26/2023]
Abstract
The oral cavity comprises an environment full of microorganisms. Dysregulation of this microbial-cellular microenvironment will lead to a series of oral diseases, such as implant-associated infection caused by Staphylococcus aureus (S. aureus) biofilms and periodontitis initiated by Streptococcus oralis (S. oralis). In this study, a liposome-encapsulated indocyanine green (ICG) and rapamycin drug-delivery nanoparticle (ICG-rapamycin) is designed to treat and prevent two typical biofilm-induced oral diseases by regulating the microbial-cellular microenvironment. ICG-rapamycin elevates the reactive oxygen species (ROS) and temperature levels to facilitate photodynamic and photothermal mechanisms under near-infrared (NIR) laser irradiation for anti-bacteria. In addition, it prevents biofilm formation by promoting bacterial motility with increasing the ATP levels. The nanoparticles modulate the microbial-cellular interaction to reduce cellular inflammation and enhance bacterial clearance, which includes promoting the M2 polarization of macrophages, upregulating the anti-inflammatory factor TGF-β, and enhancing the bacterial phagocytosis of macrophages. Based on these findings, ICG-rapamycin is applied to implant-infected and periodontitis animal models to confirm the effects in vivo. This study demonstrates that ICG-rapamycin can treat and prevent biofilm-induced oral diseases by regulating the microbial-cellular microenvironment, thus providing a promising strategy for future clinical applications.
Collapse
Affiliation(s)
- Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Mengge Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Chen Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Qi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Yu Cui
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
- Medical Research Institute School of Medicine, Wuhan University, Wuhan, 430071, P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|