1
|
Şakar BC, Yıldırım F, Aydoğan Ş. High-performance self-powered broadband photodetector based on Ag xO y@n-Si heterojunction. NANOTECHNOLOGY 2025; 36:185203. [PMID: 40127500 DOI: 10.1088/1361-6528/adc460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Thin silver oxide AgxOyfilm (p-type) was deposited via DC magnetron sputtering onto n-type silicon substrate and integrated into a pn heterojunction architecture. Structural (XRD, XPS and EDX), optical ultraviolet-visible-near infrared and morphological analysis (SEM) of the AgxOyfilm were investigated in detail. Electrical measurements revealed that the AgxOy/n-Si pn heterojunction as a self-driven photodetector device exhibits a high photoresponse both in visible light and in UV, IR and yellow lights. It was also observed that under visible light the photocurrent increased with increasing light intensity, higher at higher intensities. Furthermore, the photodetector exhibits high sensitivity to the incident light of 365 nm with responsivity as 1061 mA W-1for -1.5 V. The highest specific detectivity value for the conditions illuminated by LED with wavelength of 590 nm is 9.77 × 1012cm·Hz1/2·W-1(Jones) for zero bias. Experimental results show that the AgxOy/n-Si heterojunction has great potential for practical applications as self-driven and high-performance photodetectors.
Collapse
Affiliation(s)
- Betül Ceviz Şakar
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240 Erzurum, Turkey
| | - Fatma Yıldırım
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240 Erzurum, Turkey
- Department of Physics, Science Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Şakir Aydoğan
- Department of Physics, Science Faculty, Atatürk University, 25240 Erzurum, Turkey
- Advanced Materials Research Laboratory, Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Qiao JW, Cui FZ, Zhang WQ, Gui RH, Fu Z, Sun M, Lu P, Yin H, Du XY, Hao XT. Enhanced Exciton Delocalization in Organic Near-Infrared Photodetectors via Solid Additive-Mediated J-Aggregation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418844. [PMID: 39972667 DOI: 10.1002/adma.202418844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/25/2025] [Indexed: 02/21/2025]
Abstract
Near-infrared organic photodetectors (NIR-OPDs) have emerged as increasingly significant in optoelectronics, offering unparalleled advantages for applications in health monitoring and night vision. The development of self-powered devices with low dark currents and enhanced NIR sensitivity involves complex engineering that requires careful material selection, defect state density control, and environmental consideration. In this study, an innovative approach is introduced that utilizes solid additive (DIB) to induce improvements in the J-aggregation morphology and exciton delocalization in acceptor molecules. The goal is to broaden the response spectrum of the device and augment its detection capabilities. The key findings revealed that solid additive exhibit an electrostatic affinity for acceptors, which facilitates their orderly face-to-face stacking and controls the π-π stacking distance. These enhanced intermolecular interactions lead to the delocalization of electron-hole pairs, reduced exciton recombination, and increased charge separation efficiency. Consequently, the modified devices exhibited exceptional specific detectivity, exceeding 1014 Jones across the wavelength range of 695-860 nm, thereby establishing a new standard for NIR response in organic photodetection. Overall, this study successfully addressed the compatibility challenges associated with self-powered NIR-OPDs, thereby expanding their potential applications in various settings.
Collapse
Affiliation(s)
- Jia-Wei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Feng-Zhe Cui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Wen-Qing Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Ruo-Hua Gui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhen Fu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Ming Sun
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Peng Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, 250100, P. R. China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
3
|
Yu X, Huang Y, Li P, Feng S, Wan X, Jiang Y, Yu P. Self-Powered Photodetectors with High Stability Based on Se Paper/P3HT:Graphene Heterojunction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1923. [PMID: 39683311 DOI: 10.3390/nano14231923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Photodetectors based on selenium (Se) have attracted significant attention because of their outstanding optoelectronic characteristics, including their rapid reactivity and high photoconductivity. However, the poor responsivity of pure Se limits their further development. In this study, a novel Se-P/P3HT:G photodetector was designed and fabricated by combining an organic semiconductor made of poly-3-hexylthiophene mixed with graphene (P3HT:G) with self-supporting Se paper (Se-P) via spin-coating process. The device possesses a dark current of around 4.23 × 10-12 A and self-powered characteristics at 300-900 nm. At zero bias voltage and 548 nm illumination, the Se-P/P3HT:G photodetector demonstrates a maximum photocurrent of 1.35 × 10-9 A (745% higher than that of Se-P at 0.1 V), a quick response time (16.2/27.6 ms), an on/off ratio of 292, and a maximum detectivity and responsivity of 6.47 × 1011 Jones and 34 mA W-1, respectively. Moreover, Se-P/P3HT:G exhibits superior environmental stability. After one month, the photocurrent value of the Se-P/P3HT:G device held steady at 91.4% of its initial value, and even following pre-treatment at 140 °C, the on/off ratio still remained 17 (at a retention rate of about 5.9%). The excellent thermal stability, environmental reliability, and optoelectronic performance of this heterojunction structure offer a useful pathway for the future advancement of high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xuewei Yu
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Yuxin Huang
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Pengfan Li
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Shiliang Feng
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Xi Wan
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Jiang
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| | - Pingping Yu
- School of Integrated Circuits, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Ma T, Xue N, Muhammad A, Fang G, Yan J, Chen R, Sun J, Sun X. Recent Progress in Photodetectors: From Materials to Structures and Applications. MICROMACHINES 2024; 15:1249. [PMID: 39459123 PMCID: PMC11509732 DOI: 10.3390/mi15101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Photodetectors are critical components in a wide range of applications, from imaging and sensing to communications and environmental monitoring. Recent advancements in material science have led to the development of emerging photodetecting materials, such as perovskites, polymers, novel two-dimensional materials, and quantum dots, which offer unique optoelectronic properties and high tunability. This review presents a comprehensive overview of the synthesis methodologies for these cutting-edge materials, highlighting their potential to enhance photodetection performance. Additionally, we explore the design and fabrication of photodetectors with novel structures and physics, emphasizing devices that achieve high figure-of-merit parameters, such as enhanced sensitivity, fast response times, and broad spectral detection. Finally, we discuss the demonstration of new applications enabled by these advanced photodetectors, including flexible and wearable devices, next-generation imaging systems, and environmental sensing technologies. Through this review, we aim to provide insights into the current trends and future directions in the field of photodetection, guiding further research and development in this rapidly evolving area.
Collapse
Affiliation(s)
- Tianjun Ma
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Ning Xue
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Abdul Muhammad
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Gang Fang
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Jinyao Yan
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Rongkun Chen
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Jianhai Sun
- State Key Laboratory of Transducer Technology Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuguang Sun
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| |
Collapse
|
5
|
Choi W, Shin J, Kim YJ, Hur J, Jang BC, Yoo H. Versatile Papertronics: Photo-Induced Synapse and Security Applications on Papers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312831. [PMID: 38870479 DOI: 10.1002/adma.202312831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Paper is a readily available material in nature. Its recyclability, eco-friendliness, portability, flexibility, and affordability make it a favored substrate for researchers seeking cost-effective solutions. Electronic devices based on solution process are fabricated on paper and banknotes using PVK and SnO2 nanoparticles. The devices manufactured on paper substrates exhibit photosynaptic behavior under ultraviolet pulse illumination, stemming from numerous interactions on the surface of the SnO2 nanoparticles. A light-modulated artificial synapse device is realized on a paper at a low voltage bias of -0.01 V, with an average recognition rate of 91.7% based on the Yale Face Database. As a security device on a banknote, 400 devices in a 20 × 20 array configuration exhibited random electrical characteristics owing to the local morphology of the SnO2 nanoparticles and differences in the depletion layer width at the SnO2/PVK interface. The security Physically Unclonable Functions (PUF) key based on the current distribution extracted at -1 V show unpredictable reproducibility with 50% uniformity, 48.7% inter-Hamming distance, and 50.1% bit-aliasing rates. Moreover, the device maintained its properties for more than 210 days under a curvature radius of 8.75 mm and bias and UV irradiation stress conditions.
Collapse
Affiliation(s)
- Wangmyung Choi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Jihyun Shin
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Yeong Jae Kim
- Ceramic Total Solution Center, Korea Institute of Ceramic Engineering and Technology, 3321 Gyeongchung-daero, Icheon, 17303, Republic of Korea
| | - Jaehyun Hur
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Byung Chul Jang
- School of Electronics and Electrical Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| |
Collapse
|
6
|
Peng H, Liu T, Zhao Y, Li L, Du P, Li H, Yan F, Zhai T. Ultrahigh Responsivity and Robust Semiconducting Fiber Enabled by Molecular Soldering-Governed Defect Engineering for Smart Textile Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406353. [PMID: 39049581 DOI: 10.1002/adma.202406353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Semiconducting fibers (SCFs) are of significant interest to design next-generation wearable and comfortable optoelectronics that seamlessly integrate with textiles. However, the practical applications of current SCFs are always limited by poor optoelectronic performance and low mechanical robustness caused by uncontrollable multiscale structural defects. Herein, a versatile in situ molecular soldering-governed defect engineering strategy is proposed to construct ultrahigh responsivity and robust wet-spun MoS2 SCFs, by using a π-conjugated dithiolated molecule to simultaneously patch microscale sulfur vacancies within MoS2 nanosheets, diminish mesoscale interlayer voids/wrinkles, promote macroscale orientation, build long-range photoelectron percolation bridges, and provide n-doping effect. The derived MoS2 SCFs exhibit over two orders of magnitude higher responsivity (144.3 A W-1) than previously reported fiber photodetectors, 37.3-fold faster photoresponse speed (52 ms) than pristine counterpart, and remarkable bending robustness (retain 94.2% of the initial photocurrent after 50 000 bending-flattening cycles). Such superior robustness and photodetection capacity of MoS2 SCFs further enable large-scale weaving of reliable smart textile optoelectronic systems, such as direction-identifiable wireless light alarming system, modularized mechano-optical communication system, and indoor light-controlled IoT system. This work offers a universal strategy for the scalable production of mechanically robust and high-performance SCFs, opening up exciting possibilities for large-scale integration of wearable optoelectronics.
Collapse
Affiliation(s)
- Hongyun Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Teng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Liang Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Peipei Du
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, R. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, R. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Optics Valley Laboratory, Hubei, 430074, P. R. China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, 518057, P. R. China
| |
Collapse
|
7
|
Li H, Zhang T, Yi Z, Chen X, Dai Z, Tan J. High Sensitive and Stable UV-Vis Photodetector Based on MoS 2/MoO 3 vdW Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33829-33837. [PMID: 38913340 DOI: 10.1021/acsami.4c06403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The development of new high-performance photodetectors (PDs) is currently focused on achieving small size, low power consumption, low cost, and large bandwidth. Two-dimensional (2D) materials and heterostructures offer promising approaches for the future development of optoelectronic devices. However, there has been limited research on 2D wide-bandgap semiconductor heterostructures. In this study, we successfully constructed a MoS2/MoO3 vdW heterojunction PD. This PD exhibited excellent response and significant photovoltaic behavior in the ultraviolet (UV) to visible (Vis) range. Under 365 nm UV light and 1 V bias voltage, the PD demonstrated a high responsivity of 645 mA/W, a high specific detectivity of 8.98 × 1010 Jones, and fast response speeds of 55.9/59.6 ms. At 0 V bias voltage, the responsivity reached as high as 157 mA/W. Furthermore, the PD exhibited remarkable stability in its performance. These outstanding characteristics can be attributed to the strong internal electric field created by the type II heterojunction structure and the chemical stability of the materials. This work opens a route for the application of 2D wide-bandgap semiconductor materials in optoelectronic devices.
Collapse
Affiliation(s)
- Haoyu Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tian Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zixuan Yi
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xingyu Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhigao Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jin Tan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
8
|
Hong E, Li Z, Zhang X, Fan X, Fang X. Deterministic Fabrication and Quantum-Well Modulation of Phase-Pure 2D Perovskite Heterostructures for Encrypted Light Communication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400365. [PMID: 38752379 DOI: 10.1002/adma.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Deterministic integration of phase-pure Ruddlesden-Popper (RP) perovskites has great significance for realizing functional optoelectronic devices. However, precise fabrications of artificial perovskite heterostructures with pristine interfaces and rational design over electronic structure configurations remain a challenge. Here, the controllable synthesis of large-area ultrathin single-crystalline RP perovskite nanosheets and the deterministic fabrication of arbitrary 2D vertical perovskite heterostructures are reported. The 2D heterostructures exhibit intriguing dual-peak emission phenomenon and dual-band photoresponse characteristic. Importantly, the interlayer energy transfer behaviors from wide-bandgap component to narrow-bandgap component modulated by comprising quantum wells are thoroughly revealed. Functional nanoscale photodetectors are further constructed based on the 2D heterostructures. Moreover, by combining the modulated dual-band photoresponse characteristic with double-beam irradiation modes, and introducing an encryption algorithm mechanism, a light communication system with high security and reliability is achieved. This work can greatly promote the development of heterogeneous integration technologies of 2D perovskites, and could provide a competitive candidate for advanced integrated optoelectronics.
Collapse
Affiliation(s)
- Enliu Hong
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Xinyu Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xueshuo Fan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Hou X, Liu Y, Bai S, Yu S, Huang H, Yang K, Li C, Peng Z, Zhao X, Zhou X, Xu G, Long S. Pyroelectric Photoconductive Diode for Highly Sensitive and Fast DUV Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314249. [PMID: 38564779 DOI: 10.1002/adma.202314249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Detecting high-energy photons from the deep ultraviolet (DUV) to X-rays is vital in security, medicine, industry, and science. Wide bandgap (WBG) semiconductors exhibit great potential for detecting high-energy photons. However, the implementation of highly sensitive and high-speed detectors based on WBG semiconductors has been a huge challenge due to the inevitable deep level traps and the lack of appropriate device structure engineering. Here, a sensitive and fast pyroelectric photoconductive diode (PPD), which couples the interface pyroelectric effect with the photoconductive effect based on tailored polycrystal Ga-rich GaOx (PGR-GaOx) Schottky photodiode, is first proposed. The PPD device exhibits ultrahigh detection performance for DUV and X-ray light. The responsivity for DUV light and sensitivity for X-ray are up to 104 A W-1 and 105 µC Gyair -1 cm-2, respectively. Especially, the interface pyroelectric effect induced by polar symmetry in the depletion region of the PGR-GaOx can significantly improve the response speed of the device by 105 times. Furthermore, the potential of the device is demonstrated for imaging enhancement systems with low power consumption and high sensitivity. This work fully excavates the potential of the pyroelectric effect for detectors and provides a novel design strategy to achieve sensitive and high-speed detectors.
Collapse
Affiliation(s)
- Xiaohu Hou
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shiyu Bai
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shunjie Yu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Huang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Kai Yang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhixin Peng
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zhao
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xuanze Zhou
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangwei Xu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shibing Long
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
Huang YC, Wang TY, Huang ZH, Santiago SRMS. Advancing Detectivity and Stability of Near-Infrared Organic Photodetectors via a Facile and Efficient Cathode Interlayer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27576-27586. [PMID: 38722948 DOI: 10.1021/acsami.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Near-infrared (NIR) organic photodetectors (OPDs) are pivotal in numerous technological applications due to their excellent responsivity within the NIR region. Polyethylenimine ethoxylated (PEIE) has conventionally been employed as an electron transport layer (hole-blocking layer) to suppress dark current (JD) and enhance charge transport. However, the limitations of PEIE in chemical stability, processing conditions, environmental impact, and absorption range have spurred the development of alternative materials. In this study, we introduced a novel solution: a hybrid of sol-gel zinc oxide (ZnO) and N,N'-bis(N,N-dimethylpropan-1-amine oxide)perylene-3,4,9,10-tetracarboxylic diimide (PDINO) as the electron transport layer for NIR-OPDs. Our fabricated OPD exhibited significantly improved responsivity, reduced internal traps, and enhanced charge transfer efficiency. The detectivity, spanning from 400 to 1100 nm, surpassed ∼5 × 1012 Jones, reaching ∼1.1 × 1012 Jones at 1000 nm, accompanied by an increased responsivity of 0.47 A/W. Also, the unpackaged OPD remarkedly demonstrated stable JD and external quantum efficiency (EQE) over 1000 h under dark storage conditions. This innovative approach not only addresses the drawbacks of conventional PEIE-based OPDs but also offers promising avenues for the development of high-performance OPDs in the future.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Yuan Wang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Zhi-Hao Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | | |
Collapse
|
11
|
Sun L, Wang J, Matsui H, Lee S, Wang W, Guo S, Chen H, Fang K, Ito Y, Inoue D, Hashizume D, Mori K, Takakuwa M, Lee S, Zhou Y, Yokota T, Fukuda K, Someya T. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices. SCIENCE ADVANCES 2024; 10:eadk9460. [PMID: 38598623 PMCID: PMC11006222 DOI: 10.1126/sciadv.adk9460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
All-solution-processed organic optoelectronic devices can enable the large-scale manufacture of ultrathin wearable electronics with integrated diverse functions. However, the complex multilayer-stacking device structure of organic optoelectronics poses challenges for scalable production. Here, we establish all-solution processes to fabricate a wearable, self-powered photoplethysmogram (PPG) sensor. We achieve comparable performance and improved stability compared to complex reference devices with evaporated electrodes by using a trilayer device structure applicable to organic photovoltaics, photodetectors, and light-emitting diodes. The PPG sensor array based on all-solution-processed organic light-emitting diodes and photodetectors can be fabricated on a large-area ultrathin substrate to achieve long storage stability. We integrate it with a large-area, all-solution-processed organic solar module to realize a self-powered health monitoring system. We fabricate high-throughput wearable electronic devices with complex functions on large-area ultrathin substrates based on organic optoelectronics. Our findings can advance the high-throughput manufacture of ultrathin electronic devices integrating complex functions.
Collapse
Affiliation(s)
- Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jiachen Wang
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shinyoung Lee
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Wenqing Wang
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuyang Guo
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hongting Chen
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kun Fang
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuma Mori
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Takakuwa
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sunghoon Lee
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
12
|
Luo X, Chen C, He Z, Wang M, Pan K, Dong X, Li Z, Liu B, Zhang Z, Wu Y, Ban C, Chen R, Zhang D, Wang K, Wang Q, Li J, Lu G, Liu J, Liu Z, Huang W. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat Commun 2024; 15:3086. [PMID: 38600063 PMCID: PMC11006927 DOI: 10.1038/s41467-024-47374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Bioinspired bionic eyes should be self-driving, repairable and conformal to arbitrary geometries. Such eye would enable wide-field detection and efficient visual signal processing without requiring external energy, along with retinal transplantation by replacing dysfunctional photoreceptors with healthy ones for vision restoration. A variety of artificial eyes have been constructed with hemispherical silicon, perovskite and heterostructure photoreceptors, but creating zero-powered retinomorphic system with transplantable conformal features remains elusive. By combining neuromorphic principle with retinal and ionoelastomer engineering, we demonstrate a self-driven hemispherical retinomorphic eye with elastomeric retina made of ionogel heterojunction as photoreceptors. The receptor driven by photothermoelectric effect shows photoperception with broadband light detection (365 to 970 nm), wide field-of-view (180°) and photosynaptic (paired-pulse facilitation index, 153%) behaviors for biosimilar visual learning. The retinal photoreceptors are transplantable and conformal to any complex surface, enabling visual restoration for dynamic optical imaging and motion tracking.
Collapse
Affiliation(s)
- Xu Luo
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chen Chen
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zixi He
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Min Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Keyuan Pan
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xuemei Dong
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zifan Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Bin Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zicheng Zhang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yueyue Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chaoyi Ban
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Rong Chen
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dengfeng Zhang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Qiye Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Junyue Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
13
|
Wang X, Tong L, Fan W, Yan W, Su C, Wang D, Wang Q, Yan H, Yin S. Air-stable self-powered photodetector based on TaSe 2/WS 2/TaSe 2 asymmetric heterojunction with surface self-passivation. J Colloid Interface Sci 2024; 657:529-537. [PMID: 38070338 DOI: 10.1016/j.jcis.2023.11.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides are highly suitable for constructing junction photodetectors because of their suspended bond-free surface and adjustable bandgap. Additional stable layers are often used to ensure the stability of photodetectors. Unfortunately, they often increase the complexity of preparation and cause performance degradation of devices. Considering the self-passivation behavior of TaSe2, we designed and fabricated a novel self-powered TaSe2/WS2/TaSe2 asymmetric heterojunction photodetector. The heterojunction photodetector shows excellent photoelectric performance and photovoltaic characteristics, achieving a high responsivity of 292 mA/W, an excellent specific detectivity of 2.43 × 1011 Jones, a considerable external quantum efficiency of 57 %, a large optical switching ratio of 2.6 × 105, a fast rise/decay time of 43/54 μs, a high open-circuit voltage of 0.23 V, and a short-circuit current of 2.28 nA under 633 nm laser irradiation at zero bias. Moreover, the device also shows a favorable optical response to 488 and 532 nm lasers. Notably, it exhibits excellent environmental long-term stability with the performance only decreasing ∼ 5.6 % after exposed to air for 3 months. This study provides a strategy for the development of air-stable self-powered photodetectors based on 2D materials.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lei Tong
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wenhao Fan
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wei Yan
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Can Su
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Deji Wang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qingguo Wang
- GuoAng Zhuotai (Tianjin) Smart IOT Technology Co., Ltd, Tianjin 301700, China
| | - Hui Yan
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
14
|
Ahmed A, Zahir Iqbal M, Dahshan A, Aftab S, Hegazy HH, Yousef ES. Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review. NANOSCALE 2024; 16:2097-2120. [PMID: 38204422 DOI: 10.1039/d3nr04994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD-TMD heterostructures, TMD-graphene (Gr) hybrids, TMD-MXene composites, TMD-perovskite heterostructures, and TMD-quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.
Collapse
Affiliation(s)
- Anique Ahmed
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Alaa Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - El Sayed Yousef
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
15
|
Yao Z, Xiong Y, Kang H, Xu X, Guo J, Li W, Xu X. Tunable Periodic Nanopillar Array for MAPbI 3 Perovskite Photodetectors with Improved Light Absorption. ACS OMEGA 2024; 9:2606-2614. [PMID: 38250387 PMCID: PMC10795138 DOI: 10.1021/acsomega.3c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
In the field of optoelectronic applications, the vigorous development of organic-inorganic hybrid perovskite materials, such as methylammonium lead triiodide (MAPbI3), has spurred continuous research on methods to enhance the photodetection performance. Periodic nanoarrays can effectively improve the light absorption of perovskite thin films. However, there are still challenges in fabricating tunable periodic patterned and large-area perovskite nanoarrays. In this study, we present a cost-effective and facile approach utilizing nanosphere lithography and dry etching techniques to create a large-area Si nanopillar array, which is employed for patterning MAPbI3 thin films. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results reveal that the introduction of nanopillar structures did not have a significant adverse effect on the crystallinity of the MAPbI3 thin film. Light absorption tests and optical simulations indicate that the nanopillar array enhances the light intensity within the perovskite films, leading to photodetectors with a responsivity of 11.2 A/W and a detectivity of 7.3 × 1010 Jones at 450 nm in wavelength. Compared with photodetectors without nanostructures, these photodetectors exhibit better visible light absorption. Finally, we demonstrate the application of these photodetector arrays in a prototype image sensor.
Collapse
Affiliation(s)
- Zhengtong Yao
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Yuting Xiong
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Hanyue Kang
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiuzhen Xu
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Jianhe Guo
- Guangdong
Provincial Key Laboratory of Sensing Technology and Biomedical
Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Wen Li
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiaobin Xu
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
16
|
Chen W, Wang D, Wang W, Kang Y, Liu X, Fang S, Li L, Luo Y, Liang K, Liu Y, Luo D, Memon MH, Yu H, Gu W, Liu Z, Hu W, Sun H. Manipulating Surface Band Bending of III-Nitride Nanowires with Ambipolar Charge-Transfer Characteristics: A Pathway Toward Advanced Photoswitching Logic Gates and Encrypted Optical Communication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307779. [PMID: 38009587 DOI: 10.1002/adma.202307779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Indexed: 11/29/2023]
Abstract
The operational principle of semiconductor devices critically relies on the band structures that ultimately govern their charge-transfer characteristics. Indeed, the precise orchestration of band structure within semiconductor devices, notably at the semiconductor surface and corresponding interface, continues to pose a perennial conundrum. Herein, for the first time, this work reports a novel postepitaxy method: thickness-tunable carbon layer decoration to continuously manipulate the surface band bending of III-nitride semiconductors. Specifically, the surface band bending of p-type aluminum-gallium-nitride (p-AlGaN) nanowires grown on n-Si can be precisely controlled by depositing different carbon layers as guided by theoretical calculations, which eventually regulate the ambipolar charge-transfer behavior between the p-AlGaN/electrolyte and p-AlGaN/n-Si interface in an electrolyte environment. Enabled by the accurate modulation of the thickness of carbon layers, a spectrally distinctive bipolar photoresponse with a controllable polarity-switching-point over a wide spectrum range can be achieved, further demonstrating reprogrammable photoswitching logic gates "XOR", "NAND", "OR", and "NOT" in a single device. Finally, this work constructs a secured image transmission system where the optical signals are encrypted through the "XOR" logic operations. The proposed continuous surface band tuning strategy provides an effective avenue for the development of multifunctional integrated-photonics systems implemented with nanophotonics.
Collapse
Affiliation(s)
- Wei Chen
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Danhao Wang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weiyi Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Yang Kang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xin Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Shi Fang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Liuan Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yuanmin Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Kun Liang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yuying Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Dongyang Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Muhammad Hunain Memon
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Huabin Yu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Wengang Gu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhenghui Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Wei Hu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
- Key Laboratory of Wireless-Optical Communications, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
17
|
Cao F, Shi Y, Zhang W, Liu X, Tang X, Han Z, Zhang L, Sun B. Self-powered all-quantum dot based broadband photodetectors for color imaging and heart rate monitoring. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:12124-12130. [DOI: 10.1039/d4tc01805b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
All-quantum dot based self-powered broadband (300–1000 nm) photodetectors (SnO2 QDs/PbS-I QDs/PbS-EDT QDs) were successfully fabricated, showing great potential in long-distance color recognition imaging and human heartbeat monitoring.
Collapse
Affiliation(s)
- Fa Cao
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Yi Shi
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Wei Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao Liu
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Xu Tang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Zeyao Han
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Li Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Bin Sun
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| |
Collapse
|
18
|
Liang H, Ma Y, Yi H, Yao J. Emerging Schemes for Advancing 2D Material Photoconductive-Type Photodetectors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7372. [PMID: 38068116 PMCID: PMC10707280 DOI: 10.3390/ma16237372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 10/16/2024]
Abstract
By virtue of the widely tunable band structure, dangling-bond-free surface, gate electrostatic controllability, excellent flexibility, and high light transmittance, 2D layered materials have shown indisputable application prospects in the field of optoelectronic sensing. However, 2D materials commonly suffer from weak light absorption, limited carrier lifetime, and pronounced interfacial effects, which have led to the necessity for further improvement in the performance of 2D material photodetectors to make them fully competent for the numerous requirements of practical applications. In recent years, researchers have explored multifarious improvement methods for 2D material photodetectors from a variety of perspectives. To promote the further development and innovation of 2D material photodetectors, this review epitomizes the latest research progress in improving the performance of 2D material photodetectors, including improvement in crystalline quality, band engineering, interface passivation, light harvesting enhancement, channel depletion, channel shrinkage, and selective carrier trapping, with the focus on their underlying working mechanisms. In the end, the ongoing challenges in this burgeoning field are underscored, and potential strategies addressing them have been proposed. On the whole, this review sheds light on improving the performance of 2D material photodetectors in the upcoming future.
Collapse
Affiliation(s)
| | | | | | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China; (H.L.); (Y.M.); (H.Y.)
| |
Collapse
|
19
|
Li S, Jang JH, Chung W, Seung H, Park SI, Ma H, Pyo WJ, Choi C, Chung DS, Kim DH, Choi MK, Yang J. Ultrathin Self-Powered Heavy-Metal-Free Cu-In-Se Quantum Dot Photodetectors for Wearable Health Monitoring. ACS NANO 2023; 17:20013-20023. [PMID: 37787474 DOI: 10.1021/acsnano.3c05178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Mechanically deformable photodetectors (PDs) are key device components for wearable health monitoring systems based on photoplethysmography (PPG). Achieving high detectivity, fast response time, and an ultrathin form factor in the PD is highly needed for next-generation wearable PPG systems. Self-powered operation without a bulky power-supply unit is also beneficial for point-of-care application. Here, we propose ultrathin self-powered PDs using heavy-metal-free Cu-In-Se quantum dots (QDs), which enable high-performance wearable PPG systems. Although the light-absorbing QD layer is extremely thin (∼40 nm), the developed PD exhibits excellent performance (specific detectivity: 2.10 × 1012 Jones, linear dynamic range: 102 dB, and spectral range: 250-1050 nm at zero bias), which is comparable to that of conventional rigid QD-PDs employing thick Pb-chalcogenide QD layers. This is attributed to material and device strategies─materials that include Cu-In-Se QDs, a MoS2-nanosheet-blended poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transport layer, a ZnO nanoparticle electron transport layer, Ag and ITO electrodes, and an ultrathin form factor (∼120 nm except the electrodes) that enable excellent mechanical deformability. These allow the successful application of QD-PDs to a wearable system for real-time PPG monitoring, expanding their potential in the field of mobile bioelectronics.
Collapse
Affiliation(s)
- Shi Li
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae Hong Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wookjin Chung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyojin Seung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Ik Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyeonjong Ma
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Won Jun Pyo
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
20
|
Li Z, Lu J, Wu F, Tao M, Wei W, Wang Z, Wang Z, Dai Z. Polarity Conversion of the Ag 2S/AgInS 2 Heterojunction by Radical-Induced Positive Feedback Polydopamine Adhesion for Signal-Switchable Photoelectrochemical Biosensing. Anal Chem 2023; 95:15008-15016. [PMID: 37749789 DOI: 10.1021/acs.analchem.3c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Efficient tuning of the polarity of photoactive nanomaterials is of great importance in improving the performance of photoelectrochemical (PEC) sensing platforms. Herein, polarity of the Ag2S/AgInS2 heterojunction is converted by radical-induced positive feedback polydopamine (PDA) adhesion, which is further employed to develop a signal-switchable PEC biosensor. In the nanocomposites, Ag2S and AgInS2 achieve electron-hole separation, exhibiting a strong anodic PEC response. Under the irradiation of light, the Ag2S/AgInS2 heterojunction is able to produce superoxide radical and hydroxyl radical intermediate species, leading to the polymerization of dopamine (DA) and the subsequent adhesion of PDA onto the Ag2S/AgInS2 heterojunction (Ag2S/AgInS2@PDA). By constructing a new electron-transfer pathway with PDA, the polarity of the Ag2S/AgInS2 heterojunction is converted, and the PEC response changes from anodic to cathodic photocurrents. In addition, since the photoreduction activity of PDA is stronger than that of the Ag2S/AgInS2 heterojunction, more superoxide radical can be produced by Ag2S/AgInS2@PDA once PDA is generated, thereby promoting the generation of PDA. Consequently, a positive feedback mechanism is established to enhance the polarity conversion of the Ag2S/AgInS2 heterojunction and amplify the responding to DA. As a result, the bioanalytical method is capable of sensitively quantifying DA in 10 orders of magnitude with an ultralow limit of detection. Moreover, the applicability of this biosensor in real samples is identified by measuring DA in fetal bovine serum and compared with a commercial ELISA method. Overall, this work offers an alternative perspective for adjusting photogenerated carriers of nanomaterials and designing high-performance PEC biosensors.
Collapse
Affiliation(s)
- Zijun Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiarui Lu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fan Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Tao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wanting Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zizheng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
21
|
Chen F, Li Y, Chen Y, Wang YX, Hu W. Supramolecular interface decoration on a polymer conductor for an intrinsically stretchable near-infrared photodiode. Chem Commun (Camb) 2023; 59:11975-11978. [PMID: 37724429 DOI: 10.1039/d3cc04189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Stretchable photodiodes with near-infrared (NIR) response face the challenge of material deficiency. A supramolecular cathode with excellent optical, tensile and electrical properties was proposed. Together with a stretchable organic heterojunction, we developed an intrinsically stretchable NIR photodiode with high detectivity over 1011 Jones and that remained functional under 100% strain.
Collapse
Affiliation(s)
- Fan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
| | - Yiming Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
| | - Yan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
| | - Yi-Xuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
22
|
Zhang B, Zhai W, Wang J. Self-Powered Wavelength-Dependent Dual-Polarity Response Photodetector Based on CdS@PEDOT:PSS@Au Sandwich-Structured Core-Shell Nanorod Arrays. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45970-45980. [PMID: 37733606 DOI: 10.1021/acsami.3c07869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Self-powered operation and multifunctionality have significantly oriented the development of photodetectors (PDs), which could be realized through nanoarchitecture construction and energy band structure design. Herein, a self-powered wavelength-dependent dual-polarity response PD based on (CdS@PEDOT:PSS@Au) sandwich-structured core-shell nanorod arrays (NRAs) is proposed. The synthesis approach of this three-layer heterostructure consists of a hydrothermal reaction, spin coating, and thermal evaporation. The n-CdS/p-PEDOT:PSS junction and the PEDOT:PSS/Au Schottky junction at the interfaces provide two photocurrent driving forces in opposite directions, and their contribution to the net photocurrent is controlled by the incident light wavelength due to the different light absorption ranges of the CdS core and the PEDOT:PSS shell. As a result, the polarity of the photocurrent switches from negative to positive as the wavelength increases. In addition, the response speed of negative photocurrents (∼10 ms) is faster than that of positive photocurrents (∼100 ms), which is consistent with the underlying mechanism of the dual-polarity response. Furthermore, color discrimination and imaging capabilities are demonstrated by deploying the PDs as sensing pixels and recognizing green and red patterns. The sandwich-structured core-shell NRA heterojunction system introduces a novel idea for dual-polarity response PDs.
Collapse
Affiliation(s)
- Boyong Zhang
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an710072, China
| | - Wei Zhai
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an710072, China
| | - Jianyuan Wang
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an710072, China
| |
Collapse
|
23
|
Do DP, Hong C, Bui VQ, Pham TH, Seo S, Do VD, Phan TL, Tran KM, Haldar S, Ahn B, Lim SC, Yu WJ, Kim S, Kim J, Lee H. Highly Efficient Van Der Waals Heterojunction on Graphdiyne toward the High-Performance Photodetector. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300925. [PMID: 37424035 PMCID: PMC10477878 DOI: 10.1002/advs.202300925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/04/2023] [Indexed: 07/11/2023]
Abstract
Graphdiyne (GDY), a new 2D material, has recently proven excellent performance in photodetector applications due to its direct bandgap and high mobility. Different from the zero-gap of graphene, these preeminent properties made GDY emerge as a rising star for solving the bottleneck of graphene-based inefficient heterojunction. Herein, a highly effective graphdiyne/molybdenum (GDY/MoS2 ) type-II heterojunction in a charge separation is reported toward a high-performance photodetector. Characterized by robust electron repulsion of alkyne-rich skeleton, the GDY based junction facilitates the effective electron-hole pairs separation and transfer. This results in significant suppression of Auger recombination up to six times at the GDY/MoS2 interface compared with the pristine materials owing to an ultrafast hot hole transfer from MoS2 to GDY. GDY/MoS2 device demonstrates notable photovoltaic behavior with a short-circuit current of -1.3 × 10-5 A and a large open-circuit voltage of 0.23 V under visible irradiation. As a positive-charge-attracting magnet, under illumination, alkyne-rich framework induces positive photogating effect on the neighboring MoS2 , further enhancing photocurrent. Consequently, the device exhibits broadband detection (453-1064 nm) with a maximum responsivity of 78.5 A W-1 and a high speed of 50 µs. Results open up a new promising strategy using GDY toward effective junction for future optoelectronic applications.
Collapse
Affiliation(s)
- Dinh Phuc Do
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Chengyun Hong
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Viet Q Bui
- Advanced Institute of Science and TechnologyThe University of Danang41 Le DuanDanang92026Vietnam
| | - Thi Hue Pham
- Advanced Institute of Science and TechnologyThe University of Danang41 Le DuanDanang92026Vietnam
| | - Sohyeon Seo
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
- Creative Research InstituteSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Van Dam Do
- Department of Electrical and Computer EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Thanh Luan Phan
- Department of Electrical and Computer EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Kim My Tran
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Surajit Haldar
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Byung‐wook Ahn
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Seong Chu Lim
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Woo Jong Yu
- Department of Electrical and Computer EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Seong‐Gon Kim
- Department of Physics and Astronomy and Center for Computational SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Ji‐Hee Kim
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Hyoyoung Lee
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
- Creative Research InstituteSungkyunkwan UniversitySuwon16419Republic of Korea
- Department of BiophysicsSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
24
|
Prajapati A, Shalev G. Arrays of Fresnel Nanosystems for Enhanced Photovoltaic Performance. ACS OMEGA 2023; 8:23365-23372. [PMID: 37426246 PMCID: PMC10323942 DOI: 10.1021/acsomega.2c07863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/11/2023] [Indexed: 07/11/2023]
Abstract
Omnidirectional broadband absorption of the solar radiation is pivotal to solar energy harvesting and particularly to low-cost non-tracking photovoltaic (PV) technologies. The current work numerically examines the utilization of surface arrays composed of Fresnel nanosystems (Fresnel arrays), which are reminiscent of the known Fresnel lenses, for the realization of ultra-thin silicon PV cells. Specifically, the optical and electrical performances of PV cells integrated with Fresnel arrays are compared with those of a PV cell incorporated with an optimized surface array of nanopillars (NP array). It is shown that the broadband absorption of specifically tailored Fresnel arrays can provide an enhancement of ∼20% over that of an optimized NP array. The performed analysis suggests that broadband absorption in ultra-thin films decorated with Fresnel arrays is driven by two light trapping mechanisms. The first is light trapping governed by light concentration, induced by the arrays, into the underlying substrates, which increases the optical coupling between the impinging illumination and the substrates. The second mechanism is light trapping motivated by refraction, as the Fresnel arrays induce lateral irradiance in the underlying substrates, which increases the optical interaction length and hence the overall probability for optical absorption. Finally, PV cells incorporated with surface Fresnel arrays are numerically calculated, with short-circuit current densities (Jsc) which are ∼50% higher than that of a PV cell incorporated with an optimized NP array. Also, the effect of increased surface area, due to the presence of Fresnel arrays, and its effect on surface recombination and open-circuit voltage (Voc) are discussed.
Collapse
Affiliation(s)
- Ashish Prajapati
- School
of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gil Shalev
- School
of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- The
Ilse-Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
25
|
Mano T, Ohtake A, Kawazu T, Miyazaki HT, Sakuma Y. Low Dark Current Operation in InAs/GaAs(111)A Infrared Photodetectors: Role of Misfit Dislocations at the Interface. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37286339 DOI: 10.1021/acsami.3c05725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate an extended short-wave infrared (e-SWIR) photodetector composed of an InAs/GaAs(111)A heterostructure with interface misfit dislocations. The layer structure of the photodetector consists simply of an n-InAs optical absorption layer directly grown with a thin undoped-GaAs spacer layer on n-GaAs by molecular beam epitaxy. The lattice mismatch was abruptly relaxed by forming a misfit dislocation network at the initial stage of the InAs growth. We found high-density threading dislocations (1.5 × 109 cm-2) in the InAs layer. The current-voltage characteristics of the photodetector at 77 K had a very low dark current density (<1 × 10-9 A cm-2) at a positive applied voltage (electrons flow from n-GaAs to n-InAs) of up to ∼+1 V. Simulation of the band structure revealed that the direct connection of GaAs and InAs and the formation of interfacial states by the misfit dislocations play significant positive roles in suppressing dark current. Under illumination with e-SWIR light at 77 K, a clear photocurrent signal was observed with a 2.6 μm cutoff wavelength, which is consistent with the bandgap of InAs. We also demonstrated e-SWIR detection at room temperature with a 3.2 μm cutoff wavelength. The maximum detectivity at 294 K exceeds 2 × 108 cm Hz0.5 W-1 for the detection of e-SWIR light at 2 μm.
Collapse
Affiliation(s)
- Takaaki Mano
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Akihiro Ohtake
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Takuya Kawazu
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Hideki T Miyazaki
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Yoshiki Sakuma
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
26
|
Qiao Y, Luo J, Cui T, Liu H, Tang H, Zeng Y, Liu C, Li Y, Jian J, Wu J, Tian H, Yang Y, Ren TL, Zhou J. Soft Electronics for Health Monitoring Assisted by Machine Learning. NANO-MICRO LETTERS 2023; 15:66. [PMID: 36918452 PMCID: PMC10014415 DOI: 10.1007/s40820-023-01029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Haidong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yingfen Zeng
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jinming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
27
|
Fang S, Li L, Wang W, Chen W, Wang D, Kang Y, Liu X, Jia H, Luo Y, Yu H, Memon MH, Hu W, Ooi BS, He JH, Sun H. Light-Induced Bipolar Photoresponse with Amplified Photocurrents in an Electrolyte-Assisted Bipolar p-n Junction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300911. [PMID: 36912711 DOI: 10.1002/adma.202300911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The p-n junction with bipolar characteristics sets the fundamental unit to build electronics while its unique rectification behavior constrains the degree of carrier tunability for expanded functionalities. Herein, a bipolar-junction photoelectrode employed with a gallium nitride (GaN) p-n homojunction nanowire array that operates in electrolyte is reported, demonstrating bipolar photoresponse controlled by different wavelengths of light. Significantly, with rational decoration of a ruthenium oxides (RuOx ) layer on nanowires guided by theoretical modeling, the resulting RuOx /p-n GaN photoelectrode exhibits unambiguously boosted bipolar photoresponse by an enhancement of 775% and 3000% for positive and negative photocurrents, respectively, compared to the pristine nanowires. The loading of the RuOx layer on nanowire surface optimizes surface band bending, which facilitates charge transfer across the GaN/electrolyte interface, meanwhile promoting the efficiency of redox reaction for both hydrogen evolution reaction and oxygen evolution reaction which corresponds to the negative and positive photocurrents, respectively. Finally, a dual-channel optical communication system incorporated with such photoelectrode is constructed with using only one photoelectrode to decode dual-band signals with encrypted property. The proposed bipolar device architecture presents a viable route to manipulate the carrier dynamics for the development of a plethora of multifunctional optoelectronic devices for future sensing, communication, and imaging systems.
Collapse
Affiliation(s)
- Shi Fang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liuan Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Weiyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wei Chen
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Danhao Wang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Kang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xin Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongfeng Jia
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuanmin Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Huabin Yu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Muhammad Hunain Memon
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Boon S Ooi
- Photonics Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology, 21534, Thuwal, Saudi Arabia
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, P. R. China
- The CAS Key Laboratory of Wireless-Optical Communications, University of Science and Technology of China, 230027, Hefei, P. R. China
| |
Collapse
|
28
|
Takeuchi A, Heah WY, Yamamoto Y, Yamagishi H. Degradable optical resonators as in situ microprobes for microscopy-based observation of enzymatic hydrolysis. Chem Commun (Camb) 2023; 59:1477-1480. [PMID: 36651843 DOI: 10.1039/d2cc05597j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Optical resonators work as precise physical and chemical sensors. Here, we assemble a whispering gallery mode resonator from a natural polymer, fibroin protein, and successfully observe its catalytic degradation reaction as a spectral shift. This methodology will contribute to the precise in situ observation of biological reactions by optical microscopy.
Collapse
Affiliation(s)
- Akihide Takeuchi
- Department of Materials Science, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Wey Yih Heah
- Department of Materials Science, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Yohei Yamamoto
- Department of Materials Science, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Hiroshi Yamagishi
- Department of Materials Science, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
29
|
Liu J, Wang J, Xian K, Zhao W, Zhou Z, Li S, Ye L. Organic and quantum dot hybrid photodetectors: towards full-band and fast detection. Chem Commun (Camb) 2023; 59:260-269. [PMID: 36510729 DOI: 10.1039/d2cc05281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photodetectors hold great application potential in many fields such as image sensing, night vision, infrared communication and health monitoring. To date, commercial photodetectors mainly rely on inorganic semiconductors, e.g., monocrystalline silicon, germanium, and indium selenide/gallium with complex and costly fabrication, which are hardly compatible with wearable electronics. In contrast, organic conjugated materials provide great superiority in flexibility and stretchability. In this Highlight, the unique properties of organic and quantum dot photodetectors were firstly discussed to reveal the great complementarity of the two technologies. Subsequently, the recent advance of organic/quantum dot hybrid photodetectors was outlined to highlight their great potential in developing broadband and high-performance photodetectors. Moreover, the multiple functions (e.g., dual-band detection and upconversion detection) of hybrid photodetectors were highlighted for their promising application in image sensing and infrared detection. Lastly, we present a forword-looking discussion on the challenges and our insights for the further advancement of hybrid photodetectors. This work may spark enormous research attention in organic/quantum dot electronics and advance the commercial applications.
Collapse
Affiliation(s)
- Junwei Liu
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China. .,State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
| | - Jingjing Wang
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| | - Kaihu Xian
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhihua Zhou
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| | - Shaojuan Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
| | - Long Ye
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China. .,State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
| |
Collapse
|
30
|
Li SX, Xia H, Liu TY, Zhu H, Feng JC, An Y, Zhang XL, Sun HB. In Situ Encapsulated Moiré Perovskite for Stable Photodetectors with Ultrahigh Polarization Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207771. [PMID: 36341484 DOI: 10.1002/adma.202207771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Nanostructures provide a simple, effective, and low-cost route to enhance the light-trapping capability of optoelectronic devices. In recent years, nano-optical structures have been widely used in perovskite optoelectronic devices to greatly enhance the device performance. However, the inherent instability of perovskite materials hinders the practical application of these nanostructured optoelectronic devices. Here, in situ encapsulated moiré lattice perovskite photodetectors (PDs) by two nanograting-structured soft templates with relative rotation angles is fabricated. The confinement growth of the two nanograting templates leads to crystal growth with moiré lattice structure, which improves the light-harvesting ability of the perovskite crystal, thereby improving the device performance. The PD exhibits responsivity to 1026.5 A W-1 . The Moiré lattice-perovskite-based PD maintained 95% of the initial performance after 223 days. After being continuously sprayed with water moist for 180 min, the performance is maintained at 95.7% of its initial level. The nanograting structure endows the device with high polarization sensitivity of Imax /Imin as high as 9.1.
Collapse
Affiliation(s)
- Shun-Xin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hong Xia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tian-Yu Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - He Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jia-Cheng Feng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yang An
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xu-Lin Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Haidian district, Beijing, 100084, China
| |
Collapse
|
31
|
Hou S, Xu C, Ju X, Jin Y. Interfacial Assembly of Ti 3 C 2 T x /ZnIn 2 S 4 Heterojunction for High-Performance Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204687. [PMID: 36285673 PMCID: PMC9762283 DOI: 10.1002/advs.202204687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) materials have emerged as prospective candidates for electronics and optoelectronics applications as they can be easily fabricated through liquid exfoliation and used to fabricate various structures by further subsequent processing methods in addition to their extraordinary and unique optoelectronic properties. Herein, the Ti3 C2 Tx /ZIS heterostructure with nanometer-thick Ti3 C2 Tx -MXene and ZnIn2 S4 (ZIS) films is fabricated by successive interfacial assembly of liquid exfoliated 2D MXene and ZnIn2 S4 nanoflakes. Benefiting from the superior light-harvesting capability and low dark current of ZnIn2 S4 , the limited absorbance, large scattering coefficient, and high dark current disadvantages of MXene are ameliorated. Meanwhile, the separation and transport of photogenerated carriers in ZnIn2 S4 are improved due to the excellent electrical conductivity of Ti3 C2 Tx nanoflakes. As a result, the as-prepared Ti3 C2 Tx /ZIS heterostructure photodetector has excellent optoelectronic characteristics in terms of a high responsivity of 1.04 mA W-1 , a large specific detectivity up to 1 × 1011 Jones, a huge on/off ratio at around 105 , and an ultralow dark current at ≈10-12 A. This work demonstrates a convenient method to construct heterostructured photodetectors by liquid exfoliated 2D nanoflakes, the as-fabricated Ti3 C2 Tx /ZIS heterostructured photodetectors show promising application potential for low-cost, reliable, and high-performance photodetectors.
Collapse
Affiliation(s)
- Shuping Hou
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Chen Xu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Xingkai Ju
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
32
|
Sun X, Wang D, Memon MH, Zhu S, Yu H, Wang H, Fang S, Kang Y, Liu X, Luo Y, Zhang H, Luo D, Sun H. Anisotropic photoresponse behavior of a LaAlO 3 single-crystal-based vacuum-ultraviolet photodetector. NANOSCALE 2022; 14:16829-16836. [PMID: 36349807 DOI: 10.1039/d2nr04552d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nowadays, vacuum-ultraviolet (VUV) photodetectors (PDs) have attracted extensive attention owing to their potential applications in space exploration, radiation monitoring, and the semiconductor industry. Benefiting from its intrinsic ultra-wide band-gap, chemical robustness, and low-cost features, LaAlO3 shows great promise in developing next-generation compact, cheap, and easy-to-fabricate VUV PDs. In this work, we report the unique anisotropic photoresponse behavior of LaAlO3 single crystals for VUV photodetection applications. First of all, with the guidance of density functional theory (DFT) calculations along with the comprehensive material characterization, the anisotropic carrier transport behavior of LaAlO3 single crystals was confirmed. Thereafter, after exploring the metal-semiconductor-metal (MSM) device configuration along different substrate orientations, including (100), (110), and (111)-LaAlO3 single crystals, we found that the (110)-LaAlO3 VUV PD exhibits the best device performance under VUV illumination, with a responsivity of 2.23 mA W-1, a high detectivity of 3.72 × 1011 Jones, and a photo-to-dark-current ratio of 5.48 × 103. This work not only provides a feasible avenue to explore the anisotropic optoelectronic behavior of ultra-wide band-gap semiconductors but also expands the application of the low-cost oxide perovskite family in the field of VUV photodetection.
Collapse
Affiliation(s)
- Xiyu Sun
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Danhao Wang
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Muhammad Hunain Memon
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Siqi Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Huabin Yu
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Hongxuan Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Shi Fang
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Yang Kang
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Xin Liu
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Yuanmin Luo
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Haochen Zhang
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Dongyang Luo
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei 230029, P. R. China.
| |
Collapse
|
33
|
Wang XM, Zhu B, Huang Y, Shen L, Chai Y, Han J, Yu J, Wang Z, Chen X. High-performance self-powered integrated system of pressure sensor and supercapacitor based on Cu@Cu2O/graphitic carbon layered porous structure. J Colloid Interface Sci 2022; 632:140-150. [DOI: 10.1016/j.jcis.2022.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
34
|
Núñez RN, Veglia AV, Pacioni NL. MultiShapeC, an algorithm to assess concentration in multi-shape nanoparticle samples: nanosilver, a case study. RSC Adv 2022; 12:26550-26555. [PMID: 36275155 PMCID: PMC9486825 DOI: 10.1039/d2ra04078f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Shape, size, and dispersity play a crucial role in the calculation of colloidal nanoparticle concentrations, which results in remarkable differences in the determination of parameters like Stern–Volmer constants. In this work, we propose an algorithm named MultiShapeC to include the variability in shapes and polydispersity in the concentration calculation. This algorithm was validated using the quenching of carbazole fluorescence emission by silver nanoparticles. An algorithm to include multi-shape and polydispersity in the nanoparticle concentration calculation is presented.![]()
Collapse
Affiliation(s)
- Rodrigo Nicolás Núñez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Alicia Viviana Veglia
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Natalia Lorena Pacioni
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| |
Collapse
|