1
|
Zhang W, Liu J, Song W, Shan J, Guan H, Zhou J, Meng Y, Tong X, Zhu J, Yang M, Ge Z. Chemical passivation and grain-boundary manipulation via in situ cross-linking strategy for scalable flexible perovskite solar cells. SCIENCE ADVANCES 2025; 11:eadr2290. [PMID: 39888995 PMCID: PMC11784856 DOI: 10.1126/sciadv.adr2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/31/2024] [Indexed: 02/02/2025]
Abstract
Flexible perovskite solar cells (f-PSCs) are considered the most promising candidates in portable power applications. However, high sensitivity of crystallization on the substrate and the intrinsic brittleness usually trade off the performance of f-PSCs. Herein, we introduced an initiator-free cross-linkable monomer (2,5-dioxopyrrolidin-1-yl) 5-(dithiolan-3-yl)pentanoate (FTA), which can chemically passivate defects and enable real-time fine regulation of crystallization. The resulting perovskite film exhibited higher crystallinity, enlarged grain size, and reduced dependence on the substrate. In addition, the cross-linked FTA [CL(FTA)] distributed along the grain boundaries effectively released the residual stress and securely bound the grains together. Consequently, the CL(FTA)-modified flexible PSCs achieved a record-breaking efficiency of 24.64% (certified 24.08%). Moreover, the scalable potential has been verified by the corresponding rigid and flexible modules, delivering impressive efficiencies of 19.53 and 17.13%, respectively. Furthermore, the optimized device demonstrated bending durability and improved operational stability, thereby advancing the progress of f-PSCs toward industrialization.
Collapse
Affiliation(s)
- Weifu Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei Song
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jiahong Shan
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haowei Guan
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Zhou
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xinyu Tong
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jintao Zhu
- Department of Chemical and Environment Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Mengjin Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li Z, Sun A, Zheng Y, Zhuang R, Wu X, Tian C, Tang C, Liu Y, Ouyang B, Du J, Li Z, Cai J, Wu X, Chen J, Hua Y, Chen CC. Efficient Charge Transport in Inverted Perovskite Solar Cells via 2D/3D Ferroelectric Heterojunction. SMALL METHODS 2024; 8:e2400425. [PMID: 38593370 DOI: 10.1002/smtd.202400425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Indexed: 04/11/2024]
Abstract
While the 2D/3D heterojunction is an effective method to improve the power conversion efficiency (PCE) of perovskite solar cells (PSCs), carriers are often confined in the quantum wells (QWs) due to the unique structure of 2D perovskite, which makes the charge transport along the out-of-plane direction difficult. Here, a 2D/3D ferroelectric heterojunction formed by 4,4-difluoropiperidine hydrochloride (2FPD) in inverted PSCs is reported. The enriched 2D perovskite (2FPD)2PbI4 layer with n = 1 on the perovskite surface exhibits ferroelectric response and has oriented dipoles along the out-of-plane direction. The ferroelectricity of the oriented dipole layer facilitates the enhancement of the built-in electric field (1.06 V) and the delay of the cooling process of hot carriers, reflected in the high carrier temperature (above 1400 K) and the prolonged photobleach recovery time (139.85 fs, measured at bandgap), improving the out-of-plane conductivity. In addition, the alignment of energy levels is optimized and exciton binding energy (32.8 meV) is reduced by changing the dielectric environment of the surface. Finally, the 2FPD-treated PSCs achieve a PCE of 24.82% (certified: 24.38%) with the synergistic effect of ferroelectricity and defect passivation, while maintaining over 90% of their initial efficiency after 1000 h of maximum power point tracking.
Collapse
Affiliation(s)
- Zihao Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Anxin Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Rongshan Zhuang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Xueyun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Congcong Tian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Chen Tang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Beilin Ouyang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jiajun Du
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Ziyi Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jingyu Cai
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Xiling Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jinling Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yong Hua
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| |
Collapse
|
3
|
Li S, Zai S, Wei X, Yang F, Huang W, Yuan N, Ding J, Zhao K, Liu SF, Zhao W. Over 21% Efficient Cesium Lead Triiodide Solar Cell Enabled by Molten Salt Accelerating the Crystallization Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406960. [PMID: 39308288 DOI: 10.1002/smll.202406960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/11/2024] [Indexed: 12/13/2024]
Abstract
High-quality CsPbI3 with low defect density is indispensable for acquiring excellent photoelectric performance. Meticulous regulation of the CsPbI3 crystal growth processes is both feasible and efficacious in enhancing the quality of perovskite films. In this study, the cesium formate (CsFo) is introduced. On one hand, its low melting point can induce the crystallization processes at a low level of energy consumption. On the other hand, the pseudo-halide anion can participate in the passivation of iodide vacancies, as the formate anion exhibits a relatively higher affinity with iodide vacancies compared to other halides. Consequently, the introduction of CsFo enhances the quality of CsPbI3 thin films by altering the crystallization process and curbing defect formation. As a result, a steady-state output efficiency of 21.23% and an open-circuit voltage (Voc) as high as 1.25 V are achieved, with both parameters ranking among the highest for this type of solar cell.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Shuwan Zai
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xingpei Wei
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Fei Yang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Wenliang Huang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Jianning Ding
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Kui Zhao
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, Beijing, 100049, P. R. China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Wangen Zhao
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
4
|
Heo JH, Park JK, Lee HJ, Shin EH, Hong SY, Hong KH, Zhang F, Im SH. Inorganic-Derived 0D Perovskite Induced Surface Lattice Arrangement for Efficient and Stable All-Inorganic Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408387. [PMID: 39152921 DOI: 10.1002/adma.202408387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Indexed: 08/19/2024]
Abstract
The inverted inorganic CsPbI3 perovskite solar cells (PSCs) are prospective candidates for next-generation photovoltaics owing to inherent robust thermal/photo-stability and compatibility for tandems. However, the performance and stability of the inverted CsPbI3 PSCs fall behind the n-i-p counterparts due to poor energetic alignment and abundant interfacial defect states. Here, an inorganic 0D Cs4PbBr6 with a good lattice strain arrangement is implemented as the surface anchoring capping layer on CsPbI3. The Cs4PbBr6 perovskite induces enhanced electron-selective junction and thus facilitates efficient charge extraction and effectively inhibits non-radiative recombination. Consequently, the CsPbI3 PSCs with Cs4PbBr6 demonstrate the highest power conversion efficiency (PCE) of CsPbI3-based inverted PSCs, reaching 21.03% PCE from a unit cell and 17.39% PCE from a module with a 64 cm2 aperture area. Furthermore, the resulting devices retain 92.48% after 1000 h under simultaneous 1-sun and damp heat (85 °C / 85% relative humidity) environment.
Collapse
Affiliation(s)
- Jin Hyuck Heo
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Kyoung Park
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyong Joon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Ha Shin
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Seok Yeong Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Ha Hong
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Sang Hyuk Im
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
5
|
Zhang G, Xu Y, Zhang P, He C, Mi H. Suppressing Nonradiative Recombination through Dielectric Screening of Defects in Crystalline Carbon Nitride for Enhanced Photocatalytic Activity. ACS NANO 2024; 18:29294-29303. [PMID: 39397776 DOI: 10.1021/acsnano.4c12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Abundant defect-induced nonradiative recombination greatly reduces the charge separation efficiency in photocatalysts. Dielectric screening of defects has been proven to be an effective strategy to improve the charge separation efficiency; however, it has been rarely reported in photocatalysis. Here, a developed calcium poly(heptazine imide) (CaPHI) is utilized as a model photocatalyst to explore the dielectric screening of defects. Through embedding potassium ions in CaPHI, the dipole moment and polarity of the PHI structure are increased, thus enhancing the dielectric constant and enabling the dielectric screening of defects. In addition, compared to the original CaPHI, the optimized Ca/KPHI exhibits a 79.3% reduction in defect capture cross-section, and a decrease in the nonradiative recombination rate from 0.6224 to 0.1452 ns-1, thus achieving an apparent quantum efficiency of 51.4% for H2 production at 420 nm. This proposed dielectric screening strategy effectively addresses the issue of slow carrier transport and separation caused by defect-induced nonradiative recombination in photocatalysts.
Collapse
Affiliation(s)
- Guoqiang Zhang
- School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, China
| | - Yangsen Xu
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Hongwei Mi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
6
|
Wang X, Dong X, Dong H, Zhou Y, Ran C, Song L, Liu X, Xu W, Huang W, Wu Z. Air-Processed Efficient Cesium-Based Two-Dimensional Perovskite Solar Cells Based on Asymmetric Chiral Ammonium Salts. ACS NANO 2024. [PMID: 39265106 DOI: 10.1021/acsnano.4c08789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Cesium-based two-dimensional (2D) perovskites with attractive phase and environmental stability have broad application prospects in single-junction and tandem perovskite solar cells (PSCs). However, the severe nonradiative recombination and significant energy losses due to disordered phase orientations and phase distributions greatly hinder the carrier transport performance of cesium-based 2D PSCs and severely limit their photovoltaic performance. Here, we employ an asymmetric chiral spacer cation source, (R)-α-phenylethylamine acrylate (R-α-PEAAA), to prepare high-quality 2D cesium-based films with uniform phase distribution and high out-of-plane orientation by air processing, resulting in efficient carrier transport. More importantly, the asymmetric chiral spacer R-α-PEA has a stronger dipole moment than its isomer (PEA), which can regulate the dielectric properties of cesium-based 2D perovskites and promote charge dissociation. In addition, the chiral R-α-PEA can optimize the morphology and out-of-plane orientation of perovskite films, reduce trap density and nonradiative recombination loss, and optimize energy level alignment, thus enhancing carrier transport. As a result, cesium-based 2D PSCs (R-α-PEA2Cs4Pb5I16, n = 5) achieved a record power conversion efficiency of 19.71% and the unencapsulated device maintained over 90% efficiency after 1500 h of continuous light exposure and ambient storage (35 ± 5% relative humidity). This study provides an idea for the development of chiral 2D perovskite with efficient charge carrier transport toward efficient and stable cesium-based 2D PSCs.
Collapse
Affiliation(s)
- Xiaobo Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue Dong
- Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China
| | - He Dong
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Yipeng Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Lin Song
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Weidong Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
7
|
Wang Y, Zheng D, Wang K, Yang Q, Qian J, Zhou J, Liu SF, Yang D. Lattice Mismatch at the Heterojunction of Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202405878. [PMID: 38713005 DOI: 10.1002/anie.202405878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Lattice mismatch significantly influences microscopic transport in semiconducting devices, affecting interfacial charge behavior and device efficacy. This atomic-level disordering, often overlooked in previous research, is crucial for device efficiency and lifetime. Recent studies have highlighted emerging challenges related to lattice mismatch in perovskite solar cells, especially at heterojunctions, revealing issues like severe tensile stress, increased ion migration, and reduced carrier mobility. This review systematically discusses the effects of lattice mismatch on strain, material stability, and carrier dynamics. It also includes detailed characterizations of these phenomena and summarizes current strategies including epitaxial growth and buffer layer, as well as explores future solutions to mitigate mismatch-induced issues. We also provide the challenges and prospects for lattice mismatch, aiming to enhance the efficiency and stability of perovskite solar cells, and contribute to renewable energy technology advancements.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Dexu Zheng
- China National Nuclear Power Co., Ltd., Beijing, 100097, China
| | - Kai Wang
- Huanjiang Laboratory, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, 310027, China
| | - Qi Yang
- China National Nuclear Power Co., Ltd., Beijing, 100097, China
| | - Jin Qian
- Huanjiang Laboratory, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, 310027, China
| | - Jiaju Zhou
- China National Nuclear Power Co., Ltd., Beijing, 100097, China
| | - Shengzhong Frank Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Yang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Liu Y, Xu T, Xu Z, Zhang H, Yang T, Wang Z, Xiang W, Liu S. Defect Passivation and Lithium Ion Coordination Via Hole Transporting Layer Modification for High Performance Inorganic Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306982. [PMID: 37612838 DOI: 10.1002/adma.202306982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Metal halide inorganic perovskite solar cells (PSCs) have great potential to achieve high efficiency with excellent thermal stability. However, the surface defect traps restrain the achievement of high open circuit voltage (VOC ) and power conversion efficiency (PCE) of the devices due to the severe nonradiative charge recombination. Moreover, the state-of-the-art hole transporting layer (HTL) significantly hampers device moisture stability, even though it renders the highest solar cell efficiency. Herein, a one-stone-two-birds strategy is proposed using a biocompatible material tryptamine (TA) as an additive in HTL. First, TA bearing electron rich moieties can favorably passivate the surface defects of inorganic perovskite films, significantly reducing trap density and prolonging charge lifetime. It results in a drastic improvement of VOC from 1.192 to 1.251 V, with a VOC loss of 0.48 V. The corresponding PSCs achieve a 21.8% PCE under 100 mW cm-2 illumination. Second, TA in HTL can coordinate with lithium cations, retarding their reaction with moisture and increasing the moisture stability of HTL. Consequently, the black phase of inorganic perovskite films is well preserved, and the corresponding PSCs maintain 90% of the initial PCE after 800 h storage at relative humidity of 25-35%, much higher than the control devices.
Collapse
Affiliation(s)
- Yali Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tianfei Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tengteng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zezhang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wanchun Xiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengzhong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
9
|
Tian R, Liu C, Meng Y, Wang Y, Cao R, Tang B, Walsh D, Do H, Wu H, Wang K, Sun K, Yang S, Zhu J, Li X, Ge Z. Nucleation Regulation and Mesoscopic Dielectric Screening in α-FAPbI 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309998. [PMID: 38108580 DOI: 10.1002/adma.202309998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Indexed: 12/19/2023]
Abstract
While significant advancements in power conversion efficiencies (PCEs) of α-FAPbI3 perovskite solar cells (PSCs) have been made, attaining controllable perovskite crystallization is still a considerable hurdle. This challenge stems from the initial formation of δ-FAPbI3 , a more energetically stable phase than the desired black α-phase, during film deposition. This disrupts the heterogeneous nucleation of α-FAPbI3 , causing the formation of mixed phases and defects. To this end, polarity engineering using molecular additives, specifically ((methyl-sulfonyl)phenyl)ethylamines (MSPEs) are introduced. The findings reveal that the interaction of PbI2 -MSPEs-FAI intermediates is enhanced with the increased polarity of MSPEs, which in turn expedites the nucleation of α-FAPbI3 . This leads to the development of high-quality α-FAPbI3 films, characterized by vertical crystal orientation and reduced residual stresses. Additionally, the increased dipole moment of MSPE at perovskite grain boundaries attenuates Coulomb attractions among charged defects and screens carrier capture process, thereby diminishing non-radiative recombination. Utilizing these mechanisms, PSCs treated with highly polar 2-(4-MSPE) achieve an impressive PCE of 25.2% in small-area devices and 20.5% in large-area perovskite solar modules (PSMs) with an active area of 70 cm2 . These results demonstrate the effectiveness of this strategy in achieving controllable crystallization of α-FAPbI3 , paving the way for scalable-production of high-efficiency PSMs.
Collapse
Affiliation(s)
- Ruijia Tian
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Chang Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yaohua Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ruikun Cao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Bencan Tang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Darren Walsh
- Carbon Neutral Laboratory for Sustainable Chemistry, Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK
| | - Hainam Do
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Haodong Wu
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kai Wang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kexuan Sun
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shuncheng Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jintao Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Xin Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Chen J, Lou YH, Wang ZK. Characterizing Spatial and Energetic Distributions of Trap States Toward Highly Efficient Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305064. [PMID: 37635401 DOI: 10.1002/smll.202305064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/15/2023] [Indexed: 08/29/2023]
Abstract
Due to their greater opt electric performance, perovskite photovoltaics (PVs) present huge potential to be commercialized. Perovskite PV's high theoretical efficiency expands the available development area. The passivation of defects in perovskite films is crucial for approaching the theoretical limit. In addition to creating efficient passivation techniques, it is essential to direct the passivation approach by getting precise and real-time information on the trap states through measurements. Therefore, it is necessary to establish quantitative characterization methods for the trap states in energy and 3D spaces. The authors cover the characterization of the spatial and energy distributions of trap states in this article with an eye toward high-efficiency perovskite photovoltaics. After going over the strategies that have been created for characterizing and evaluating trap states, the authors will concentrate on how to direct the creative development of characterization techniques for trap states assessment and highlight the opportunities and challenges of future development. The 3D space and energy distribution mappings of trap states are anticipated to be realized. The review will give key guiding importance for further approaching the theoretical efficiency of perovskite photovoltaics, offering some future research direction and technological assistance for the development of appropriate targeted passivation technologies.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yan-Hui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
11
|
Cai W, Yang T, Liu C, Wang Y, Wang S, Du Y, Wu N, Huang W, Wang S, Wang Z, Chen X, Feng J, Zhao G, Ding Z, Pan X, Zou P, Yao J, Liu SF, Zhao K. Interfacial Engineering for Efficient Low-Temperature Flexible Perovskite Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202309398. [PMID: 37624069 DOI: 10.1002/anie.202309398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Photovoltaic technology with low weight, high specific power in cold environments, and compatibility with flexible fabrication is highly desired for near-space vehicles and polar region applications. Herein, we demonstrate efficient low-temperature flexible perovskite solar cells by improving the interfacial contact between electron-transport layer (ETL) and perovskite layer. We find that the adsorbed oxygen active sites and oxygen vacancies of flexible tin oxide (SnO2 ) ETL layer can be effectively decreased by incorporating a trace amount of titanium tetrachloride (TiCl4 ). The effective defects elimination at the interfacial increases the electron mobility of flexible SnO2 layer, regulates band alignment at the perovskite/SnO2 interface, induces larger perovskite crystal growth, and improves charge collection efficiency in a complete solar cell. Correspondingly, the improved interfacial contact transforms into high-performance solar cells under one-sun illumination (AM 1.5G) with efficiencies up to 23.7 % at 218 K, which might open up a new era of application of this emerging flexible photovoltaic technology to low-temperature environments such as near-space and polar regions.
Collapse
Affiliation(s)
- Weilun Cai
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tinghuan Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chou Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yajie Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shiqiang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yachao Du
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Nan Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shumei Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhichao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xin Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiangshan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guangtao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xu Pan
- Key Laboratory of Novel Thin-Film Solar Cells Institute of Plasma Physics Chinese Academy of Sciences, Hefei, 230031, China
| | - Pengchen Zou
- Shaanxi State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, P. R. China
| | - Jianxi Yao
- Shaanxi State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
12
|
Chen K, Gu Z, Wang Z, Guan M, Tan X, Xu W, Ji X, Lu W, Liu Y, Li G. Surface polarization-induced emission and stability enhancement of CsPbX 3 nanocrystals. Chem Sci 2023; 14:8914-8923. [PMID: 37621427 PMCID: PMC10445435 DOI: 10.1039/d3sc02109b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Recently, the polarization effect has been receiving tremendous attention, as it can result in improved stability and charge transfer efficiency of metal-halide perovskites (MHPs). However, realizing the polarization effect on CsPbX3 NCs still remains a challenge. Here, metal ions with small radii (such as Mg2+, Li+, Ni2+, etc.) are introduced on the surface of CsPbX3 NCs, which facilitate the arising of electric dipole and surface polarization. The surface polarization effect promotes redistribution of the surface electron density, leading to reinforced surface ligand bonding, reduced surface defects, near unity photoluminescence quantum yields (PLQYs), and enhanced stability. Moreover, further introduction of hydroiodic acid results in the in situ formation of tert-butyl iodide (TBI), which facilitates the successful synthesis of pure iodine-based CsPbI3 NCs with high PLQY (95.3%) and stability under ambient conditions. The results of this work provide sufficient evidence to exhibit the crucial role of the surface polarization effect, which promotes the synthesis of high-quality MHPs and their applications in the fields of optoelectronic devices.
Collapse
Affiliation(s)
- Keqiang Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
- Zhejiang Institute, China University of Geosciences Hangzhou 311305 China
- Shenzhen Research Institute, China University of Geosciences Shenzhen 518052 China
| | - Zixin Gu
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Zhiqing Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Mengyu Guan
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Xiu Tan
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Wanqing Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Xinyu Ji
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Weiqi Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Yueli Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
- Zhejiang Institute, China University of Geosciences Hangzhou 311305 China
| |
Collapse
|
13
|
Yang T, Zhao W, Yang Y, Huang W, Zhao K, Liu SF. Lead(II) 2-Ethylhexanoate for Simultaneous Modulated Crystallization and Surface Shielding to Boost Perovskite Solar Cell Efficiency and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211006. [PMID: 36799123 DOI: 10.1002/adma.202211006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Indexed: 05/12/2023]
Abstract
The bulk and surface of a perovskite light-harvesting layer are two pivotal aspects affecting its carrier transport and long-term stability. In this work, lead(II) 2-ethylhexanoate (LDE) is introduced via an antisolvent process into perovskite films to change the reaction kinetics of the crystallization process, resulting in a high-quality perovskite film. Meanwhile, a carboxyl functional group with a long alkyl chain coordinates with the Pb cation, reducing the defect density related to unsaturated Pb atoms. Moreover, the long alkyl chains form a protecting layer at the surface of the perovskite film to prevent chemical attack by water and air, prolonging the lifetime of perovskite devices. Consequently, the assembled device demonstrates a power conversion efficiency (PCE) of 24.84%. Both of the thermal and operational stability are significantly improved due to reduced ion-migration channels.
Collapse
Affiliation(s)
- Tengteng Yang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Wangen Zhao
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Yan Yang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Wenliang Huang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Kui Zhao
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Shengzhong Frank Liu
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Du Z, Xiang H, Xie A, Ran R, Zhou W, Wang W, Shao Z. Monovalent Copper Cation Doping Enables High-Performance CsPbIBr 2-Based All-Inorganic Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4317. [PMID: 36500942 PMCID: PMC9736419 DOI: 10.3390/nano12234317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Organic-inorganic perovskite solar cells (PSCs) have delivered the highest power conversion efficiency (PCE) of 25.7% currently, but they are unfortunately limited by several key issues, such as inferior humid and thermal stability, significantly retarding their widespread application. To tackle the instability issue, all-inorganic PSCs have attracted increasing interest due to superior structural, humid and high-temperature stability to their organic-inorganic counterparts. Nevertheless, all-inorganic PSCs with typical CsPbIBr2 perovskite as light absorbers suffer from much inferior PCEs to those of organic-inorganic PSCs. Functional doping is regarded as a simple and useful strategy to improve the PCEs of CsPbIBr2-based all-inorganic PSCs. Herein, we report a monovalent copper cation (Cu+)-doping strategy to boost the performance of CsPbIBr2-based PSCs by increasing the grain sizes and improving the CsPbIBr2 film quality, reducing the defect density, inhibiting the carrier recombination and constructing proper energy level alignment. Consequently, the device with optimized Cu+-doping concentration generates a much better PCE of 9.11% than the pristine cell (7.24%). Moreover, the Cu+ doping also remarkably enhances the humid and thermal durability of CsPbIBr2-based PSCs with suppressed hysteresis. The current study provides a simple and useful strategy to enhance the PCE and the durability of CsPbIBr2-based PSCs, which can promote the practical application of perovskite photovoltaics.
Collapse
Affiliation(s)
- Zhaonan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Huimin Xiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Amin Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|