1
|
Langa F, de la Cruz P, Sharma GD. Organic Solar Cells Based on Non-Fullerene Low Molecular Weight Organic Semiconductor Molecules. CHEMSUSCHEM 2025; 18:e202400361. [PMID: 39240557 DOI: 10.1002/cssc.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/28/2024] [Indexed: 09/07/2024]
Abstract
The development of narrow bandgap A-D-A- and ADA'DA-type non-fullerene small molecule acceptors (NFSMAs) along with small molecule donors (SMDs) have led to significant progress in all-small molecule organic solar cells. Remarkable power conversion efficiencies, nearing the range of 17-18 %, have been realized. These efficiency values are on par with those achieved in OSCs based on polymeric donors. The commercial application of organic photovoltaic technology requires the design of more efficient organic conjugated small molecule donors and acceptors. In recent years the precise tuning of optoelectronic properties in small molecule donors and acceptors has attracted considerable attention and has contributed greatly to the advancement of all-SM-OSCs. Several reviews have been published in this field, but the focus of this review concerns the advances in research on OSCs using SMDs and NFSMAs from 2018 to the present. The review covers the progress made in binary and ternary OSCs, the effects of solid additives on the performance of all-SM-OSCs, and the recently developed layer-by-layer deposition method for these OSCs. Finally, we present our perspectives and a concise outlook on further advances in all-SM-OSCs for their commercial application.
Collapse
Affiliation(s)
- Fernando Langa
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Pilar de la Cruz
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
- Department of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
| |
Collapse
|
2
|
Chen Y, Tian G, Huang P, Hu D, Xiao Z. Fluorination or Not in Small Molecule Solar Cells: Achieving a Higher Efficiency with Halogen-Free End Group. Chemistry 2024; 30:e202403341. [PMID: 39363700 DOI: 10.1002/chem.202403341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Fluorination is an efficient strategy for improving organic solar cells (OSCs) efficiency, particularly by fluorinating the end group of emerging nonfullerene acceptors. Here, the fluorination effect was investigated by using small molecule donors with fluorine-free (SBz) and fluorinated (SBz-F) end groups, paired with the emerging nonfullerene acceptor Y6. Interestingly and unexpectedly, fluorination of the end group negatively affects OSCs efficiency, with fluorine-free SBz:Y6 OSCs achieving a higher power conversion efficiency (PCE) of 11.05 % compared to the fluorine-containing SBz-F:Y6 blends (PCE=9.61 %). Analysis of space-charge limited currents reveals lower and unbalanced hole/electron mobility in SBz-F:Y6 compared to the SBz:Y6 blends. These findings are further supported by charge recombination dynamics and donor-acceptor miscibility analyses.
Collapse
Affiliation(s)
- Yao Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Gengsui Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Peihao Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Dingqin Hu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| |
Collapse
|
3
|
Wu W, Zou B, Ma R, Yao J, Li C, Luo Z, Xie B, Qammar M, Dela Peña TA, Li M, Wu J, Yang C, Fan Q, Ma W, Li G, Yan H. A Difluoro-Methoxylated Ending-Group Asymmetric Small Molecule Acceptor Lead Efficient Binary Organic Photovoltaic Blend. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402793. [PMID: 38757420 DOI: 10.1002/smll.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Developing a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity. By adopting two representative and widely available solvent additives (1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO)), the device based on PM6:BTP-BO-4FO (CN) photovoltaic blend demonstrates a power conversion efficiency (PCE) of 18.62% with an excellent open-circuit voltage (VOC) of 0.933 V, which surpasses the optimal result of L8-BO. The PCE of 18.62% realizes the best efficiencies for binary OPVs based on SMAs with asymmetric end groups. A series of investigations reveal that optimized PM6:BTP-BO-4FO film demonstrates similar molecular packing motif and fibrillar phase distribution as PM6:L8-BO (DIO) does, resulting in comparable recombination dynamics, thus, similar fill factor. Besides, it is found PM6:BTP-BO-4FO possesses more efficient charge generation, which yields better VOC-JSC balance. This study provides a new ending group that enables a cutting-edge efficiency in asymmetric SMA-based OPVs, enriching the material library and shed light on further design ideas.
Collapse
Affiliation(s)
- Weiwei Wu
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Bosen Zou
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jia Yao
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Chunliang Li
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bomin Xie
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Memoona Qammar
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay Rd, Kowloon, Hong Kong, 999077, P. R. China
| | - Top Archie Dela Peña
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, P. R. China
| | - Chuluo Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - He Yan
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| |
Collapse
|
4
|
Chen Z, Ge J, Song W, Tong X, Liu H, Yu X, Li J, Shi J, Xie L, Han C, Liu Q, Ge Z. 20.2% Efficiency Organic Photovoltaics Employing a π-Extension Quinoxaline-Based Acceptor with Ordered Arrangement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406690. [PMID: 38899582 DOI: 10.1002/adma.202406690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Organic solar cells, as a cutting-edge sustainable renewable energy technology, possess a myriad of potential applications, while the bottleneck problem of less than 20% efficiency limits the further development. Simultaneously achieving an ordered molecular arrangement, appropriate crystalline domain size, and reduced nonradiative recombination poses a significant challenge and is pivotal for overcoming efficiency limitations. This study employs a dual strategy involving the development of a novel acceptor and ternary blending to address this challenge. A novel non-fullerene acceptor, SMA, characterized by a highly ordered arrangement and high lowest unoccupied molecular orbital energy level, is synthesized. By incorporating SMA as a guest acceptor in the PM6:BTP-eC9 system, it is observed that SMA staggered the liquid-solid transition of donor and acceptor, facilitating acceptor crystallization and ordering while maintaining a suitable domain size. Furthermore, SMA optimized the vertical morphology and reduced bimolecular recombination. As a result, the ternary device achieved a champion efficiency of 20.22%, accompanied by increased voltage, short-circuit current density, and fill factor. Notably, a stabilized efficiency of 18.42% is attained for flexible devices. This study underscores the significant potential of a synergistic approach integrating acceptor material innovation and ternary blending techniques for optimizing bulk heterojunction morphology and photovoltaic performance.
Collapse
Affiliation(s)
- Zhenyu Chen
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinfeng Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wei Song
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinyu Tong
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xueliang Yu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chengcheng Han
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Quan Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zhang L, Deng D, Lu K, Wei Z. Optimization of Charge Management and Energy Loss in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302915. [PMID: 37399575 DOI: 10.1002/adma.202302915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
All-small-molecule organic solar cells (ASM-OSCs) have received tremendous attention in recent decades because of their advantages over their polymer counterparts. These advantages include well-defined chemical structures, easy purification, and negligible batch-to-batch variation. Remarkable progress with a power conversion efficiency (PCE) of over 17% has recently been achieved with improved charge management (FF × JSC) and reduced energy loss (Eloss). Morphology control is the key factor in the progress of ASM-OSCs, which remains a significant challenge because of the similarities in the molecular structures of the donors and acceptors. In this review, the effective strategies for charge management and/or Eloss reduction from the perspective of effective morphology control are summarized. The aim is to provide practical insights and guidance for material design and device optimization to promote further development of ASM-OSCs to a level where they can compete with or even surpass the efficiency of polymer solar cells.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
6
|
Lin T, Hai Y, Luo Y, Feng L, Jia T, Wu J, Ma R, Dela Peña TA, Li Y, Xing Z, Li M, Wang M, Xiao B, Wong KS, Liu S, Li G. Isomerization of Benzothiadiazole Yields a Promising Polymer Donor and Organic Solar Cells with Efficiency of 19.0. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312311. [PMID: 38305577 DOI: 10.1002/adma.202312311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Indexed: 02/03/2024]
Abstract
The exploration of high-performance and low-cost wide-bandgap polymer donors remains critical to achieve high-efficiency nonfullerene organic solar cells (OSCs) beyond current thresholds. Herein, the 1,2,3-benzothiadiazole (iBT), which is an isomer of 2,1,3-benzothiadiazole (BT), is used to design wide-bandgap polymer donor PiBT. The PiBT-based solar cells reach efficiency of 19.0%, which is one of the highest efficiencies in binary OSCs. Systemic studies show that isomerization of BT to iBT can finely regulate the polymers' photoelectric properties including i) increasing the extinction coefficient and photon harvest, ii) downshifting the highest occupied molecular orbital energy levels, iii) improving the coplanarity of polymer backbones, iv) offering good thermodynamic miscibility with acceptors. Consequently, the PiBT:Y6 bulk heterojunction (BHJ) device simultaneously reaches advantageous nanoscale morphology, efficient exciton generation and dissociation, fast charge transportation, and suppressed charge recombination, leading to larger VOC of 0.87 V, higher JSC of 28.2 mA cm-2, greater fill factor of 77.3%, and thus higher efficiency of 19.0%, while the analog-PBT-based OSCs reach efficiency of only 12.9%. Moreover, the key intermediate iBT can be easily afforded from industry chemicals via two-step procedure. Overall, this contribution highlights that iBT is a promising motif for designing high-performance polymer donors.
Collapse
Affiliation(s)
- Tao Lin
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Yulong Hai
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Yongmin Luo
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Lingwei Feng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tao Jia
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Top Archie Dela Peña
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
- Faculty of Science, Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Yao Li
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Zengshan Xing
- School of Science, Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- Faculty of Science, Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Min Wang
- School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University (JHUN), Wuhan, 430056, China
| | - Kam Sing Wong
- School of Science, Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Shengjian Liu
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Electronic Chemicals for Integrated Circuit Packaging, South China Normal University (SCNU), Guangzhou, 510006, China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
7
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
8
|
Xie F, Fang J, Zhang L, Deng D, Chen Y, Wei Z, Guo F, Ma CQ. Correlating the Photovoltaic Performance and Stability of the All-Small-Molecule Organic Solar Cells to Their Intermixed Phases Determined by Concentration-Dependent Ultraviolet-Visible Absorption Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11767-11777. [PMID: 38408283 DOI: 10.1021/acsami.3c18454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In addition to the donor-acceptor nano phases, the intermixed phase within the organic blends is crucial for the photovoltaic performance and stability of the bulk-heterojunction organic solar cells (OSCs). Here, the intermixed phase of a representative M-PhS:BTP-eC9 all-small-molecule organic solar cell was investigated by a concentration-dependent ultraviolet-visible (UV-vis) absorption spectroscopy method, where a shift of the absorption maximum wavelength was measured for the acceptor component with the increase of the acceptor concentration. The blend ratios of the acceptor to the donor in the intermixed phase, corresponding to the critical concentration for the formation of the acceptor nanophase (CAP), were determined to be 0.35, 0.20, and 0.15 for the as-cast, thermal annealing (TA), and the combined TA and solvent vapor annealing films. These results indicated that M-PhS and BTP-eC9 are kinetically well intermixed during spin coating, whereas TA and the following solvent annealing promote the crystallization of BTP-eC9 molecules out of the intermixed phase. The photovoltaic performance of the M-PhS:BTP-eC9 cells with different blend ratios was investigated. The formation of the BTP-eC9 nano phase in the blend film leads to stable VOC and fast increased JSC, which can be understood by the reduction of bimolecular charge recombination and the formation of electron transporting pathways within the photoactive layer. Similarly, the critical concentration for the formation of the donor phase was estimated to be 0.15 by measuring the stabilized VOC and increased JSC values of the cells with different donor blending ratios. More importantly, after a fast "burn-in" thermal degradation, the M-PhS:BTP-eC9 cell showed excellent thermal stability aging at 85 °C for over 1128 h, which is in good accordance with the unchanged intermixed phases measured by the UV-vis spectra of the annealed films. The current work demonstrates the feasibility of the spectroscopy method to investigate the intermixed phases for organic bulk-heterojunction solar cells and proves that all-small-molecule solar cells can be intrinsically very stable.
Collapse
Affiliation(s)
- Fan Xie
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Jin Fang
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yiyao Chen
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fengqi Guo
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
| | - Chang-Qi Ma
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| |
Collapse
|
9
|
Gao W, Ma R, Dela Peña TA, Yan C, Li H, Li M, Wu J, Cheng P, Zhong C, Wei Z, Jen AKY, Li G. Efficient all-small-molecule organic solar cells processed with non-halogen solvent. Nat Commun 2024; 15:1946. [PMID: 38431627 PMCID: PMC10908865 DOI: 10.1038/s41467-024-46144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
All-small-molecule organic solar cells with good batch-to-batch reproducibility combined with non-halogen solvent processing show great potential for commercialization. However, non-halogen solvent processing of all-small-molecule organic solar cells are rarely reported and its power conversion efficiencies are very difficult to improve. Herein, we designed and synthesized a small molecule donor BM-ClEH that can take advantage of strong aggregation property induced by intramolecular chlorine-sulfur non-covalent interaction to improve molecular pre-aggregation in tetrahydrofuran and corresponding micromorphology after film formation. Tetrahydrofuran-fabricated all-small-molecule organic solar cells based on BM-ClEH:BO-4Cl achieved high power conversion efficiencies of 15.0% in binary device and 16.1% in ternary device under thermal annealing treatment. In contrast, weakly aggregated BM-HEH without chlorine-sulfur non-covalent bond is almost inefficient under same processing conditions due to poor pre-aggregation induced disordered π-π stacking, indistinct phase separation and exciton dissociation. This work promotes the development of non-halogen solvent processing of all-small-molecule organic solar cells and provides further guidance.
Collapse
Affiliation(s)
- Wei Gao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China.
| | - Top Archie Dela Peña
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511442, China
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China.
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511442, China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, China
| | - Cheng Zhong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, China.
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong, China.
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China.
| |
Collapse
|
10
|
Li Q, Wu J, Guo Q, Qin L, Xue L, Geng Y, Li X, Zhang ZG, Yan Q, Zhou E. Effect of Number and Position of Chlorine Atoms on the Photovoltaic Performance of Asymmetric Nonfullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3755-3763. [PMID: 38190611 DOI: 10.1021/acsami.3c15518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
It has been well proved that the introduction of halogen can effectively modify the optoelectronic properties of classic symmetric nonfullerene acceptors (NFAs). However, the relevant studies for asymmetric NFAs are limited, especially the effect of halogen substitution number and position on the photovoltaic performance is not clear. In this work, four asymmetric NFAs with A-D-A1-A2 structure are developed by tuning the number and position of chlorine atoms on the 1,1-dicyanomethylene-3-indanone end groups, namely, A303, A304, A305, and A306. The related NFAs show progressively deeper energy levels and red-shifted absorption spectra as the degree of chlorination increases. The PM6:A306-constructed organic solar cells (OSCs) give a champion power conversion efficiency (PCE) of 13.03%. This is mainly ascribed to the most efficient exciton dissociation and collection, suppressed charge recombination, and optimal morphology. Moreover, by alternating the substitution position, the PM6:A305-based device yielded a higher PCE of 12.53% than that of PM6:A304 (12.05%). This work offers fresh insights into establishing excellent asymmetric NFAs for OSCs.
Collapse
Affiliation(s)
- Qingbin Li
- Institute of Nuclear Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jiang Wu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Linjiao Qin
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Lingwei Xue
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yanfang Geng
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiangyu Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingzhi Yan
- Institute of Nuclear Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
11
|
Du B, Ma M, Zhang P, Wu S, Bin H, Li Y. High-Performance All-Small-Molecule Organic Solar Cells Fabricated via Halogen-Free Preparation Process. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2564-2572. [PMID: 38165814 DOI: 10.1021/acsami.3c14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Small-molecule organic photovoltaic materials attract more attention attributing to their precisely defined structure, ease of synthesis, and reduced batch-to-batch variations. The majority of all-small-molecule organic solar cells (ASM-OSCs) have traditionally relied on halogenated solvents for dissolving photovoltaic materials as well as used for the additives or solvent vapor annealing. However, these halogen-based processes pose risks to the environment and human health, potentially impeding future commercial production. Herein, we conducted an investigation into the impact of various nonhalogen solvents on the performance of the devices. By selecting the high boiling point solvent toluene, we achieved a desirable phase separation and stable morphology characterized by fibrous crystals within the blend film. Consequently, the power conversion efficiencies of 14.4 and 11.7% were obtained from H31:Y6-based small-area (0.04 cm2) and large-area (1 cm2) devices with steady performance, respectively. This study successfully demonstrated the fabrication of ASM-OSCs without employing halogenated solvent processes, thus offering promising prospects for the commercial production of ASM-OSCs.
Collapse
Affiliation(s)
- Bo Du
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Mengyuan Ma
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Panpan Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Shangrong Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Haijun Bin
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
12
|
Mohitkar A, H R, Goel S, Jayanty S. Efficient Standalone Flexible Small Molecule Organic Solar Cell Devices: Structure-Performance Relation Among Tetracyanoquinodimethane Derivatives. ACS OMEGA 2023; 8:40836-40847. [PMID: 37929146 PMCID: PMC10620877 DOI: 10.1021/acsomega.3c05939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Currently, very few dicyano and tetracyanoquinodimethane (TCNQ) based molecules are utilized as active layers, sandwiched between the electron and hole transport layer in organic solar cell (OSC) devices. Nevertheless, simple mono- and disubstituted TCNQ derivatives as exclusively active layers are yet unexplored and provide scope for further investigation. In this study, TCNQ derivatives with varying amine substituents, namely, AEPYDQ (1), BMEDDQ (2), MATBTCNQ (3), and MITATCNQ (4), were explored as efficient standalone, flexible, all small molecule OSC devices. Particularly, 1 resulted in the highest device efficiency of 11.75% with an aromatic amine, while 2 possessing an aliphatic amine showed the lowest power conversion efficiency (PCE; 2.12%). Notably, the short circuit current density (JSC) of device 1 increased from 2 mA/cm2 in the dark to 9.12 mA/cm2 under light, indicating a significant boost in the current generation. Further, 1 manifested more crystallinity than others. Interestingly, 4 exhibited a higher PCE (5.90%) than 3 (PCE is 2.58%), though 3 is disubstituted with an aromatic amine, probably attributed to the electron-withdrawing effects of the -CF3 and -CN groups in 3 reducing the available π-electron density for stacking. Therefore, this study emphasizes crystallinity, significantly on the PCE, offering insights into the design of many such efficient OSCs.
Collapse
Affiliation(s)
- Anuradha Mohitkar
- Department
of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad 500078, Telangana
State, India
| | - Renuka H
- MEMS,
Microfluidics and Nanoelectronics Lab, Department of Electrical and
Electronics Engineering, Birla Institute
of Technology and Science, Pilani-Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad 500078, Telangana State, India
| | - Sanket Goel
- MEMS,
Microfluidics and Nanoelectronics Lab, Department of Electrical and
Electronics Engineering, Birla Institute
of Technology and Science, Pilani-Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad 500078, Telangana State, India
| | - Subbalakshmi Jayanty
- Department
of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad 500078, Telangana
State, India
| |
Collapse
|
13
|
Ge J, Xie L, Peng R, Ge Z. Organic Photovoltaics Utilizing Small-Molecule Donors and Y-Series Nonfullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206566. [PMID: 36482012 DOI: 10.1002/adma.202206566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/14/2022] [Indexed: 05/19/2023]
Abstract
The emerging Y-series nonfullerene acceptors (Y-NFA) has prompted the rapid progress of power conversion efficiency (PCE) of all-small-molecule organic solar cells (ASM-OSCs) from around 12% to 17%. The excellent PCE improvement benefits from not only the outstanding properties of Y-series acceptors but also the successful development of small-molecule donors. The short-circuit current density, fill factor, and nonradiative recombination are all optimized to the unprecedented values, providing a scenery that is obviously different from the ITIC-series based ASM-OSCs. In this review, OSCs utilizing small-molecule donors and Y-NFA are summarized and classified in order to provide an up-to-date development overview and give an insight on structure-property correlation. Then, the characteristics of bulk-heterojunction (BHJ) formation of ASM-OSCs are discussed and compared with that of polymer-based OSCs. Finally, the challenges and outlook on designing ground-breaking small-molecule donor and forming an ideal BHJ morphology are discussed.
Collapse
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Xie
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Guo J, Xia X, Qiu B, Zhang J, Qin S, Li X, Lai W, Lu X, Meng L, Zhang Z, Li Y. Manipulating Polymer Backbone Configuration via Halogenated Asymmetric End-Groups Enables Over 18% Efficiency All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211296. [PMID: 36689736 DOI: 10.1002/adma.202211296] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Indexed: 06/17/2023]
Abstract
High-performance all-polymer solar cells (all-PSCs) deeply rely on the joint contributions of desirable optical absorption, adaptive energy levels, and appropriate morphology. Herein, two structural analogous polymerized small-molecule acceptors (PSMAs), PYFCl-T and PYF&PYCl-T, are synthesized, and then incorporated into the PM6:PY-IT binary blends to construct ternary all-PSCs. Due to the superior compatibility of PY-IT and PYFCl-T, the ternary all-PSC based on PM6:PY-IT:PYFCl-T with 10 wt% PYFCl-T, presents higher and more balanced charge mobility, suppressed charge recombination, and faster charge-transfer kinetics, resulting in an outstanding power conversion efficiency (PCE) of 18.12% with enhanced Jsc and FF, which is much higher than that (PCE of 16.09%) of the binary all-PSCs based on PM6:PY-IT. Besides, the ternary all-PSCs also exhibit improved photostability. The conspicuous performance enhancement principally should give the credit to the miscibility-driven phase optimization of the donor and acceptor. These findings highlight the significance of polymer-backbone configuration modulation of PSMAs in morphology optimization toward boosting the device properties of all-PSCs.
Collapse
Affiliation(s)
- Jing Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Beibei Qiu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Jinyuan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shucheng Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenbin Lai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Zhang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
15
|
Bi P, Wang J, Cui Y, Zhang J, Zhang T, Chen Z, Qiao J, Dai J, Zhang S, Hao X, Wei Z, Hou J. Enhancing Photon Utilization Efficiency for High-Performance Organic Photovoltaic Cells via Regulating Phase-Transition Kinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210865. [PMID: 36715105 DOI: 10.1002/adma.202210865] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Efficient photon utilization is key to achieving high-performance organic photovoltaic (OPV) cells. In this study, a multiscale fibril network morphology in a PBQx-TCl:PBDB-TF:eC9-2Cl-based system is constructed by regulating donor and acceptor phase-transition kinetics. The distinctive phase-transition process and crystal size are systematically investigated. PBQx-TCl and eC9-2Cl form fibril structures with diameters of ≈25 nm in ternary films. Additionally, fine fibrils assembled by PBDB-TF are uniformly distributed over the fibril networks of PBQx-TCl and eC9-2Cl. The ideal multiscale fibril network morphology enables the ternary system to achieve superior charge transfer and transport processes compared to binary systems; these improvements promote enhanced photon utilization efficiency. Finally, a high power conversion efficiency of 19.51% in a single-junction OPV cell is achieved. The external quantum efficiency of the optimized ternary cell exceeds 85% over a wide range of 500-800 nm. A tandem OPV cell is also fabricated to increase solar photon absorption. The tandem cell has an excellent PCE of more than 20%. This study provides guidance for constructing an ideal multiscale fibril network morphology and improving the photon utilization efficiency of OPV cells.
Collapse
Affiliation(s)
- Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jiangbo Dai
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Gao Y, Yang X, Wang W, Sun R, Cui J, Fu Y, Li K, Zhang M, Liu C, Zhu H, Lu X, Min J. High-Performance Small Molecule Organic Solar Cells Enabled by a Symmetric-Asymmetric Alloy Acceptor with a Broad Composition Tolerance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300531. [PMID: 36989324 DOI: 10.1002/adma.202300531] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Indexed: 05/17/2023]
Abstract
Using a combinatory blending strategy is demonstrated as a promising path for designing efficient organic solar cells (OSCs) by boosting the short-circuit current density and fill factor. Herein, a high-performance ternary all-small molecule OSC (all-SMOSCs) using a narrow-bandgap alloy acceptor containing symmetric and asymmetric molecules (BTP-eC9 and SSe-NIC) and a wide-bandgap small molecule donor MPhS-C2 is reported. Introducing the synthesized SSe-NIC into the MPhS-C2:BTP-eC9 host system can broaden the absorption spectrum, modulate energy offsets, and optimize the molecular packing of the host materials. After systematically optimizing the weight ratio of MPhS-C2:BTP-eC9:SSe-NIC, a champion efficiency of 18.02% is achieved. Impressively, the ternary system not only delivered a broad composition tolerance with device efficiencies over 17% throughout the whole blend ratios, but also exhibited less non-geminate recombination and energy loss, and better-light-soaking stability than the corresponding binary systems. This work promotes the development of high-performance ternary all-SMOSCs and heralds their brighter application prospects.
Collapse
Affiliation(s)
- Yuan Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiting Cui
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuang Fu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Kai Li
- Skate Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Meimei Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Chao Liu
- Skate Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
17
|
Ge J, Chen Z, Ye Q, Xie L, Song W, Guo Y, Zhang J, Tong X, Zhang J, Zhou E, Wei Z, Ge Z. Modulation of Molecular Stacking via Tuning 2-Ethylhexyl Alkyl Chain Enables Improved Efficiency for All-Small-Molecule Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10803-10811. [PMID: 36799569 DOI: 10.1021/acsami.3c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
There is always a dilemma between strong π-π stacking/crystallinity and suitable domain size for all-small-molecule organic solar cells (ASM-OSCs), which puts forward higher requirements for the design of molecular donors. In this work, a series of novel molecular donors with different positional 2-ethylhexy (EH) attachments are designed and synthesized, named SM-R, SM-REH, SM-EH-R, and SM-EH-REH. It is found that EH-substitution on end groups (SM-REH) enables improved π-π interaction and crystallinity but with decreased solubility and phase size, leading to the improved efficiency of 15.6% as compared to 14.0% of SM-R. In contrast, EH-substitution on the π-bridge (SM-EH-R) significantly suppresses π-π stacking and increases the solubility, resulting in the lower efficiency of 11.9%. The further EH-substitution on end-groups of SM-EH-R, namely, SM-EH-REH, recovers the π-π stacking strength and obtains a moderate efficiency of 14.4%. Despite the higher crystallinity and increased π-π stacking in some molecules, the blend films show the gradually decreased domain size in the sequence of SM-R, SM-REH, SM-EH-R, and SM-EH-REH owing to the steric hindrance of the EH-chain. Overall, this work indicates that obtaining the higher π-π stacking/crystallinity and decreased domain size is achievable by tuning the EH-chain substitution, which paves the way to further improve the photovoltaic performance of ASM-OSCs.
Collapse
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenyu Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qinrui Ye
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Xie
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Wei Song
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuntong Guo
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Jinna Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xinyu Tong
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Erjun Zhou
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Zhao X, An Q, Zhang H, Yang C, Mahmood A, Jiang M, Jee MH, Fu B, Tian S, Woo HY, Wang Y, Wang JL. Double Asymmetric Core Optimizes Crystal Packing to Enable Selenophene-based Acceptor with Over 18 % Efficiency in Binary Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202216340. [PMID: 36591914 DOI: 10.1002/anie.202216340] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Side-chain tailoring is a promising method to optimize the performance of organic solar cells (OSCs). However, asymmetric alkyl chain-based small molecular acceptors (SMAs) are still difficult to afford. Herein, we adopted a novel asymmetric n-nonyl/undecyl substitution strategy and synthesized two A-D1 A'D2 -A double asymmetric isomeric SMAs with asymmetric selenophene-based central core for OSCs. Crystallographic analysis indicates that AYT9Se11-Cl forms a more compact and order intermolecular packing compared to AYT11Se9-Cl, which contributed to higher electron mobility in neat AYT9Se11-Cl film. Moreover, the PM6 : AYT9Se11-Cl blend film shows a better morphology with appropriate phase separation and distinct face-on orientation than PM6 : AYT11Se9-Cl. The OSCs with PM6 : AYT9Se11-Cl obtain a superior PCE of 18.12 % compared to PM6 : AYT11Se9-Cl (17.52 %), which is the best efficiency for the selenium-incorporated SMAs in binary BHJ OSCs. Our findings elucidate that the promising double asymmetric strategy with isomeric alkyl chains precisely modulates the crystal packing and enhances the photovoltaic efficiency of selenophene-incorporated SMAs.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Bin Fu
- Department of Chemistry, Renmin University of China, 100872, Beijing, China
| | - Shiyu Tian
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, 100872, Beijing, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
19
|
Inner alkyl chain modulation of small molecular acceptors enables molecular packing optimization and efficient organic solar cells. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Cai J, Fu Y, Guo C, Li D, Wang L, Chen C, Liu D, Li W, Wang T. Realizing compact three-dimensional charge transport networks of asymmetric electron acceptors for efficient organic solar cells. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Gao H, Sun Y, Meng L, Han C, Wan X, Chen Y. Recent Progress in All-Small-Molecule Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205594. [PMID: 36449633 DOI: 10.1002/smll.202205594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Active layer material plays a critical role in promoting the performance of an organic solar cell (OSC). Small-molecule (SM) materials have the merits of well-defined chemical structures, few batch-to-batch variations, facile synthesis and purification procedures, and easily tuned properties. SM-donor and non-fullerene acceptor (NFA) innovations have recently produced all-small-molecule (ASM) devices with power conversion efficiencies that exceed 17% and approach those of their polymer-based counterparts, thereby demonstrating their great future commercialization potential. In this review, recent progress in both SM donors and NFAs to illustrate structure-property relationships and various morphology-regulation strategies are summarized. Finally, ASM-OSC challenges and outlook are discussed.
Collapse
Affiliation(s)
- Huanhuan Gao
- College of New Energy, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanna Sun
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenyang Han
- College of New Energy, Xi'an Shiyou University, Xi'an, 710065, China
| | - Xiangjian Wan
- Key Laboratory of Functional Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- Key Laboratory of Functional Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Ye Q, Ge J, Li D, Chen Z, Shi J, Zhang X, Zhou E, Yang D, Ge Z. Modulation of the Fluorination Site on Side-Chain Thiophene Improved Efficiency in All-Small-Molecule Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33234-33241. [PMID: 35834357 DOI: 10.1021/acsami.2c07791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine-tuning the phase-separated morphology is of great importance to achieve efficient all-small-molecule organic solar cells (ASM-OSCs). In this work, a pair of isomers are designed and synthesized, namely, BDT-UF and BDT-DF, in which the fluorine atom in BDT-UF is close to the alkyl chain of side-chain thiophene, while that in BDT-DF is close to the center core. Owing to the noncovalent interaction between fluorine and hydrogen, BDT-DF shows a smaller dihedral angle between the thiophene side chain and the BDT core, which causes better molecular planarity. When mixed with N3, BDT-UF shows better miscibility, higher crystallinity, and more ordered molecule stacking in the blend film. Finally, the device of BDT-DF:N3 gains a power conversion efficiency (PCE) of 14.5%, while that of BDT-UF:N3 shows an increase in Voc, Jsc, and FF and gains a PCE of 15.1%. Our work exhibits a way of adjusting the substitution site of fluorine atoms to improve the PCE of ASM-OSCs.
Collapse
Affiliation(s)
- Qinrui Ye
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Li
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Shi
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|