1
|
Zhang Y, Takeda T, Akutagawa T. Photodimerization of Ferroelectric N, N'-Ditetradecyl-stilbenediamide Derivative. J Am Chem Soc 2025; 147:7983-7992. [PMID: 39992083 DOI: 10.1021/jacs.5c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
A solid state [2 + 2] photodimerization reaction of ─C═C─ bonds in solids has been designed by controlling the molecular arrangement using supramolecular chemistry. Stilbene derivative (C14SDA) with alkyl amide chains (─CONHC14H29) forms intermolecular amide hydrogen-bonding chains and exhibits reversible successive phase transitions (S1 → S2 → S3 → L) corresponding to the dynamics of the alkyl chains. In the high-temperature solid phase S3, the alkyl chains partially melt, resulting in a one-dimensional (1D) dynamic intermolecular amide hydrogen bond and ferroelectric behavior with hysteresis in the electric field-polarization curve due to polarization reversal of the dipole moment by an external electric field. The S1 phase of C14SDA did not exhibit a photodimerization reaction, while the dynamic S2 and S3 phases exhibited a [2 + 2] photodimerization reaction to form reaction products with cyclobutane rings. In the dynamic ferroelectric S3 phase, trans-cis isomerization of stilbene was observed simultaneously with the formation of the photodimerization product. When the photodimerization reaction was attempted with an electric field applied to the S3 phase, thermal molecular fluctuations were suppressed by the electric field, increasing the distance between ─C═C─ double bonds and reducing the photoreaction yield.
Collapse
Affiliation(s)
- Yunya Zhang
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Yashwantrao G, Naik V, Badani P, Saha S. Designing Multifunctional AIEgens by Molecular Engineering of Imidazo[1,2-a]pyridine For Color Tunable Molecular Salts, Anti-Counterfeit Applications and Sensing of Mn 2+, Ag +, and Fe 3. Chemistry 2025; 31:e202500047. [PMID: 39868482 DOI: 10.1002/chem.202500047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
Mechanochromic materials, known for their ability to change color in response to mechanical stimuli such as pressure, stretching, grinding, or rubbing, hold significant importance due to their diverse applications. In this study, we synthesized and characterized two novel pyridine-tethered imidazo[1,2-a]pyridine mechanoresponsive luminogens with appended tetraphenylethene, named GBY-10 and GBY-11. GBY-10 exhibited reversible mechanofluorochromism, while GBY-11 did not revert to its original color after solvent fuming. The photophysical properties of these luminogens were significantly influenced by the position of the terminal pyridine. Additionally, we created color-tunable mechanoresponsive molecular salts by co-grinding GBY-11 with various aryl acid derivatives. Co-grinding GBY-11 with pentafluorobenzoic acid resulted in a significant bathochromic shift of the emission maxima by 66 nm, compared to 37 nm and 12 nm shift for benzoic acid and para-nitrobenzoic acid, respectively. This counter-ion-dependent luminescence suggests strong electronic interactions between the counter ions. These luminogens also demonstrated reversible pH-responsive behaviour, making them suitable for anti-counterfeiting applications. Furthermore, the pyridine-functionalized luminogen, GBY-10, showed metal ion detection (Mn2+, Ag+, Fe3+) ability in water, with detection limits as low as 0.0043, 0.015, and 0.0029 mM, respectively. This report opens new avenues for designing promising AIE-active materials for potential applications in anti-counterfeiting, sensing, optoelectronics, and biomedicine. A de-novo approach of engineering imidazo[1,2-a]pyridine scaffold to mechanoresponsive AIE-active molecules for anti-counterfeiting and metal sensing applications. By co-grinding the designed luminogens with various aryl acid derivatives, color tuneable mechanoresponsive molecular salts can be further developed.
Collapse
Affiliation(s)
- Gauravi Yashwantrao
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai, N. P. Marg, Matunga, 400019
| | - Vaishnavi Naik
- Department of Chemistry, University of Mumbai, Kalina Campus, Maharashtra, India
| | - Purav Badani
- Department of Chemistry, University of Mumbai, Kalina Campus, Maharashtra, India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai, N. P. Marg, Matunga, 400019
| |
Collapse
|
3
|
Kohl F, Vogl T, Hampel F, Dube H. Hemiphosphoindigos as a platform for chiroptical or water soluble photoswitching. Nat Commun 2025; 16:1760. [PMID: 39971955 PMCID: PMC11840110 DOI: 10.1038/s41467-025-56942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
Photoswitches are important molecular tools to precisely control the behavior of matter by using light irradiation. They have found application in virtually all applied chemical fields from chemical biology to material sciences. However, great challenges remain in advanced property design including tailored chiroptical responses or water solubility. Here, hemiphosphoindigo (HPI) photoswitches are presented as capable phosphorus-based photoswitches and a distinct addition to the established indigoid chromophore family. Phosphinate is embedded in the core indigoid chromophore and the resulting optimized photoswitches display high thermal stabilities, excellent fatigue resistance and high isomer enrichment. A series of planar, twisted and heterocyclic HPIs are investigated to probe design strategies for advantageous photophysical properties. The phosphinate provides a platform for easily accessible, water-soluble photoswitches, especially interesting for biological applications. Its chiral nature further allows light-induced modulation of chiroptical properties. HPIs therefore open up a distinct structural space for photoswitch generation and advanced light-responsive applications.
Collapse
Affiliation(s)
- Fabien Kohl
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Theresa Vogl
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Frank Hampel
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
4
|
Sentürk B, Butschke B, Eisenreich F. Thiosemicarbazones as versatile photoswitches with light-controllable supramolecular activity. Chem Sci 2025; 16:3130-3140. [PMID: 39829985 PMCID: PMC11740093 DOI: 10.1039/d4sc08530b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Using photoswitchable molecules to manipulate supramolecular interactions under light illumination has driven advancements in numerous fields, allowing for the strategic alteration of molecular systems. However, integrating the moiety responsible for these interactions into the photochromic scaffold can be complex and may hamper the switching efficiency. We thus explored a simple class of organic molecules, namely thiosemicarbazones, featuring both a photoisomerizable C[double bond, length as m-dash]N double bond and a thiourea moiety capable of hydrogen bonding. The scalable two-step synthesis allowed us to prepare 23 thiosemicarbazones to systematically elucidate their optical properties. Attaching various functional groups, extended π-systems, and heterocycles enabled fine-tuning of their absorption profiles. UV light illumination converts thiosemicarbazones from the stable E-isomer to the metastable Z-isomer, exhibiting both negative and positive T-type photochromism, a wide range of thermal half-lives, PSS values up to 92%, and high fatigue resistance. Substituting the C[double bond, length as m-dash]N moiety with a pyridinyl group stabilizes the Z-isomer via intramolecular hydrogen bonding, confirmed by single-crystal X-ray analysis, and transforms thiosemicarbazones into bistable P-type photoswitches. Additionally, thiosemicarbazones dimerize or form aggregates through hydrogen bonding-a process that can be turned off or on with light. Overall, thiosemicarbazones offer tunable photochromic and supramolecular properties, rendering them a promising photoswitch for creating stimuli-responsive systems.
Collapse
Affiliation(s)
- Bengi Sentürk
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Burkhard Butschke
- Institute for Inorganic and Analytical Chemistry, University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Fabian Eisenreich
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| |
Collapse
|
5
|
Ji G, Hou Q, Jiang W, Li X. Investigating the Properties of Triangle Terthiophene and Triphenylamine Configured Propeller-like Photochromic Dye with Ethyne Bridge. J Fluoresc 2025; 35:933-941. [PMID: 38198012 DOI: 10.1007/s10895-023-03557-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Synthesis-oriented design led us to the construction of a propeller-like dye, containing the triangle terthiophene and triphenylamine units. It reveals typical photochromic properties with alternated UV (390 nm) and visible light (˃ 440 nm) irradiation and the dye solution (in THF) color was also toggled between yellow-green and colorless. A new absorption band was observed in visible region (415-600 nm). Additionally, the photochromic dye was highly emissive with the absolute quantum yield being 0.27. After UV light irradiation, the emission was quenched significantly (Φ = 0.08) at photo-stationary state, and thus establishing a switchable emission "on-off" system by alternated UV/visible light irradiation cycle. Detailed structural analysis was carried out based on the optimized dye structure. Both the antiparallel conformation and the distance of reactive carbon atoms (< 4.2 Å) led to the smoothly photochromic behavior.
Collapse
Affiliation(s)
- Guangqian Ji
- Huanghe Science and Technology University, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research &, Development Institute Co. Ltd, Xinxiang, Henan, People's Republic of China
| | - Qiaozhi Hou
- Huanghe Science and Technology University, Zhengzhou, Henan, People's Republic of China
| | - Wenjuan Jiang
- NMPA Key Laboratory for Research, Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, People's Republic of China
| | - Xiaochuan Li
- NMPA Key Laboratory for Research, Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, People's Republic of China.
| |
Collapse
|
6
|
Avhad SV, Kumar S, Ambade AV. Visible Light-Responsive Composition-Dependent Morphology and Cargo Release in Mixed Micelles of Dendron Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1957-1967. [PMID: 39818806 DOI: 10.1021/acs.langmuir.4c04509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
2,2-Bis-(methylol)propionic acid-based second-generation polyester dendron amphiphile (T-D) containing visible light-responsive donor-acceptor Stenhouse adduct (DASA) as hydrophobic tails is synthesized. Micelles of T-D amphiphile and its mixed micelles of varying compositions with nonresponsive dendron amphiphile containing lauryl groups are prepared in aqueous solution. In transmission electron microscopy and atomic force microscopy analyses, T-D amphiphiles show rice grain-like ellipsoidal micelles as the predominant morphology. Mixed micelles display a composition-dependent morphology gradient such that the morphology changes from rice grain like to mixed to completely spherical with decreasing content of the T-D amphiphile. Complete morphology change to spherical micelles and partial reversal to ellipsoidal micelles, finally leading to ill-defined aggregates, are observed when the T-D amphiphile micelles are subjected to visible light-dark storage photoswitching cycles. Small-angle neutron scattering (SANS) analysis of 1 wt.% micellar solution in THF:water (10:90) reveals only a minor change in shape and size upon photoirradiation, and the data could be fitted to spherical or ellipsoidal model. Release of hydrophobic dye from mixed micelles is tuned by the content of the photoresponsive amphiphile. Cellular uptake and visible light-triggered release of hydrophobic drug from mixed micelles are demonstrated using MDA-MB-231 cells, suggesting their applicability for photoresponsive drug delivery.
Collapse
Affiliation(s)
- Shankarrao V Avhad
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Ashootosh V Ambade
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Yan J, Ren L, Lu X, Li W, Zhang A. Supramolecular Chiral Assembly of Dendritic Amphiphiles in Aqueous Media. Chemistry 2025; 31:e202403450. [PMID: 39601355 DOI: 10.1002/chem.202403450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Dendritic amphiphiles are a promising class of topological blocks for self-assembly to construct chiral supramolecular aggregates in aqueous media. Their unique dendritic geometry, structure variability and multivalence can mediate the assemblies with versatile morphologies and functions. The bulky dendritic moieties also enable the appropriate association-repulsion balance to control supramolecular growth, and simultaneously shield the assemblies with enhanced stabilities. Moreover, the crowded packing of dendritic segments facilitates the efficient chirality transfer from molecular level to supramolecular level, to achieve chirality amplification or enhancement. Dendritic moieties also provide chances to stabilize the assemblies in aqueous media through shielding and cooperative effects. The dendritic assemblies can be intriguingly made responsive to external stimuli including temperature, light, solvents or guests to switch their nanostructures or supramolecular chirality. Various dendritic amphiphiles bearing peptide or aromatic motifs have been reported in supramolecular chiral assembly, and their functional applications investigated. This review summarizes the significant progresses with a particular focus on the dendritic structural effects on supramolecular chiral assembly and the stimuli-responsiveness in aqueous media.
Collapse
Affiliation(s)
- Jiatao Yan
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| |
Collapse
|
8
|
Ivanov NM, Slivkov AI, Huck WTS. A Urease-Based pH Photoswitch: A General Route to Light-to-pH Transduction. Angew Chem Int Ed Engl 2025; 64:e202415614. [PMID: 39263723 PMCID: PMC11735890 DOI: 10.1002/anie.202415614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
New approaches for the integration of chemical and physical stimuli to control the dynamics of artificial enzymatic reaction networks (ERNs) are needed. Here, we present a general approach to convert a light stimulus into a time-programmed pH response. We developed and characterized a panel of photoswitchable inhibitors of urease. Urease activity, now regulated by light via the photoinhibitors, leads to an increase in pH upon hydrolysis of urea into ammonia. Careful choice of characteristics of light, and concentrations of enzyme, substrate, and photoinhibitor, allowed us to control the timing of the pH transition. Furthermore, as all enzymes have an activity-pH profile, the urease photoinhibitor system can be used to regulate the activities of other enzymes in small reaction networks.
Collapse
Affiliation(s)
- Nikita M. Ivanov
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Alexandar I. Slivkov
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
9
|
Qi H, Wu W, Zhu J, Zhao H, Yu H, Huang X, Wang T, Wang N, Hao H. Hybrid Strategies for Enhancing the Multifunctionality of Smart Dynamic Molecular Crystal Materials. Chemistry 2025; 31:e202403293. [PMID: 39604001 DOI: 10.1002/chem.202403293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
Dynamic molecular crystals are an emerging class of smart engineering materials that possess unique ability to convert external energy into mechanical motion. Moreover, they have being considered as strong candidates for dynamic elements in applications such as flexible electronic devices, artificial muscles, sensors, and soft robots. However, the inherent defects of molecular crystals like brittleness, short-life and fatigue, have significantly impeded their practical applications. Inspired by the concept of "the whole is greater than the sum of its parts" in the field of biology, building stimuli-response composites materials can be regarded as one of the ways to break through the current limitations of dynamic molecular crystals. Moreover, the hybrid materials can exhibit new functionalities that cannot be achieved by a single object. In this review, the focus was placed on the analysis and discussion of various hybrid strategies and options, as well as the functionalities of hybrid dynamic molecular crystal materials and the important practical applications of composite materials, with the introduction of photomechanical molecular crystals and flexible molecular crystals as a starting point. Moreover, the efficiency, limitations, and advantages of different hybrid methods were compared and discussed. Furthermore, the promising perspectives of smart dynamic molecular crystal materials were also discussed and the potential directions for future work were suggested.
Collapse
Affiliation(s)
- Haoqiang Qi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Wenbo Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Jiaxuan Zhu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Hongtu Zhao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Hui Yu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, 300072, Tianjin, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, 300072, Tianjin, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, 300072, Tianjin, China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
10
|
Alene D, Chung WS. Stiff-Stilbene-Linked Bis-Cholesterol: Synthesis and Investigation of Its Supramolecular Gelation and Photophysical Behaviors. ACS OMEGA 2025; 10:1789-1799. [PMID: 39829540 PMCID: PMC11740128 DOI: 10.1021/acsomega.4c10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Here, we report the design, synthesis, and comprehensive characterization of the bis-cholesterol supramolecular gelator, which contains photochromic stiff-stilbene as a bridging unit. The cis-isomer of stiff-stilbene bridged bis-cholesterol (Z-D) was first synthesized with a systematic design, which can be further converted into its trans-isomer (E-D) with a high degree of efficiency (ca. 100%) upon exposure to 385 nm UV light. Unusual gelation behavior was observed for Z-D, which exhibited supergelator properties in mixed solvents of acetonitrile (ACN)/dichloromethane (DCM) (v/v = 1:1), DCM/MeOH (v/v = 1:2), ACN/CHCl3 (v/v = 2:1), and CHCl3/MeOH (v/v = 1:2), with minimum gelation concentrations (MGCs) as low as 0.2 w/v%. These gels formed rapidly at room temperature without the aid of any mechanical forces upon the addition of an antisolvent into the vial containing the gelator and its dissolving solvent. The formation of the self-assembled gel was primarily driven by hydrogen bonding, van der Waals forces, and dipole-dipole interactions, as confirmed by 1H NMR, Fourier transform infrared spectroscopy (FT-IR), and UV-vis spectroscopies. The gelator molecule Z-D entraps organic solvents and organizes itself into three-dimensional (3D) fibrillar networks in various single and mixed solvents, as confirmed by scanning electron microscopy (SEM) analysis. Upon irradiation with 385 nm light, the gel networks disintegrated into a precipitate suspension, resulting in the transformation of the fibrous structures into irregular spherical-like aggregates. This proves that the structural conformation changes in the gelator significantly influence the resulting self-assembled structures. Overall, the findings present in this study pave the way for the future development of novel light-responsive bis-cholesterol-based gelators, especially in their Z-isomeric form.
Collapse
Affiliation(s)
- Dagninet
Yeshiwas Alene
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan, ROC
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan, ROC
| |
Collapse
|
11
|
Xie Y, Zhao X, Wang H, Tian Y, Liu C, Wu J, Cui J, Zhou Z, Chen J, Chen X. Hydrogen Bond-Associated Photofluorochromism for Time-Resolved Information Encryption and Anti-counterfeiting. Angew Chem Int Ed Engl 2025; 64:e202414846. [PMID: 39174491 DOI: 10.1002/anie.202414846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Time-resolved photofluorochromism constitutes a powerful approach to enhance information encryption security but remains challenging. Herein, we report a strategy of using hydrogen bonds to regulate the time for initiating photofluorochromism. In our strategy, copolymers containing negative photochromic spiropyran (NSP), naphthalimide, and multiple hydrogen-bonding (UPy) units are designed, which display photo-switchable fluorescence resonance energy transfer (FRET) process from naphthalimide donor to the NSP acceptor. Interestingly, the FRET is locked via the dynamic hydrogen-bonding interaction between ring-opened NSP and UPy moieties, resulting in time-dependent fluorescence. The change in fluorescence can be finely regulated via UPy fraction in the polymers. Besides the novel time-dependent fluorescence, the polymers also take advantage of visible-light triggerable, excellent photostability, photoreversibility, and processability. We demonstrate that these properties enable them many application opportunities such as fluorescent security labels and multilevel information encryption patterns.
Collapse
Affiliation(s)
- Yuqian Xie
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Xiaomei Zhao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Hong Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Yong Tian
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Chunyang Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Jingmei Wu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Xudong Chen
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang, 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
12
|
Teichmann B, Sárosi M, Shoyama K, Niyas MA, Dubey RK, Würthner F. 'Invisible' Molecular Dynamics Revealed for a Conformationally Chiral π-Stacked Perylene Bisimide Foldamer. Angew Chem Int Ed Engl 2025; 64:e202414069. [PMID: 39382569 DOI: 10.1002/anie.202414069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Whilst energetic and kinetic aspects of folding processes are meanwhile well understood for natural biomacromolecules, the folding dynamics in so far studied artificial foldamer counterparts remain largely unexplored. This is due to the low energy barriers between their conformational isomers that make the dynamic processes undetectable with conventional methods such as UV/Vis absorption, fluorescence, and NMR spectroscopy, making such processes 'invisible'. Here we present an asymmetric perylene bisimide dimer (bis-PBI 1) that possesses conformational chirality in its folded state. Owing to the large interconversion barrier (≥116 kJ mol-1), four stereoisomers could be separated and isolated. Since the interconversion between these stereoisomers requires the foldamer to first open and then to re-fold, the transformation of one stereoisomer into others allowed us to 'visualize' the dynamics of folding with time and determine its lifetimes and the energetic barriers associated with the folding process. Supported by quantum chemical calculations, we identified the open structure to be only a fleetingly metastable state of higher energy. Our experimental observation of the kinetics associated with the molecular dynamics in the PBI foldamer advances the fundamental understanding of folding in synthetic foldamers and paves the way for the design of smart functional materials.
Collapse
Affiliation(s)
- Ben Teichmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Menyhárt Sárosi
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - M A Niyas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rajeev K Dubey
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
13
|
Anees P, Saranya G, Sreejith S, Ajayaghosh A. Distinguishing the Bimodal Interaction of a Squaraine Dye with a Protein by a Functional Group Photodeprotection Strategy. Chem Asian J 2025:e202401517. [PMID: 39780657 DOI: 10.1002/asia.202401517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
In this study, we present a protecting group photocleavage method to investigate both covalent and noncovalent interactions between a squaraine dye (PSq) and Bovine Serum Albumin (BSA). This approach allows for the photoinduced activation and deactivation of PSq fluorescence, providing valuable insights into the dual-mode interaction of the dye with the protein.
Collapse
Affiliation(s)
- Palapuravan Anees
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517619, India
| | - Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Sivaramapanicker Sreejith
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
14
|
Yuan L, Yang X, Chen S, Yang Q, Fu R, Gu Y, Han L, Yan B. Constructing Strong and Tough Polymer Elastomers via Photoreversible Coumarin Dimer Mechanophores. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2339-2348. [PMID: 39722467 DOI: 10.1021/acsami.4c19537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Advanced elastomers with outstanding strength, toughness, and reusability hold significant potential for diverse applications. Using photochemistry and mechanochemistry to develop such materials has become a very effective strategy. Here, we report that photoreversible coumarin-based mechanophores that can make force-/light-triggered cycloreversion are chemically incorporated into polyurethane elastomers to simultaneously enhance their strength and toughness. Coumarin dimer mechanophore cross-linkers are formed in the polyurethane elastomer after exposure to 365 nm irradiation, leading to networks with dramatically enhanced mechanical properties. The tensile strength of the HNA-PU2000 elastomer with coumarin dimer mechanophore cross-linkers could increase from 13.9 to 26.9 MPa, elongation at break from 726 to 1053%, and toughness from 25.6 to 119.7 MJ·m-3, in contrast to its counterpart HNA-PU2000 elastomer without coumarin dimer mechanophores. Additionally, the polyurethane elastomer exhibits a decent reusable capability via force-/light-triggered cycloreversion of coumarin dimer mechanophores under mechanical stress or 254 nm irradiation. This mechano-/photochemical strategy to improve strength, toughness, and reusable capability of elastomers provides a facile approach for the development of high-performance elastomer materials.
Collapse
Affiliation(s)
- Liubo Yuan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xuekun Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Runfang Fu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yingchun Gu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P.R. China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
15
|
Aidibi Y, Azar S, Hardoin L, Voltz M, Goeb S, Allain M, Sallé M, Costil R, Jacquemin D, Feringa B, Canevet D. Light- and Temperature-Controlled Hybridization, Chiral Induction and Handedness of Helical Foldamers. Angew Chem Int Ed Engl 2025; 64:e202413629. [PMID: 39225451 DOI: 10.1002/anie.202413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Helical foldamers have attracted much attention over the last decades given their resemblance to certain biomacromolecules and their potential in domains as different as pharmaceutics, catalysis and photonics. Various research groups have successfully controlled the right- or left- handedness of these oligomers by introducing stereogenic centers through covalent or non-covalent chemistry. However, developing helical structures whose handedness can be reversibly switched remains a major challenge for chemists. To date, such an achievement has been reported with light-responsive single-stranded foldamers only. Herein, we demonstrate that grafting a unidirectional motor onto foldamer strands constitutes a relevant strategy to i) control the single or double helical state of a foldamer, ii) switch on the chiral induction process from the motor to the helical strands and iii) select the handedness of double helical structures through photochemical and thermal stimulations.
Collapse
Affiliation(s)
- Youssef Aidibi
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Soussana Azar
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Louis Hardoin
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Marie Voltz
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Romain Costil
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, 49747 AG Groningen, Netherlands
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, 44000, Nantes, France
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - Ben Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, 49747 AG Groningen, Netherlands
| | - David Canevet
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| |
Collapse
|
16
|
Sacherer M, Dube H. Combined Photopolymerization and Localized Photochromism by Aza-Diarylethene and Hemiindigo Synergy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411223. [PMID: 39573834 PMCID: PMC11756035 DOI: 10.1002/adma.202411223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/31/2024] [Indexed: 01/24/2025]
Abstract
Molecular photoswitches produce light-controlled changes at the nanometer scale and can therefore be used to alter the states and behavior of materials in a truly bottom-up fashion. Here an escalating photonic complexity of material property control with light is shown using a recently developed aza-diarylethene in combination with hemiindigo (HI) photoswitches. First, aza-diarylethene can be used as a photoswitch in polystyrene (PS) to reversibly inscribe relief-type 3D structures into PS. Second, aza-diarylethene can further be used as a photoinitiator for light-induced polymerization of methyl acrylate (MA), demonstrating for the first time light-controlled chemical reactivity control with its zwitterionic switching state. Third, aza-diarylethene and HIs are implemented into aza-diarylethene polymerized MA, generating photochromic polymers. At the fourth level, a binary mixture allows to synergize aza-diarylethene-induced photopolymerization with localized photochromism changes of the simultaneously entrapped functional HI. With such multilevel light response, the utility of this particular photoswitch combination for applications in advanced photonic materials is demonstrated.
Collapse
Affiliation(s)
- Maximilian Sacherer
- Friedrich‐Alexander‐Universität Erlangen‐NürnbergDepartment of Chemistry and PharmacyNikolaus‐Fiebiger‐Str. 1091058ErlangenGermany
| | - Henry Dube
- Friedrich‐Alexander‐Universität Erlangen‐NürnbergDepartment of Chemistry and PharmacyNikolaus‐Fiebiger‐Str. 1091058ErlangenGermany
| |
Collapse
|
17
|
Xie Y, Yang Z, Shen H, Chen J, Weitz DA, Chen D, Sheng J, Liang T. Interfacial Engineering of Biocompatible Nanocapsules for Near-Infrared-Triggered Drug Release and Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410844. [PMID: 39573938 PMCID: PMC11727245 DOI: 10.1002/advs.202410844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Indexed: 01/14/2025]
Abstract
Chemotherapy is an effective option for cancer treatment. However, its clinical application is often limited by the severe side effects of chemical drugs. To overcome these limitations, a novel drug-loaded phase-change nanocapsule system is developed. These nanocapsules are assembled via one-step electrostatic self-assembly through guided interfacial engineering. The phase change material core nanocapsules demonstrate great photothermal-controlled drug release performance and exhibit excellent tumor-targeting drug delivery performance both in vitro and in vivo via the binding of hyaluronic acid shell on the nanocapsule surface with corresponding receptors on the tumor cell membrane. The phototherapy function of the nanocapsules enhances immune activation within the tumor microenvironment, as demonstrated by flow cytometry and multiplex immunohistochemistry. The developed nanocapsules are biocompatible, versatile, and scalable and offer a promising smart delivery platform for controllable near-infrared triggered drug release and photothermal therapy.
Collapse
Affiliation(s)
- Yuting Xie
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Ze Yang
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
- College of Energy Engineering and State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310003China
| | - Hang Shen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jingyi Chen
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Dong Chen
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
- College of Energy Engineering and State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310003China
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| |
Collapse
|
18
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406439. [PMID: 39444066 PMCID: PMC11707583 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
- Intervention DepartmentThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Dan Yao
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Mengsi Cai
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Fangfu Ye
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| |
Collapse
|
19
|
Thakkar D, Sehgal R, Narula AK, Deswal D. Smart polymers: key to targeted therapeutic interventions. Chem Commun (Camb) 2024; 61:192-206. [PMID: 39611954 DOI: 10.1039/d4cc05098c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Smart polymers represent a class of advanced materials that undergo reversible changes in their physical or chemical form and are known as responsive polymers. These polymers show transitions when external stimuli, such as temperature and pH, come into play. Smart polymers are being increasingly applied in various fields, such as drug delivery to a targeted site and gene therapy. They also play a pivotal role in tissue engineering, environmental sensors, and the development of shape memory polymers. Despite their major challenges, they remain effective in overcoming significant barriers. It can be said that these polymers have the potential to revolutionize various fields. This review highlights the underlying types and applications of smart polymers, emphasizing their roles in the future.
Collapse
Affiliation(s)
- Divyanshi Thakkar
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India.
| | - Rhythm Sehgal
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India.
| | - A K Narula
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India.
| | - Deepa Deswal
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India.
| |
Collapse
|
20
|
Wang X, Zhao W, Li X, Liu L, Leng J, Liu Y. Multistimuli-Responsive Soft Actuators with Controllable Bionic Motions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63894-63903. [PMID: 39500568 DOI: 10.1021/acsami.4c12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Soft actuators with biomimetic self-regulatory intelligence have garnered significant scientific interest due to their potential applications in robotics and advanced functional devices. We present a multistimuli-responsive actuator made from a carbon nitride/carbon nanotube (CN/CNTs) composite film. This film features a molecular switch based on reversible hydrogen bonds, whose asymmetric distribution endows the film with the ability to absorb water unevenly and convert molecular motion into macroscopic movement. By incorporating carboxylated CNTs, the film demonstrates improved mechanical properties and actuation performance. Under ambient humidity stimuli, the actuator can autonomously generate walking and tumbling motions. The CN/CNTs composite film's actuating behaviors are programmable, enabling diverse deformation modes and complex biomimetic movements. Additionally, the film exhibits excellent photothermal conversion efficiency (74.10 °C/s), allowing for temperature and light-responsive actuation, which can be remotely controlled in real time. These features have enabled the creation of soft robots capable of complex biomimetic actions such as jumping, directional movement, and transporting objects. This research broadens the potential applications of CN-based actuators and paves the way for the development of intelligent soft robots.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| | - Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| | - Xinlin Li
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China
| |
Collapse
|
21
|
Guo Z, Bian Y, Zhang L, Zhang J, Sun C, Cui D, Lv W, Zheng C, Huang W, Chen R. Multi-Stimuli-Responsive Carbon Dots with Intrinsic Photochromism and In Situ Radical Afterglow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409361. [PMID: 39267460 DOI: 10.1002/adma.202409361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/28/2024] [Indexed: 09/17/2024]
Abstract
The combination of advanced photoluminescence characteristics to photochromism is highly attractive in preparing high-performance multifunctional photo-responsive materials for optoelectronic applications. However, this is rather challenging in material design owing to the limited mechanism understanding and construction principles. Here, an effective strategy to integrate photochromism and afterglow emission in carbon dots (CDs) is proposed through embedding naphthaleneimide (NI) structure in CDs followed by polyvinylpyrrolidone (PVP) encapsulation. The NI-structured CDs-PVP shows intrinsic photochromism owing to the in situ formation of NI-radical anions and controllable multi-stimuli-responsive afterglow behaviors related to the oxygen-trigged triplet exciton quenching and Förster resonance energy transfer (FRET) from the pristine CDs to the photoactivated CDs radicals. Notably, a wide range of appearance colors from colorless to brown, luminescence color transition from blue to yellow, and much elongated afterglow lifetime up to 253 ms are observed. With the extraordinary stimuli-chromic and stimuli-luminescent CDs-PVP film dynamically responsive to multiple external stimuli, reversible secure snapchat, data encryption/decryption and synaptic imaging recognition are realized. These findings demonstrate a fundamental principle to design multi-stimuli-responsive photochromic CDs with afterglow, providing important understandings on the synergic mechanism of dynamic photochromism and emission behaviors and thereby expanding their applications in advanced information anti-counterfeiting and artificial intelligence.
Collapse
Affiliation(s)
- Zhenli Guo
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yanfang Bian
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Longyan Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jingyu Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chengxi Sun
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Dongyue Cui
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wenzhen Lv
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chao Zheng
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
22
|
Duan L, Zheng Q, Liang Y, Tu T. From Simple Probe to Smart Composites: Water-Soluble Pincer Complex With Multi-Stimuli-Responsive Luminescent Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409620. [PMID: 39300862 DOI: 10.1002/adma.202409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Water-soluble smart materials with multi-stimuli-responsiveness and ultra-long room-temperature phosphorescence (RTP) have garnered broad attention. Herein, a water-soluble terpyridine zinc complex (MeO-Tpy-Zn-OAc), featuring a simple donor-π-acceptor (D-π-A) structure is presented, which responds to a variety of stimuli, including changes in solvents, pH, temperature, and the addition of amino acids. Notably, MeO-Tpy-Zn-OAc functions as a fluorescence probe, capable of visually and selectively discriminating aspartate or histidine among other common amino acids in water. Additionally, when incorporated into polyvinyl alcohol (PVA) to form the composite MeO-Tpy-Zn-OAc@PVA, the material exhibits reversible writing, photochromism, and a prolonged RTP with a 14 s afterglow. These unique properties enable the composite to be utilized in potential applications such as secure data encryption and inkless printing.
Collapse
Affiliation(s)
- Lixin Duan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanlin Liang
- Forensic Science Institute of Shanghai Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai, 200083, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
23
|
Liang B, Cheng Y, Ma J, Jia L, Zheng Q, Wang P, Xia D. A chiral supramolecular liquid crystal based on pillararene and its application in information encryption. Chem Commun (Camb) 2024; 60:12698-12701. [PMID: 39392395 DOI: 10.1039/d4cc02698e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A chiral supramolecular liquid crystal based on a pillararene mesogen was constructed. The regulation of liquid crystal behavior was achieved through the host-guest interactions between the pillararene-based mesogen and a tetraphenylethylene-containing guest. In addition, this supramolecular liquid crystal system, showing pH-responsive fluorescence emission character, was applied as an information encryption material capable of storing multiple levels of distinct information, thereby enriching the application of liquid crystal materials in the field of information security.
Collapse
Affiliation(s)
- Bicong Liang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
| | - Yujie Cheng
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
| | - Jiaxin Ma
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
| | - Lan Jia
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
| | - Qiang Zheng
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
| | - Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
24
|
Matsubara S, Shoji S, Tamiaki H. Biomimetic light-harvesting antennas via the self-assembly of chemically programmed chlorophylls. Chem Commun (Camb) 2024; 60:12513-12524. [PMID: 39376203 DOI: 10.1039/d4cc04363d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The photosynthetic pigment "chlorophyll" possesses attractive photophysical properties, including efficient sunlight absorption, photoexcited energy transfer, and charge separation, which are advantageous for applications for photo- and electro-functional materials such as artificial photosynthesis and solar cells. However, these functions cannot be realized by individual chlorophyll molecules alone; rather, they are achieved by the formation of sophisticated supramolecules through the self-assembly of the pigments. Here, we present strategies for constructing and developing artificial light-harvesting systems by mimicking photosynthetic antenna complexes through the highly ordered supramolecular self-assembly of synthetic dyes, particularly chlorophyll derivatives.
Collapse
Affiliation(s)
- Shogo Matsubara
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan
| | - Sunao Shoji
- Faculty of Engineering, Nara Women's University, Nara 630-8506, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
25
|
MacDonald CRM, Draper ER. Applications of microscopy and small angle scattering techniques for the characterisation of supramolecular gels. Beilstein J Org Chem 2024; 20:2608-2634. [PMID: 39445219 PMCID: PMC11496719 DOI: 10.3762/bjoc.20.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
When evaluating soft self-assembling materials for use in any application, the structural or morphological characterisation is highly important. We know that the hierarchal molecular self-assembly of these materials into larger structures directly influences behaviours such as performance and stability. It is therefore imperative that these materials are characterised effectively over multiple length scales. Two effective methods of achieving this are small angle scattering (SAS) and imaging. Scattering giving us indirect information about the systems, whereas imaging is often looking at the material directly. In this review, we discuss the benefits, caveats and power of using both these techniques separately and together for the characterisation of supramolecular gels.
Collapse
Affiliation(s)
| | - Emily R Draper
- School of Chemistry, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| |
Collapse
|
26
|
Wang B, Liu Y, Chen X, Liu XT, Liu Z, Lu C. Aggregation-induced emission-active supramolecular polymers: from controlled preparation to applications. Chem Soc Rev 2024; 53:10189-10215. [PMID: 39229831 DOI: 10.1039/d3cs00017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Supramolecular polymers are typical self-assemblies, in which repeating monomer units are bonded together with dynamic and reversible noncovalent interactions. Supramolecular polymers can combine the advantages of polymer science and supramolecular chemistry. Aggregation-induced emission (AIE) means that a molecule remains faintly emissive in the dispersed state but intensively luminescent in a highly aggregated state. AIE has brought new opportunities and further development potential to the field of polymeric chemistry. The integration of AIE luminogens with supramolecular interactions can provide new vitality for supramolecular polymers. Therefore, it is essential for scientists to understand the preparation and applications of AIE-active supramolecular polymers. This review focuses on the recent advanced progress in the preparation of AIE-active supramolecular polymers. In addition, we summarize the newly developed supramolecular polymers with an AIE nature and their applications in chemical sensing, and in vitro and in vivo imaging, as well as the visualization of their structure and properties. Finally, the development trends and challenges of AIE-active supramolecular polymers are prospected.
Collapse
Affiliation(s)
- Beibei Wang
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuhao Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueqian Chen
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Ting Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhongyi Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Chao Lu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
27
|
Yu W, Kothapalli SSK, Yang Z, Guo X, Li X, Cai Y, Feng W, Yuan L. Light-Controlled Interconvertible Self-Assembly of Non-Photoresponsive Suprastructures. Molecules 2024; 29:4842. [PMID: 39459210 PMCID: PMC11509933 DOI: 10.3390/molecules29204842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Achieving light-induced manipulation of controlled self-assembly in nanosized structures is essential for developing artificially dynamic smart materials. Herein, we demonstrate an approach using a non-photoresponsive hydrogen-bonded (H-bonded) macrocycle to control the self-assembly and disassembly of nanostructures in response to light. The present system comprises a photoacid (merocyanine, 1-MEH), a pseudorotaxane formed by two H-bonded macrocycles, dipyridinyl acetylene, and zinc ions. The operation of such a system is examined according to the alternation of self-assembly through proton transfer, which is mediated by the photoacid upon exposure to visible light. The host-guest complexation between the macrocycle and bipyridium guests was investigated by NMR spectroscopy, and one of the guests with the highest affinity for the ring was selected for use as one of the components of the system, which forms the host-guest complex with the ring in a 2:1 stoichiometry. In solution, a dipyridine and the ring, having no interaction with each other, rapidly form a complex in the presence of 1-MEH when exposed to light and thermally relax back to the free ring without entrapped guests after 4 h. Furthermore, the addition of zinc ions to the solution above leads to the formation of a polypseudorotaxane with its morphology responsive to photoirradiation. This work exemplifies the light-controlled alteration of self-assembly in non-photoresponsive systems based on interactions between the guest and the H-bonded macrocycle in the presence of a photoacid.
Collapse
Affiliation(s)
- Wentao Yu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | | | - Zhiyao Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Xuwen Guo
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Yimin Cai
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; (W.Y.); (Z.Y.); (X.G.); (Y.C.); (W.F.)
| |
Collapse
|
28
|
Si X, Yu W, Song N, Zhang P, Wei H, Zhang J, Anslyn EV, Sun X. pH-Responsive Fluorescent Switches through Intramolecular Conjugate Addition Reactions and Application in Fluorogenic Bioimaging. Org Lett 2024; 26:8389-8393. [PMID: 39321334 DOI: 10.1021/acs.orglett.4c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We report new photoluminescent switching systems achieved through pH-induced intramolecular oxa-Michael conjugate addition reactions. Ratiometric absorbance and fluorescence emission were observed across conjugate acceptors triggered by pH, resulting in specific pseudo pKa values. The effect of substituents on the pseudo pKa's was investigated, showing increased values from electron-withdrawing to electron-donating groups. Inspired by the physiologically related pKa, a fluorescent probe was designed, successfully distinguishing cancer cells from normal cells through live cellular imaging.
Collapse
Affiliation(s)
- Xiangkun Si
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, People's Republic of China
| | - Wanyi Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, People's Republic of China
| | - Naikun Song
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, People's Republic of China
| | - Peng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, People's Republic of China
| | - Hongbei Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, People's Republic of China
| | - Jie Zhang
- The Fourth Military Medical University, 169 Changle Xi Road, Xi'an Shannxi 710032, People's Republic of China
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, 710049, People's Republic of China
| |
Collapse
|
29
|
Deng Z, Sun Y, Chen A. Light-Triggered Reversible Swelling of Azobenzene-Containing Block Copolymer Worms via Confined Deformation Prepared by Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2024; 45:e2400372. [PMID: 38885423 DOI: 10.1002/marc.202400372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Stimuli-responsive block copolymer nanoparticles (NPs) have received close attention in recent years owing to their tremendous application potential in smart materials. Azobenzene-containing NPs are widely studied due to the advantages of light as a stimulus and fast reversible trans-cis isomerization of azobenzene chromophores. However, the inefficient preparation process and difficult reversible transformation of morphologies limit their development. Herein it is demonstrated that the light-triggered reversible swelling behavior of wormlike NPs with high azobenzene content could be realized via confined deformation. These worms are prepared in large quantities via polymerization-induced self-assembly based on the copolymerization of 11-(4-(4-butylphenylazo)phenoxy)undecyl methacrylate (MAAz) and N-(methacryloxy)succinimide (NMAS) monomers. Upon UV/visible light irradiation, the reversible deformation of worms is achieved when the feed molar ratio of NMAS/MAAz is relatively high or via crosslinking using diamines, which leads to the reduction of the photoisomerization efficiency. The diameter variation of the worms is influenced by the amount and types of crosslinkers. Moreover, the scalability of this strategy is further proved by the fabrication of photo- and reductant-responsive crosslinked worms. It is expected that this study not only provides a new route to affording reversible photoresponsive NPs but also offers a unique insight into the reversible photodeformation mechanism of azobenzene-containing NPs.
Collapse
Affiliation(s)
- Zichao Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yalan Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
30
|
Hein R, Stindt CN, Feringa BL. Mix and Match Tuning of the Conformational and Multistate Redox Switching Properties of an Overcrowded Alkene. J Am Chem Soc 2024; 146:26275-26285. [PMID: 39272222 PMCID: PMC11440491 DOI: 10.1021/jacs.4c08284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Overcrowded alkenes have received considerable attention as versatile structural motifs in a range of optical switches and light-driven unidirectional motors. In contrast, their actuation by electrochemical stimuli remains underexplored, even though this alternative energy input may be preferred in various applications and enables additional control over molecular switching states and properties. While symmetric bistricyclic overcrowded enes (BAEs) containing two identical halves based on either thioxanthene (TX) or acridine (Acr) motifs are known to be reversible conformational redox switches, their redox potentials are generally too high or low, respectively, thereby preventing wider applications. Herein, we demonstrate that the "mixed" TX-Acr switch possesses redox properties that lie between those of its parent symmetric analogs, enabling interconversion between three stable redox and conformational states at mild potentials. This includes the neutral anti-folded, the dicationic orthogonal, and a unique twisted monoradical cation state, the latter of which is only accessible in the case of the mixed TX-Acr switch and in a pathway-dependent manner. Consequently, with this multistate redox switch, a myriad of molecular properties, including geometry, polarity, absorbance, and fluorescence, can be modulated with high fidelity and reversibility between three distinct stable states. More generally, this study highlights the versatility of the "mix and match" approach in rationally designing redox switches with specific (redox) properties, which in turn is expected to enable a myriad of applications ranging from molecular logic and memory to actuators and energy storage systems.
Collapse
Affiliation(s)
- Robert Hein
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Charlotte N. Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
31
|
Liu Y, Mao R, Han S, Yu Z, Xu B, Xu T. Polymeric Microneedle Drug Delivery Systems: Mechanisms of Treatment, Material Properties, and Clinical Applications-A Comprehensive Review. Polymers (Basel) 2024; 16:2568. [PMID: 39339032 PMCID: PMC11434959 DOI: 10.3390/polym16182568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our comprehensive review plunges into the cutting-edge advancements of polymeric microneedle drug delivery systems, underscoring their transformative potential in the realm of transdermal drug administration. Our scrutiny centers on the substrate materials pivotal for microneedle construction and the core properties that dictate their efficacy. We delve into the distinctive interplay between microneedles and dermal layers, underscoring the mechanisms by which this synergy enhances drug absorption and precision targeting. Moreover, we examine the acupoint-target organ-ganglion nexus, an innovative strategy that steers drug concentration to specific targets, offering a paradigm for precision medicine. A thorough analysis of the clinical applications of polymeric microneedle systems is presented, highlighting their adaptability and impact across a spectrum of therapeutic domains. This review also accentuates the systems' promise to bolster patient compliance, attributed to their minimally invasive and painless mode of drug delivery. We present forward-looking strategies aimed at optimizing stimulation sites to amplify therapeutic benefits. The anticipation is set for the introduction of superior biocompatible materials with advanced mechanical properties, customizing microneedles to cater to specialized clinical demands. In parallel, we deliberate on safety strategies aimed at boosting drug loading capacities and solidifying the efficacy of microneedle-based therapeutics. In summation, this review accentuates the pivotal role of polymeric microneedle technology in contemporary healthcare, charting a course for future investigative endeavors and developmental strides within this burgeoning field.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiyue Mao
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijia Han
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
32
|
Alexandre-Franco MF, Kouider R, Kassir Al-Karany R, Cuerda-Correa EM, Al-Kassir A. Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview. MICROMACHINES 2024; 15:1137. [PMID: 39337797 PMCID: PMC11433824 DOI: 10.3390/mi15091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in polymer materials, such as flexible, biocompatible, and structurally robust polymers, have been pivotal in developing advanced microfluidic systems. Techniques like replica molding, microcontact printing, solvent-assisted molding, injection molding, and 3D printing are examined, highlighting their advantages and recent developments. Additionally, the review discusses the diverse applications of polymer-based microfluidic devices in biomedical diagnostics, drug delivery, organ-on-chip models, environmental monitoring, and industrial processes. This paper also addresses future challenges, including enhancing chemical resistance, achieving multifunctionality, ensuring biocompatibility, and scaling up production. By overcoming these challenges, the potential for widespread adoption and impactful use of polymer-based microfluidic technologies can be realized.
Collapse
Affiliation(s)
- María F Alexandre-Franco
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Rahmani Kouider
- Department of Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria
| | | | - Eduardo M Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Awf Al-Kassir
- School of Industrial Engineers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
33
|
Balcerak-Woźniak A, Dzwonkowska-Zarzycka M, Kabatc-Borcz J. A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials-Recent Advances and Future Perspectives. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4255. [PMID: 39274645 PMCID: PMC11396725 DOI: 10.3390/ma17174255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
Today, smart materials are commonly used in various fields of science and technology, such as medicine, electronics, soft robotics, the chemical industry, the automotive field, and many others. Smart polymeric materials hold good promise for the future due to their endless possibilities. This group of advanced materials can be sensitive to changes or the presence of various chemical, physical, and biological stimuli, e.g., light, temperature, pH, magnetic/electric field, pressure, microorganisms, bacteria, viruses, toxic substances, and many others. This review concerns the newest achievements in the area of smart polymeric materials. The recent advances in the designing of stimuli-responsive polymers are described in this paper.
Collapse
Affiliation(s)
- Alicja Balcerak-Woźniak
- Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Monika Dzwonkowska-Zarzycka
- Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Janina Kabatc-Borcz
- Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
34
|
Long Z, Zheng S, Zhou W, Liu G. Supramolecular chirality capture in solvent monomer-based co-assemblies via in situ photopolymerization. Chem Commun (Camb) 2024; 60:9054-9057. [PMID: 39099543 DOI: 10.1039/d4cc03560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Supramolecular assemblies with chirality inversion were developed using a co-assembly system comprising solvent monomers and a pyridine-cholesterol gelator. The polarity-dependent chiralities were captured in situ through photopolymerization, enabling the formation of multi-color circularly polarized luminescence films.
Collapse
Affiliation(s)
- Zefeng Long
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P.R. China.
| | - Shuyuan Zheng
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P.R. China.
| | - Weiqiang Zhou
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Guofeng Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai, 200092, P.R. China.
| |
Collapse
|
35
|
Lu Y, Zhang R, Hong Z, Liang P, Liao R, Wang F. Light-triggered transformation of stilbene supramolecular polymers: thermodynamic versus kinetic control. Chem Commun (Camb) 2024; 60:8585-8588. [PMID: 39045673 DOI: 10.1039/d4cc01977f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Light irradiation of stilbene supramolecular polymers produces [2+2] cycloadducts in the kinetically trapped state, which convert to the thermodynamically favorable state upon thermal annealing due to the shift of hydrogen bonds from intra- to inter-complexation modes.
Collapse
Affiliation(s)
- Yi Lu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Ruilong Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhilong Hong
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Pingping Liang
- School of Life Sciences, Anhui Medical University, Hefei 230032, P. R. China.
| | - Rui Liao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Feng Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
36
|
Cerdá J, Ortí E, Beljonne D, Aragó J. Optical Properties of H-Bonded Heterotriangulene Supramolecular Polymers: Charge-Transfer Excitations Matter. J Phys Chem Lett 2024; 15:7814-7821. [PMID: 39052305 PMCID: PMC11299171 DOI: 10.1021/acs.jpclett.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
H-bonded N-heterotriangulene (NHT) supramolecular polymers offer a nice playground to explore the nature and dynamics of electronic excitations in low-dimensional organic nanostructures. Here, we report on a comprehensive molecular modeling of the excited-state electronic structure and optical properties of model NHT stacks, highlighting the important role of intermolecular charge-transfer (CT) excitations in shaping their optical absorption and emission lineshapes. Most importantly, we show that the coupling between the local and CT excitations, modulated by the electric fields induced by the presence of polar amide groups forming H-bonded arrays along the stacks, significantly increases the resulting hybrid exciton bandwidth. We discuss these findings in the context of the efficient transport of singlet excitons over the μm length scale reported experimentally on individual self-assembled nanofibers with molecular-scale diameter.
Collapse
Affiliation(s)
- Jesús Cerdá
- Laboratory
for Chemistry of Novel Materials, University
of Mons, Mons 7000, Belgium
| | - Enrique Ortí
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - David Beljonne
- Laboratory
for Chemistry of Novel Materials, University
of Mons, Mons 7000, Belgium
| | - Juan Aragó
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, Catedrático José Beltrán 2, Paterna 46980, Spain
| |
Collapse
|
37
|
Agiba AM, Elsayyad N, ElShagea HN, Metwalli MA, Mahmoudsalehi AO, Beigi-Boroujeni S, Lozano O, Aguirre-Soto A, Arreola-Ramirez JL, Segura-Medina P, Hamed RR. Advances in Light-Responsive Smart Multifunctional Nanofibers: Implications for Targeted Drug Delivery and Cancer Therapy. Pharmaceutics 2024; 16:1017. [PMID: 39204362 PMCID: PMC11359459 DOI: 10.3390/pharmaceutics16081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target drug side effects, and damage to surrounding healthy tissues. Nanofiber-based drug delivery systems have recently emerged as a promising drug delivery system in cancer therapy owing to their unique structural and functional properties, including tunable interconnected porosity, a high surface-to-volume ratio associated with high entrapment efficiency and drug loading capacity, and high mass transport properties, which allow for controlled and targeted drug delivery. In addition, they are biocompatible, biodegradable, and capable of surface functionalization, allowing for target-specific delivery and drug release. One of the most common fiber production methods is electrospinning, even though the relatively two-dimensional (2D) tightly packed fiber structures and low production rates have limited its performance. Forcespinning is an alternative spinning technology that generates high-throughput, continuous polymeric nanofibers with 3D structures. Unlike electrospinning, forcespinning generates fibers by centrifugal forces rather than electrostatic forces, resulting in significantly higher fiber production. The functionalization of nanocarriers on nanofibers can result in smart nanofibers with anticancer capabilities that can be activated by external stimuli, such as light. This review addresses current trends and potential applications of light-responsive and dual-stimuli-responsive electro- and forcespun smart nanofibers in cancer therapy, with a particular emphasis on functionalizing nanofiber surfaces and developing nano-in-nanofiber emerging delivery systems for dual-controlled drug release and high-precision tumor targeting. In addition, the progress and prospective diagnostic and therapeutic applications of light-responsive and dual-stimuli-responsive smart nanofibers are discussed in the context of combination cancer therapy.
Collapse
Affiliation(s)
- Ahmed M. Agiba
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Nihal Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October for Modern Sciences and Arts University, Cairo 12451, Egypt;
| | - Hala N. ElShagea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt;
| | - Mahmoud A. Metwalli
- El Demerdash Hospital, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Amin Orash Mahmoudsalehi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Omar Lozano
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico;
- Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Jose Luis Arreola-Ramirez
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Patricia Segura-Medina
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Mexico City 14380, Mexico
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo 12566, Egypt;
| |
Collapse
|
38
|
Wagay SA, Ali R. The Hamilton Receptor in Supramolecular Polymer Sciences. Top Curr Chem (Cham) 2024; 382:27. [PMID: 39033235 DOI: 10.1007/s41061-024-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
Supramolecular polymers are polymeric materials of monomeric fragments, held jointly by reversible and directional non-covalent interactions such as multiple hydrogen-bonding, charge transfer effects, host-guest interactions, metal coordination, and aromatic stacking. This review article on the Hamilton-based supramolecular polymers aims to shed light on the molecular recognition achievements by the Hamilton-based polymeric systems, evaluate Hamilton receptor's future prospects, and capitalize its potential applications in supramolecular chemistry. To the best of our knowledge, this is the first elaborative and sole manuscript in which polymeric Hamilton receptors are being exposed in detail. The first portion of this manuscript is related to the importance and urgency of polymers along with the historic background of Hamilton receptors. The middle section discloses the potential applications of Hamilton-type receptors in various fields, e.g., dendrimers, mechanically polymeric rotaxanes, and self-assemblies. The final section of the manuscript discloses the future aspects and the importance of novel polymer-based Hamilton-type receptors in the modern era. We believe that this first review in this emerging yet immature field will be useful to inspire scientists around the world to find the unseen future prospects, thereby boosting the field related to this valued artificial receptor in the province of supramolecular chemistry and also in other domains of scientific fields and technology, as well.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India.
| |
Collapse
|
39
|
Zhou S, Zhang M, Yuan Y, Ren L, Chen Y, Li W, Zhang A, Yan J. Visible Light [2 + 2] Cycloadditions of Thermoresponsive Dendronized Styryltriazines To Exhibit Tunable Microconfinement. ACS Macro Lett 2024; 13:866-873. [PMID: 38935045 DOI: 10.1021/acsmacrolett.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Visible light-triggered photochemical reactions in aqueous media are highly valuable to tailor molecular structures and properties in an ecofriendly manner. Here we report visible light-induced catalyst-free [2 + 2] cycloadditions of thermoresponsive dendronized styryltriazines, which show tunable microconfinement to guest dyes in aqueous media. These dendronized styryltriazines are constituted of conjugated mono- or tristyryltriazines, which carry hydrophilic dendritic oligoethylene glycol (OEG) pendants. They underwent efficient [2 + 2] cycloadditions to form dendronized cyclobutane dimers or oligomers in water through irradiation with visible light of 400 nm, and their cycloaddition behavior was dominated by dendritic architectures and solvent conditions. Dendronization with dendritic OEGs also afforded them characteristic thermoresponsive properties with tunable phase transition temperatures in the range 36-65 °C, which can be further modulated through photocycloaddition of styryltriazine chromophores. Importantly, dendronized styryltriazines can form tunable microenvironments in aqueous media, which encapsulate hydrophobic solvatochromic Nile red to exhibit variable photophysical properties. The encapsulated guest dye can be simultaneously released through noninvasive visible light-induced [2 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Sijie Zhou
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Mengjie Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Yue Yuan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Yuqiang Chen
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| |
Collapse
|
40
|
Stindt CN, Crespi S, Feringa BL. Synthesis of Styrylbenzazole Photoswitches and Evaluation of their Photochemical Properties. Chemistry 2024; 30:e202401409. [PMID: 38761405 DOI: 10.1002/chem.202401409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Styrylbenzazoles form a promising yet under-represented class of photoswitches that can perform a light-driven E-Z isomerization of the central alkene double bond without undergoing irreversible photocyclization, typical of the parent stilbene. In this work, we report the synthesis and photochemical study of 23 styrylbenzazole photoswitches. Their thermal stabilities, quantum yields, maximum absorption wavelengths and photostationary state (PSS) distributions can be tuned by changing the benzazole heterocycle and the substitution pattern on the aryl ring. In particular, we found that push-pull systems show large redshifts of the maximum absorption wavelengths and the highest quantum yields, whereas ortho-substituted styrylbenzazole photoswitches exhibit the most favorable PSS ratios. Taking advantage of both design principles, we produced 2,6-dimethyl-4-(dimethylamino)-styrylbenzothiazole, a thermally stable and efficient P-type photoswitch which displays negative photochromism upon irradiation with visible light up to 470 nm to obtain a near-quantitative isomerization with a very high quantum yield of 59 %. Furthermore, 4-hydroxystyrylbenzoxazole was demonstrated to be a pH-sensitive switch which exhibits a 100 nm redshift upon deprotonation. Ortho-methylation of its benzothiazole analogue improved the obtained PSS ratio in its deprotonated state from E : Z=53 : 47 to E : Z=18 : 82. We anticipate that this relatively unexplored class of photoswitches will form a valuable expansion of the current family of photoswitches.
Collapse
Affiliation(s)
- Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Present address: Ångström Laboratory, Department of Chemistry, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
41
|
Simms CH, Nielsen VRM, Sørensen TJ, Faulkner S, Langton MJ. Photoswitchable luminescent lanthanide complexes controlled and interrogated by four orthogonal wavelengths of light. Phys Chem Chem Phys 2024; 26:18683-18691. [PMID: 38922672 DOI: 10.1039/d4cp02243b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Optical information storage requires careful control of excitation and emission wavelengths in a reversible and orthogonal manner to enable efficient reading, writing, and erasing of information. Photochromic systems, in which a photoswitch is typcially coupled to an emissive organic fluorophore, have much promise in this regard. However, these suffer from considerable spectral overlap between the switch and fluorophore, such that their emissive and photoswitchable properties are not orthogonal. Here, we overcome this limitation by coupling visible/NIR emissive lanthanide complexes with molecular photoswitches, enabling reversible and orthogonal photoswitching with visible light. Crucially, photoswitching does not lead to sensitised emission from the lanthanide, while excitation of the lanthanide does not induce photoswitching, enabling the state of the system to be probed without perturbation of the switch. This opens up the possibility of developing multi-colour read-write methods for information storage using emissive photoswitches.
Collapse
Affiliation(s)
- Charlie H Simms
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Mansfield road, Oxford, OX1 3TA, UK.
| | - Villads R M Nielsen
- Nano-Science Centre and Department of Chemistry University of Copenhagen Universitetsparken 5, 2100 København Ø, Denmark
| | - Thomas Just Sørensen
- Nano-Science Centre and Department of Chemistry University of Copenhagen Universitetsparken 5, 2100 København Ø, Denmark
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Mansfield road, Oxford, OX1 3TA, UK.
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Mansfield road, Oxford, OX1 3TA, UK.
| |
Collapse
|
42
|
Yao X, Vishnu JA, Lupfer C, Hoenders D, Skarsetz O, Chen W, Dattler D, Perrot A, Wang WZ, Gao C, Giuseppone N, Schmid F, Walther A. Scalable Approach to Molecular Motor-Polymer Conjugates for Light-Driven Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403514. [PMID: 38613525 DOI: 10.1002/adma.202403514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The integration of molecular machines and motors into materials represents a promising avenue for creating dynamic and functional molecular systems, with potential applications in soft robotics or reconfigurable biomaterials. However, the development of truly scalable and controllable approaches for incorporating molecular motors into polymeric matrices has remained a challenge. Here, it is shown that light-driven molecular motors with sensitive photo-isomerizable double bonds can be converted into initiators for Cu-mediated controlled/living radical polymerization enabling the synthesis of star-shaped motor-polymer conjugates. This approach enables scalability, precise control over the molecular structure, block copolymer structures, and high-end group fidelity. Moreover, it is demonstrated that these materials can be crosslinked to form gels with quasi-ideal network topology, exhibiting light-triggered contraction. The influence of arm length and polymer structure is investigated, and the first molecular dynamics simulation framework to gain deeper insights into the contraction processes is developed. Leveraging this scalable methodology, the creation of bilayer soft robotic devices and cargo-lifting artificial muscles is showcased, highlighting the versatility and potential applications of this advanced polymer chemistry approach. It is anticipated that the integrated experimental and simulation framework will accelerate scalable approaches for active polymer materials based on molecular machines, opening up new horizons in materials science and bioscience.
Collapse
Affiliation(s)
- Xuyang Yao
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
| | - Jude Ann Vishnu
- KOMET 1, Institute of Physics, Johannes Gutenberg University of Mainz, D 55099, Mainz, Germany
| | - Claudius Lupfer
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniel Hoenders
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Oliver Skarsetz
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Weixiang Chen
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Damien Dattler
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Alexis Perrot
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Wen-Zhi Wang
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Chuan Gao
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| | - Friederike Schmid
- KOMET 1, Institute of Physics, Johannes Gutenberg University of Mainz, D 55099, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
| |
Collapse
|
43
|
Abd-El-Aziz A, Ahmed SA, Zhang X, Ma N, Abd-El-Aziz AS. Macromolecules incorporating transition metals in the treatment and detection of cancer and infectious diseases: Progress over the last decade. Coord Chem Rev 2024; 510:215732. [DOI: 10.1016/j.ccr.2024.215732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Trung NT, Chiu CH, Cuc TTK, Khang TM, Jalife S, Nhien PQ, Hue BTB, Wu JI, Li YK, Lin HC. Tunable Nano-Bending Structures of Loosened/Tightened Lassos with Bi-Stable Vibration-Induced Emissions for Multi-Manipulations of White-Light Emissions and Sensor Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311789. [PMID: 38240392 DOI: 10.1002/adma.202311789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/13/2024] [Indexed: 05/18/2024]
Abstract
The first tunable nano-bending structures of [1]rotaxane containing a single-fluorophoric N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC) moiety (i.e., [1]RA) are developed as a loosened lasso structure to feature the bright white-light emission [CIE (0.27, 0.33), Φ = 21.2%] in THF solution, where bi-stable states of bending and twisted structures of DPAC unit in [1]RA produce cyan and orange emissions at 480 and 600 nm, respectively. With acid/base controls, tunable loosened/tightened nano-loops of corresponding [1]rotaxanes (i.e., [1]RA/[1]RB) can be achieved via the shuttling of macrocycles reversibly, and thus to adjust their respective white-light/cyan emissions, where the cyan emission of [1]RB is obtained due to the largest conformational constraint of DPAC moiety in its bending form of [1]RB with a tightened lasso structure. Additionally, the non-interlocked analog M-Boc only shows the orange emission, revealing the twisted form of DPAC fluorophore in M-Boc without any conformational constraint. Moreover, the utilization of solvents (with different viscosities and polarities), temperatures, and water fractions could serve as effective tools to adjust the bi-stable vibration-induced emission (VIE) colors of [1]rotaxanes. Finally, tuning ratiometric emission colors of adaptive conformations of DPAC moieties by altering nano-bending structures in [1]rotaxanes and external stimuli can be further developed as intelligent temperature and viscosity sensor materials.
Collapse
Affiliation(s)
- Nguyen Thanh Trung
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chun-Hao Chiu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Trang Manh Khang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Said Jalife
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Pham Quoc Nhien
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Vietnam
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Vietnam
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
45
|
Hu L, Gao Y, Cai Q, Wei Y, Zhu J, Wu W, Yang Y. Cholesterol-substituted spiropyran: Photochromism, thermochromism, mechanochromism and its application in time-resolved information encryption. J Colloid Interface Sci 2024; 665:545-553. [PMID: 38547635 DOI: 10.1016/j.jcis.2024.03.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Organic multi-stimulus-responsive materials are widely used in anti-counterfeiting and information encryption due to their unique response characteristics and designability. However, progress in obtaining multi-stimulus-responsive smart materials has been very slow. Herein, a spiropyran derivative is constructed, which shows photochromic, thermochromic and mechanical photochromic properties, and has reversible absorption/luminescence adjustment ability. By introducing non-covalent interactions such as van der Waals force and hydrogen bond, this new molecule is more sensitive to external stimuli and exhibits better photochromic, mechanochromic and thermochromic properties with rapid speed and high contrast. Furthermore, these three stimulus responses can be completely restored to the initial state under white light irradiation. The reversible multiple response characteristics of this molecule make it possible to provide dynamic anti-counterfeiting and advanced information encryption capabilities. To demonstrate its application in advanced information encryption, powders treated with different stimuli are combined with fluorescent dyes to encrypt complex digital information. This work puts forward a new time-resolved encryption strategy, which provides important guidance for the development of time-resolved information security materials.
Collapse
Affiliation(s)
- Leilei Hu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyang Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qihong Cai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youhao Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiangkun Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuhui Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312451, China.
| |
Collapse
|
46
|
Martínez D, Schlossarek T, Würthner F, Soberats B. Isothermal Phase Transitions in Liquid Crystals Driven by Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2024; 63:e202403910. [PMID: 38635375 DOI: 10.1002/anie.202403910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The dynamic nature of calamitic liquid crystals is exploited to perform isothermal phase transitions driven by dynamic covalent chemistry. For this purpose, nematic (N) arrays based on aldehyde 1 were treated with different amines (A-E) in an on-surface process, which resulted in different isothermal phase transitions. These phase transformations were caused by in situ imination reactions and are dependent on the nature of the added amine. Transitions from the N to crystal (1A, 1E), isotropic (1B), and smectic (Sm) (1C, 1D) phases were achieved, while the resulting materials feature thermotropic liquid crystal behavior. A sequential transformation from the N 1 to the Sm 1C and then to the N 1B was achieved by coupling an imination to a transimination processes and adjusting the temperature. All of these processes were well characterized by microscopic, spectroscopic, and X-ray techniques, unlocking not only the constitutional but also the structural aspects of the phase transitions. This work provides new insights into designing constitutionally and structurally adaptable liquid crystal systems, paving the way toward the conception of programable evolutive pathways and adaptive materials.
Collapse
Affiliation(s)
- Daniel Martínez
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Tim Schlossarek
- Institut für Organische Chemie, Center for Nanosystems Chemistry (CNC), and Bavarian Polymer Institute (BPI), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Center for Nanosystems Chemistry (CNC), and Bavarian Polymer Institute (BPI), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
47
|
Sun M, Bai S, Wang H, Li Z, Wang Y, Guo X. Localized self-assembly of macroscopically structured supramolecular hydrogels through reaction-diffusion. SOFT MATTER 2024; 20:4776-4782. [PMID: 38842423 DOI: 10.1039/d4sm00467a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Localized molecular self-assembly has been developed as an effective approach for the fabrication of spatially resolved supramolecular hydrogels, showing great potential for many high-tech applications. However, the fabrication of macroscopically structured supramolecular hydrogels through molecular self-assembly remains a challenge. Herein, we report on localized self-assembly of low molecular weight hydrogelators through a simple reaction-diffusion approach, giving rise to various macroscopically patterned supramolecular hydrogels. This is achieved on the basis of an acid-catalyzed hydrazone supramolecular hydrogelator system. The acid was pre-loaded in a polydimethylsiloxane (PDMS) substrate, generating a proton gradient in the vicinity of the PDMS surface after immersing the PDMS in the aqueous solution of the hydrogelator precursors. The acid dramatically accelerates the in situ formation and self-assembly of the hydrazone hydrogelators, leading to localized formation of supramolecular hydrogels. The growth rate of the supramolecular hydrogels can be easily tuned through controlling the concentrations of the hydrogelator precursors and HCl. Importantly, differently shaped supramolecular hydrogel objects can be obtained by simply changing the shapes of PDMS. This work suggests that reaction-diffusion-mediated localized hydrogelation can serve as an approach towards macroscopically structuralized supramolecular hydrogels, which may find potential applications ranging from tissue engineering to biosensors.
Collapse
Affiliation(s)
- Mengran Sun
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shengyu Bai
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Hucheng Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhongqi Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yiming Wang
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuhong Guo
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
48
|
Xu F, Su H, van der Tol JJB, Jansen SAH, Fu Y, Lavarda G, Vantomme G, Meskers S, Meijer EW. Supramolecular Polymerization as a Tool to Reveal the Magnetic Transition Dipole Moment of Heptazines. J Am Chem Soc 2024; 146:15843-15849. [PMID: 38815616 PMCID: PMC11177250 DOI: 10.1021/jacs.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Heptazine derivatives have attracted significant interest due to their small S1-T1 gap, which contributes to their unique electronic and optical properties. However, the nature of the lowest excited state remains ambiguous. In the present study, we characterize the lowest optical transition of heptazine by its magnetic transition dipole moment. To measure the magnetic transition dipole moment, the flat heptazine must be chiroptically active, which is difficult to achieve for single heptazine molecules. Therefore, we used supramolecular polymerization as an approach to make homochiral stacks of heptazine derivatives. Upon formation of the supramolecular polymers, the preferred helical stacking of heptazine introduces circular polarization of absorption and fluorescence. The magnetic transition dipole moments for the S1 ← S0 and S1 → S0 are determined to be 0.35 and 0.36 Bohr magneton, respectively. These high values of magnetic transition dipole moments support the intramolecular charge transfer nature of the lowest excited state from nitrogen to carbon in heptazine and further confirm the degeneracy of S1 and T1.
Collapse
Affiliation(s)
- Fan Xu
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Hao Su
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Joost J. B. van der Tol
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Stef A. H. Jansen
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Youxin Fu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh4, Groningen 9747AG, Netherlands
| | - Giulia Lavarda
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Ghislaine Vantomme
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Stefan Meskers
- Institute
for Complex Molecular Systems and Molecular Materials and Nanosystems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
- School
of Chemistry and RNA Institute, UNSW, Sydney NSW 2052, Australia
| |
Collapse
|
49
|
Long G, Deng Y, Zhao W, Zhou G, Broer DJ, Feringa BL, Chen J. Photoresponsive Biomimetic Functions by Light-Driven Molecular Motors in Three Dimensionally Printed Liquid Crystal Elastomers. J Am Chem Soc 2024; 146:13894-13902. [PMID: 38728606 PMCID: PMC11117400 DOI: 10.1021/jacs.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Despite the fascinating developments in design and synthesis of artificial molecular machines operating at the nanoscales, translating molecular motion along multiple length scales and inducing mechanical motion of a three-dimensional macroscopic entity remains an important challenge. The key to addressing this amplification of motion relies on the effective organization of molecular machines in a well-defined environment. By taking advantage of long-range orientational order and hierarchical structures of liquid crystals and unidirectional rotation of light-driven molecular motors, we report here photoresponsive biomimetic functions of liquid crystal elastomers (LCEs) by the repetitive unidirectional rotation of molecular motors using 3D printing. Molecular motors were built in the main chain of liquid crystals oligomers to serve as photoactuators. The oligomers were then used as the ink, and liquid crystal elastomers with different morphologies were printed. The obtained LCEs are able to conduct multiple types of motions including bending, helical coiling, closing of petals, and flipping of wings of a butterfly upon UV illumination, which paves the way for future design of responsive materials with enhanced complex actuating functions.
Collapse
Affiliation(s)
- Guiying Long
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Yanping Deng
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wei Zhao
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
| | - Dirk J. Broer
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ben L. Feringa
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Jiawen Chen
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
50
|
Wang Z, Guo Z, Liu Y, Cui L, Wang Y, Yu H, Ji L. Photoisomerization and thermal reconstruction induced supramolecular chirality inversion in nanofiber determined by minority isomer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124138. [PMID: 38503253 DOI: 10.1016/j.saa.2024.124138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Here, amphiphile GCH based on glutamide-cyanostilbene is designed and synthesized, it is found that it can assembly in acetonitrile, and shows circular dichroism signals. After Z-E isomerizaition by UV irradiation, the CD signal of the assembly can be inverted. Unexpectedly, after another heating and cooling process, the circular dichroism signals can be totally inverted even though the E-isomers are in minority. Finally, the molecular dynamics (MD) simulations deeply elucidate the supramolecuar chirality inversion mechanism. This work brings some new insights into the control of chirality inversion, which may provide a perspective for the smart chiroptical materials construction.
Collapse
Affiliation(s)
- Zhixia Wang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ziwei Guo
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Linfeng Cui
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Yuanyuan Wang
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|