1
|
Lu T, Lin W, Guo Y, Shao M, Bai Y, Tommaso DD, Wang X, Zhang X. Metal nanoparticles encapsulation within multi-shell spongy-core porous microspheres for efficient tandem catalysis. J Colloid Interface Sci 2025; 679:705-713. [PMID: 39388956 DOI: 10.1016/j.jcis.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The "one-pot" cascade process involves multiple catalytic conversions followed by a single workup stage. This method has the capability to optimize catalytic efficiency by reducing chemical processes. The key to achieving cascade reactions lies in designing cascade catalysts with well-dispersed, stably immobilized, and accessible noble metal nanoparticles for multiple catalytic conversions. This work presents a strategy for creating long-lasting cascade catalysts by encapsulating Ru and Pd nanoparticles within multi-shell spongy-core porous microspheres (MS-SC-PMs). This cascade catalyst strategy enables the continuous hydrogenation of nitrobenzene to aniline and further to cyclohexylamine, demonstrating both high selectivity and conversion rates. Notably, this approach overcomes the typical challenges associated with noble metal nanoparticles, such as poor stability and recyclability, as it maintains its performance over ten consecutive cycles. Additionally, the MS-SC-PMs have the versatility to encapsulate various metal nanoparticles, providing catalytic versatility, scalability, and a promising avenue for designing long-lasting catalysts loaded with nanoparticles.
Collapse
Affiliation(s)
- Tao Lu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wuyang Lin
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yingchun Guo
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Huzhou University, Huzhou 313000, China
| | - Mengliu Shao
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yuanyuan Bai
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Devis Di Tommaso
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Digital Environment Research Institute, Queen Mary University of London, Empire House, 67-75 New Road, London E1 1HH, UK.
| | - Xiaomei Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Xu Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, China.
| |
Collapse
|
2
|
Ma Y, Li H, Liu J, Zhao D. Understanding the chemistry of mesostructured porous nanoreactors. Nat Rev Chem 2024; 8:915-931. [PMID: 39443751 DOI: 10.1038/s41570-024-00658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Porous nanoreactors mimic the structures and functions of cells, providing an adaptable material with multiple functions and effects. These reactors can be nanoscale containers and shuttles or catalytic centres, drawing in reactants for cascading reactions with multishelled designs. The detailed construction of multi-level reactors at the nanometre scale remains a great challenge, but to regulate the reaction pathways within a reactor, designs of great intricacy are required. In this Review, we define the basic structural characteristics of porous nanoreactors, while also discussing the design principles and synthetic chemistry of these structures with respect to their emerging applications in energy storage and heterogeneous catalysis. Finally, we describe the difficulties of the structural optimization of these reactors and propose possible ways to improve porous nanoreactor design for future applications.
Collapse
Affiliation(s)
- Yuzhu Ma
- College of Energy Materials and Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Haitao Li
- College of Energy Materials and Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Jian Liu
- College of Energy Materials and Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
- Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, P. R. China.
- Laboratory of Advanced Materials, Fudan University, Shanghai, P. R. China.
- State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, P. R. China.
| |
Collapse
|
3
|
Tao J, Zou K, Zhou J, Wu H, Xu L, Wang J, Tao X, Huang H, Yao Z. Phenolic multiple kinetics-dynamics and discrete crystallization thermodynamics in amorphous carbon nanostructures for electromagnetic wave absorption. Nat Commun 2024; 15:10337. [PMID: 39609414 PMCID: PMC11604784 DOI: 10.1038/s41467-024-54770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
The lack of a chemical platform with high spatial dimensional diversity, coupled with the elusive multi-scale amorphous physics, significantly hinder advancements in amorphous electromagnetic wave absorption (EWA) materials. Herein, we present a synergistic engineering of phenolic multiple kinetic dynamics and discrete crystallization thermodynamics, to elucidate the origin of the dielectric properties in amorphous carbon and the cascade effect during EWA. Leveraging the scalability of phenolic synthesis, we design dozens of morphologies from the bottom up and combine with in-situ pyrolysis to establish a nanomaterial ecosystem of hundreds of amorphous carbon materials. Based on controlled discrete crystallization, nano-curvature regulation of spatial inversion symmetry-breaking structures, and surface electric field enhancement from multi-shell structures, the multi-scale charge imbalance triggers intense polarization. Both experiments and theories show that each scale is essential, which collectively drives broadband absorption (8.46 GHz) and efficient dissipation (-54.77 dB) of EWA performance. Our work on the amorphous nanostructure platform and the cascade effect can contribute to uncovering the missing pieces in amorphous physics and EWA research.
Collapse
Affiliation(s)
- Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Kexin Zou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jintang Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Hongjing Wu
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China.
| | - Linling Xu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Jin Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Xuewei Tao
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, China
| | - Hexia Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Zhengjun Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| |
Collapse
|
4
|
Zhu N, Niu X, Liang Z, Tian Y, Yin H, Qiao Z, Zhang Z. Cell-Inspired Microreactor with Compartmentalized Active Sites for Development of Cascade Catalysis System in Biosensing. Anal Chem 2024; 96:18736-18744. [PMID: 39535554 DOI: 10.1021/acs.analchem.4c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Enzymatic cascade reactions with high activity and specificity in living cells always benefit from multicompartmentalized organelles that provide separately confined spaces for enzymes, avoiding their mutual interference to ensure the high-efficiency operation of necessary vital movements. Inspired by this, we designed a 3D spherical microreactor (Au@H-APF@Pt) with biomimetic cascade catalysis for glucose detection. First, ultrasmall gold nanoparticles were immobilized in situ on the internal cavities of hollow 3-aminophenol formaldehyde resin (H-APF) nanospheres, along with glucose oxidase activity. Then, platinum nanoparticles (PtNPs) with peroxide-like activity were reduced surrounding the outer layer of the H-APF nanospheres. Similar to the cell structure, different metal sites in this bifunctional microreactor operated independently, bringing higher catalytic activity and selectivity and thus being synergistically capable of a cascade reaction to catalyze the substrate for glucose detection. This cell-mimicking microreactor (Au@H-APF@Pt) was successfully applied in glucose colorimetric detection, showing a 1.9-fold activity enhancement compared to direct mixing (Au/Pt). The observed low catalytic activity was attributed to the extended time for transferring hydrogen peroxide (H2O2) from Au NPs to the solution and then to PtNPs. Integrating a smartphone APP, a real-time, visual, and Au@H-APF@Pt-based hydrogel sensor for glucose detection was also proposed. Satisfactory results highlight that this cell-mimicking microreactor offers a very successful strategy to improve the efficiency of cascade catalysis systems in biosensing.
Collapse
Affiliation(s)
- Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zheng Liang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yixing Tian
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyi Yin
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ze Qiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Li Y, Zhang W, Wang Z, Cui Z, Shi L, Bu T, Sun J, Cheng J, Yang Q, Wang J. Bidirectional "Win-Win": Asymmetrical Nanobowl-Coupled Aggregation-Induced Emissive Nanosilicon-Enhanced Immunochromatographic Strips for the Ultrasensitive Detection of Salmonella typhimurium. Anal Chem 2024; 96:18204-18213. [PMID: 39485239 DOI: 10.1021/acs.analchem.4c04403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The lack of nanoprobes with an efficient signal response and overlook of cooperation between nanoprobes can be responsible for the unsatisfactory analytical performance of immunochromatographic strips (ITSs). Herein, asymmetrical nanobowl-confined innumerable gold nanoparticles (AuNPs) (AuNPs@AFRNBs) to enhance the light absorption are developed for quenching the fluorescence of aggregation-induced emissive (AIE) nanosilicons, which is used for the construction of a bidirectional complementary-enhanced ITS (BC-ITS) to ultrasensitively detect Salmonella typhimurium (S. typhimurium). Briefly, density functional theory-screened AIEgens with highly fluorescent brightness are confined in nanosilicons, and the nanoconfinement has improved the fluorescent brightness by 6.78-fold compared to the free AIEgens. Moreover, the substituent group effect has also enhanced the fluorescence of the prepared fluorescent nanosilicon by 10,000-fold in ITSs. By virtue of the superior light absorption of AuNPs@AFRNBs, the BC-ITS exhibits a bidirectional "win-win" performance for the sensitive monitoring of S. typhimurium: a "turn-on" mode with a high-brightness colorimetric response and an inverse "turn-off" fluorescence response, whose limits of detection are 364 and 302 CFU mL-1, respectively, which is approximately 100-fold more sensitive than the traditional AuNPs-ITS. Furthermore, the BC-ITS can be successfully used to identify S. typhimurium in milk, illustrating the superiority of the developed BC-ITS in point-of-care diagnosis.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenrui Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ziqi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Wang K, Wang R, Zhang S, Wang M, He Z, Chen H, Ho SH. Hollow Nanoreactors Unlock New Possibilities for Persulfate-Based Advanced Oxidation Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401796. [PMID: 38966879 DOI: 10.1002/smll.202401796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Indexed: 07/06/2024]
Abstract
As a novel type of catalytic material, hollow nanoreactors are expected to bring new development opportunities in the field of persulfate-based advanced oxidation processes due to their peculiar void-confinement, spatial compartmentation, and size-sieving effects. For such materials, however, further clarification on basic concepts and construction strategies, as well as a discussion of the inherent correlation between structure and catalytic activity are still required. In this context, this review aims to provide a state-of-the-art overview of hollow nanoreactors for activating persulfate. Initially, hollow nanoreactors are classified according to the constituent components of the shell structure and their dimensionality. Subsequently, the different construction strategies of hollow nanoreactors are described in detail, while common synthesis methods for these construction strategies are outlined. Furthermore, the most representative advantages of hollow nanoreactors are summarized, and their intrinsic connections to the nanoreactor structure are elucidated. Finally, the challenges and future prospects of hollow nanoreactors are presented.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Shiyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Meng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Zixiang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Honglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, P. R. China
| |
Collapse
|
7
|
Li Y, Cui Z, Shi L, Bao Q, Shu R, Zhu W, Zhang W, Ji Y, Shen Y, Cheng J, Wang J. Asymmetric Nanobowl Confinement-Engineered "Plasmonic Storms" for Machine Learning-Assisted Ultrasensitive Immunochromatographic Assay of Pathogens. Anal Chem 2024. [PMID: 39252431 DOI: 10.1021/acs.analchem.4c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Efficient field enhancement effects through plasmonic chemistry for ultrasensitive biosensing still face a great challenge. Herein, nanoconfinement engineering accumulation and synergistic effects are used to develop a "plasmonic storms" strategy with a high field enhancement effect, and gold nanoparticles (AuNPs) are used as active sites for a proof of concept because of their distinctive localized surface plasmon resonance and neighborly coupled electromagnetic field. Briefly, a large number of AuNPs are selectively and accurately stacked in the confined nanocavity of the bowl-like nanostructure through an in situ-synthesized strategy, which provides a space for strong coupling of electromagnetic fields between these adjacent AuNPs, forming "plasmonic storms" with an enhanced field that is 3 orders of magnitude higher than that of free AuNPs. The proposed nanoconfinement-engineered "plasmonic storms" are demonstrated by surface-enhanced Raman scattering (SERS) and photothermal experiments and theoretically visualized by finite element simulation. Finally, the proposed "plasmonic storms" are used for enhanced colorimetric/SERS/photothermal immunochromatographic assay to detect Salmonella typhimurium with the help of a machine learning algorithm, achieving a low limit of detection of 142 CFU mL-1, highlighting the potential of nanoconfinement in biosensing.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Qinyuan Bao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Wang A, Ma Y, Zhao D. Pore engineering of Porous Materials: Effects and Applications. ACS NANO 2024; 18:22829-22854. [PMID: 39152943 DOI: 10.1021/acsnano.4c08708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Porous materials, characterized by their controllable pore size, high specific surface area, and controlled space functionality, have become cross-scale structures with microenvironment effects and multiple functions and have gained tremendous attention in the fields of catalysis, energy storage, and biomedicine. They have evolved from initial nanopores to multiscale pore-cavity designs with yolk-shell, multishells, or asymmetric structures, such as bottle-shaped, multichambered, and branching architectures. Various synthesis strategies have been developed for the interfacial engineering of porous structures, including bottom-up approaches by using liquid-liquid or liquid-solid interfaces "templating" and top-down approaches toward chemical tailoring of polymers with different cross-linking degrees, as well as interface transformation using the Oswald ripening, Kirkendall effect, or atomic diffusion and rearrangement methods. These techniques permit the design of functional porous materials with diverse microenvironment effects, such as the pore size effect, pore enrichment effect, pore isolation and synergistic effect, and pore local field enhancement effect, for enhanced applications. In this review, we delve into the bottom-up and top-down interfacial-oriented synthesis approaches of porous structures with advanced structures and microenvironment effects. We also discuss the recent progress in the applications of these collaborative effects and structure-activity relationships in the areas of catalysis, energy storage, electrochemical conversion, and biomedicine. Finally, we outline the persisting obstacles and prospective avenues in terms of controlled synthesis and functionalization of porous engineering. The perspectives proposed in this paper may contribute to promote wider applications in various interdisciplinary fields within the confined dimensions of porous structures.
Collapse
Affiliation(s)
- Aixia Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yuzhu Ma
- College of Energy Materials and Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Pi Y, Li H, Liu J. Design of hollow structured nanoreactors for liquid-phase hydrogenations. Chem Commun (Camb) 2024; 60:9340-9351. [PMID: 39118564 DOI: 10.1039/d4cc02837f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inspired by the attractive structures and functions of natural matter (such as cells, organelles and enzymes), chemists are constantly exploring innovative material platforms to mimic natural catalytic systems, particularly liquid-phase hydrogenations, which are of great significance for chemical upgrading and synthesis. Hollow structured nanoreactors (HSNRs), featuring unique nanoarchitectures and advantageous properties, offer new opportunities for achieving excellent catalytic activity, selectivity, stability and sustainability. Notwithstanding the great progress made in HSNRs, there still remain the challenges of precise synthetic chemistry, and mesoscale catalytic kinetic investigation, and smart catalysis. To this extent, we provide an overview of recent developments in the synthetic chemistry of HSNRs, the unique characteristics of these materials and catalytic mechanisms in HSNRs. Finally, a brief outlook, challenges and further opportunities for their synthetic methodologies and catalytic application are discussed. This review might promote the creation of further HSNRs, realize the sustainable production of fine chemicals and pharmaceuticals, and contribute to the development of materials science.
Collapse
Affiliation(s)
- Yutong Pi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Haitao Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Jian Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| |
Collapse
|
10
|
Wang B, Wang Y, Lan Y, Lu G, Liu L, Tang T, Li M, Cheng Y, Xiao J, Li X. Integrated Design for Discrete Sulfur@Polymer Nanoreactor with Tandem Connection as Lithium-Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2024; 63:e202406693. [PMID: 38781083 DOI: 10.1002/anie.202406693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Apart from electrode material modification, architecture design and optimization are important approaches for improving lithium-sulfur battery performance. Herein, an integrated structure with tandem connection is constructed by confining nanosulfur (NS) in conductive poly(3,4-ethylenedioxythiophene) (PEDOT) reaction chambers, forming an interface of discrete independent nanoreactor units bonded onto carbon nanotubes (noted as CNT/NS@PEDOT). The unique spatial confinement and concentration gradients of sulfur@PEDOT nanoreactors (SP-NRs) can promote reaction kinetics while facilitating rapid polysulfide transformation and minimizing dissolution and diffusion losses. Meanwhile, overall ultrahigh energy input and output are achieved through tandem connection with carbon nanotubes, isolation with PEDOT coating, and synergistic multiplicative effects among SP-NRs. As a result, it delivers a high initial discharge capacity of 1246 mAh g-1 at 0.1 C and 918 mAh g-1 at 1 C, the low capacity decay rate per lap of 0.011 % is achieved at a current density of 1 C after 1000 cycles. This research emphasizes the innovative structural design to provide a fresh trajectory for the further advancement of high-performance energy storage devices.
Collapse
Affiliation(s)
- Bin Wang
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Yu Wang
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Yudong Lan
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Guiling Lu
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Ling Liu
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Tao Tang
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Ming Li
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Yong Cheng
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Jianrong Xiao
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| | - Xinyu Li
- College of Physics and Electronic Information Engineering & Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
11
|
Qin R, Chen G, Feng X, Weng J, Han Y. Ru/Ir-Based Electrocatalysts for Oxygen Evolution Reaction in Acidic Conditions: From Mechanisms, Optimizations to Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309364. [PMID: 38501896 DOI: 10.1002/advs.202309364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Indexed: 03/20/2024]
Abstract
The generation of green hydrogen by water splitting is identified as a key strategic energy technology, and proton exchange membrane water electrolysis (PEMWE) is one of the desirable technologies for converting renewable energy sources into hydrogen. However, the harsh anode environment of PEMWE and the oxygen evolution reaction (OER) involving four-electron transfer result in a large overpotential, which limits the overall efficiency of hydrogen production, and thus efficient electrocatalysts are needed to overcome the high overpotential and slow kinetic process. In recent years, noble metal-based electrocatalysts (e.g., Ru/Ir-based metal/oxide electrocatalysts) have received much attention due to their unique catalytic properties, and have already become the dominant electrocatalysts for the acidic OER process and are applied in commercial PEMWE devices. However, these noble metal-based electrocatalysts still face the thorny problem of conflicting performance and cost. In this review, first, noble metal Ru/Ir-based OER electrocatalysts are briefly classified according to their forms of existence, and the OER catalytic mechanisms are outlined. Then, the focus is on summarizing the improvement strategies of Ru/Ir-based OER electrocatalysts with respect to their activity and stability over recent years. Finally, the challenges and development prospects of noble metal-based OER electrocatalysts are discussed.
Collapse
Affiliation(s)
- Rong Qin
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Xueting Feng
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Jiena Weng
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
12
|
Xu J, Wang Y, Zhu M, Wang R, Jiang H, Bo D, Jin C, Liu X. Construction of Functional Phenolic Resin and Carbon Hollow Spheres by Manipulating Structural Inhomogeneity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9039-9048. [PMID: 38635376 DOI: 10.1021/acs.langmuir.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Hollow carbonaceous spheres are extraordinarily attractive for their unique structural features and wide applications in various fields. Herein, a facile and effective synthesis methodology based on the extended Stöber process for construction of phenolic resin hollow spheres has been presented. Combined with a series of characterization techniques, the synthesis process was systematically investigated, and a possible synthesis mechanism was proposed. It is revealed that the structural inhomogeneity of the polymer product achieved by using dodecylamine and alkane is responsible for the formation of hollow architecture, which depends on spontaneous selective dissolution during the synthesis process. Different metal-doped carbonaceous hollow spheres can be obtained by introducing corresponding precursors into the synthetic system and meeting requirements of different application fields. This work presented a novel synthesis strategy of hollow carbonaceous spheres, which is significant for building a new platform of advanced functional carbon-based composites.
Collapse
Affiliation(s)
- Jiaqi Xu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yuchen Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Mengxuan Zhu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Heng Jiang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Dechen Bo
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Changzi Jin
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Xin Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
13
|
Lin H, Song C, Tang Z, Zhang S, Lu R. Anisotropic hat-like carbon nanoparticles with tunable inner hollow architectures by growth and dissolution kinetics control. J Colloid Interface Sci 2024; 655:699-708. [PMID: 37976743 DOI: 10.1016/j.jcis.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The synthesis of nanoparticles with a hollow and anisotropic structure have attracted considerable interest in synthetic methodology and diverse potential applications, but endowing them with delicate control of the hollow structure and outer anisotropic morphology remains a significant challenge. In this study, anisotropic nanoparticles with hat-like morphology are prepared via a kinetics-controlled growth and dissolution strategy. Starting from forming solid polymer nanospheres with location-specific compositional chemistry distribution based on the distinct reactivity and growth kinetics of two reactants. After etching by acetone, the inhomogeneity nanospheres transformed to hat-like nanoparticles through the kinetics-controlled dissolution of two kinds of precursors. Due to chemical etching and repolymerization reactions occurring within a single nanospheres, an autonomous asymmetrical repolymerization and concave process are observed, which is novel at the nanoscale. Moreover, regulating the amount of ammonia significantly impacts the growth kinetics of precursors, primarily affecting the composition and subsequent dissolution process of solid polymer nanospheres, which play an important role in constructing polymer nanoparticles with varying morphologies and internal structures. The as-synthesized hat-like carbon nanoparticles with an open carbon structure, highly porous shell, and favorable N-doped functionalities demonstrate a potential candidate for lithium-sulfur batteries.
Collapse
Affiliation(s)
- Hua Lin
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Caicheng Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhicheng Tang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Rongwen Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
14
|
Liu X, Gong L, Wang L, Chang C, Su P, Dou Y, Dou SX, Li Y, Gong F, Liu J. Enabling Ultrafine Ru Nanoparticles with Tunable Electronic Structures via a Double-Shell Hollow Interlayer Confinement Strategy toward Enhanced Hydrogen Evolution Reaction Performance. NANO LETTERS 2024; 24:592-600. [PMID: 38039420 PMCID: PMC10797610 DOI: 10.1021/acs.nanolett.3c03514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023]
Abstract
Engineering of the catalysts' structural stability and electronic structure could enable high-throughput H2 production over electrocatalytic water splitting. Herein, a double-shell interlayer confinement strategy is proposed to modulate the spatial position of Ru nanoparticles in hollow carbon nanoreactors for achieving tunable sizes and electronic structures toward enhanced H2 evolution. Specifically, the Ru can be anchored in either the inner layer (Ru-DSC-I) or the external shell (Ru-DSC-E) of double-shell nanoreactors, and the size of Ru is reduced from 2.2 to 0.9 nm because of the double-shell confinement effect. The electronic structures are efficiently optimized thereby stabilizing active sites and lowering the reaction barrier. According to finite element analysis results, the mesoscale mass diffusion can be promoted in the double-shell configuration. The Ru-DSC-I nanoreactor exhibits a much lower overpotential (η10 = 73.5 mV) and much higher stability (100 mA cm-2). Our work might shed light on the precise design of multishell catalysts with efficient refining electrostructures toward electrosynthesis applications.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
- Institute
of Industrial Catalysis, Zhejiang University
of Technology, Hangzhou Chaowang Road 18, Hangzhou, Zhejiang 310014, PR China
| | - Lihua Gong
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
| | - Liwei Wang
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Chaoqun Chang
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
| | - Panpan Su
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Yuhai Dou
- Institute
of Energy Materials Science, University
of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Shi Xue Dou
- Institute
of Energy Materials Science, University
of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ying Li
- Institute
of Industrial Catalysis, Zhejiang University
of Technology, Hangzhou Chaowang Road 18, Hangzhou, Zhejiang 310014, PR China
| | - Feilong Gong
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
| | - Jian Liu
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
- DICP-Surrey
Joint Centre for Future Materials, Department
of Chemical and Process Engineering and Advanced Technology Institute
of University of Surrey, Guildford, Surrey GU2 7XH, U.K.
- College
of Chemistry and Chemical Engineering, Inner
Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| |
Collapse
|
15
|
Lu T, Zhang S, Zhou Q, Wang R, Pang H, Yang J, Zhang M, Xu L, Xi S, Sun D, Jin C, Tang Y. A Versatile Extended Stöber Approach to Monodisperse Sub-40 nm Carbon Nanospheres for Stabilizing Atomically Dispersed Fe─N 4 Sites Toward Efficient Oxygen Reduction Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303329. [PMID: 37438567 DOI: 10.1002/smll.202303329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Indexed: 07/14/2023]
Abstract
The development of atomically dispersed iron-nitrogen-carbon (Fe─N─C) catalysts as an alternative to precious platinum holds great potential for the substantial progress of a variety of oxygen reduction reaction (ORR)-associated energy conversion technologies. Nevertheless, the precise synthesis of Fe─N─C single atomic catalysts (SACs) with a high density of accessible active sites and pronounced electrocatalytic performance still remains an enormous challenge. Herein, an innovative extended Stöber method is designed for the controllable preparation of monodisperse small-sized N-doped carbon colloidal nanospheres (≈40 nm) anchoring atomically isolated Fe─N4 sites (abbreviated as Fe-SA@N-CNSs hereafter) with a narrow size distribution and high uniformity. Benefiting from the single Fe─N4 moieties and the unique spherical carbon substrate, the resultant Fe-SA@N-CNSs exhibit excellent ORR activity, outstanding long-term durability, and methanol tolerance in KOH electrolyte. More impressively, when further assembled into a flexible solid-state rechargeable zinc-air battery (ZAB), the Fe-SA@N-CNSs-driven ZAB delivers a higher open circuit voltage, a larger power density, and robust cycling/mechanical stability, outperforming the state-of-the-art Pt/C-based counterpart and further testifying the great potential of the as-prepared Fe-SA@N-CNSs in diverse ORR-related practical energy devices. The developed extended Stöber method provides an efficient and versatile avenue toward the preparation of a series of well-defined SACs for diverse electrocatalytic systems.
Collapse
Affiliation(s)
- Tingyu Lu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Sike Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qixing Zhou
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Rui Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems and Center of Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore, 627833, Singapore
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material of Jiangsu Province, Nanjing, 210042, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
16
|
Pi Y, Cui L, Luo W, Li H, Ma Y, Ta N, Wang X, Gao R, Wang D, Yang Q, Liu J. Design of Hollow Nanoreactors for Size- and Shape-Selective Catalytic Semihydrogenation Driven by Molecular Recognition. Angew Chem Int Ed Engl 2023; 62:e202307096. [PMID: 37394778 DOI: 10.1002/anie.202307096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Mimicking the structures and functions of cells to create artificial organelles has spurred the development of efficient strategies for production of hollow nanoreactors with biomimetic catalytic functions. However, such structure are challenging to fabricate and are thus rarely reported. We report the design of hollow nanoreactors with hollow multishelled structure (HoMS) and spatially loaded metal nanoparticles. Starting from a molecular-level design strategy, well-defined hollow multishelled structure phenolic resins (HoMS-PR) and carbon (HoMS-C) submicron particles were accurately constructed. HoMS-C serves as an excellent, versatile platform, owing to its tunable properties with tailored functional sites for achieving precise spatial location of metal nanoparticles, internally encapsulated (Pd@HoMS-C) or externally supported (Pd/HoMS-C). Impressively, the combination of the delicate nanoarchitecture and spatially loaded metal nanoparticles endow the pair of nanoreactors with size-shape-selective molecular recognition properties in catalytic semihydrogenation, including high activity and selectivity of Pd@HoMS-C for small aliphatic substrates and Pd/HoMS-C for large aromatic substrates. Theoretical calculations provide insight into the pair of nanoreactors with distinct behaviors due to the differences in energy barrier of substrate adsorption. This work provides guidance on the rational design and accurate construction of hollow nanoreactors with precisely located active sites and a finely modulated microenvironment by mimicking the functions of cells.
Collapse
Affiliation(s)
- Yutong Pi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linxia Cui
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China
| | - Wenhao Luo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China
| | - Haitao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Yanfu Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Na Ta
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rui Gao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Science and Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- China University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, GU2 7XH, Guildford, Surrey, UK
| |
Collapse
|
17
|
Meng X, Qiu D. Surface morphology regulation of colloidal Nanoparticles: A convenient Kinetically-Controlled seeded growth strategy. J Colloid Interface Sci 2023; 633:284-290. [PMID: 36459933 DOI: 10.1016/j.jcis.2022.11.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Except for chemical composition, surface morphology may endue colloidal nanoparticles with special interfacial behaviors, which is highly desired in certain scenarios, for example, ultra-stable Pickering emulsion for pharmaceutical applications where only limited chemicals are allowed. Herein, silica colloidal nanoparticle was chosen as a demo to illustrate a kinetically-controlled seeded growth strategy for the surface morphology regulation of colloidal nanoparticles. EXPERIMENTS Surface chemical heterogeneity was primarily introduced to the silica seed nanoparticles by a seeded growth process in the presence of mixed silicate moieties with thermodynamical incompatibility. Then a further kinetically-controlled seeded growth step was performed to regulate the surface morphology of silica nanoparticles by promoting the selective condensation of tetraethoxysilane on the hydrophilic microdomains. FINDINGS Upon reducing the growing rate, tetraethoxysilane hydrolysates tend to condensate on silica microdomains, resulting in the formation of raspberry-like nanoparticles. The generality of the kinetically-controlled seeded growth strategy was validated by its success on differently-sized silica seeds modified with a range of silane coupling agents. This established strategy is facile and effective for massive production of raspberry-like silica colloidal nanoparticles with precisely-designed surface morphology and size, offering an ideal platform for the investigation on the exclusive contribution of morphology to the interfacial behaviors of nanoparticles.
Collapse
Affiliation(s)
- Xiaohui Meng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, R. P. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, R. P. China; University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
18
|
Zhou S, Su Y, Li G, Wang X, Liu D, Zhu G. Zincophilic polyurethane-based porous film enables dendrite-free zinc anode for reversible aqueous zinc-based batteries. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|