1
|
Akiyama M. Expression of Elastin, F-Box and WD-40 Domain-Containing Protein 2, Fibrillin-1, and Alpha-Smooth Muscle Actin in Utilized Blood Vessels for explant culture-A New 3D in Vitro Vascular Model from Bovine Legs. Cell Biochem Biophys 2024:10.1007/s12013-024-01647-5. [PMID: 39731648 DOI: 10.1007/s12013-024-01647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 12/30/2024]
Abstract
Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum. Here, it is hypothesized that FBXW2 has different roles in periosteum and blood vessels. Furthermore, if FBXW2 would be a component of elastic fiber of blood vessels, FBXW2 would be expressed where the well-known components elastin and fibrillin-1 are expressed. For this purpose, explant culture of blood vessels from bovine legs were performed for 5 weeks. It was found that elastin and FBXW2 were expressed within the elastic laminae, whereas fibrillin-1 was expressed around them. After explant culture, elastin and FBXW2 sustained the shape of the elastic fibers in the elastic lamina, whereas the fibrillin-1-rich layer became wide range and encompass toward intima and adventitia layers. Hematoxylin Eosin staining and immunohistochemistry of alpha-smooth muscle actin (α-SMA) revealed weakened media layer after 5 weeks culture. Although fibrillin-1 is a well-known component of elastic fibers and elastin, this study revealed that the location of fibrillin-1 is different from that of elastin, whereas FBXW2 is present in the same region as elastin from day 0 to week 5. In blood vessels, fibrillin-1 fibers around the elastic lamina may be oxytalan fibers. Thus, the proposed 3D in vitro model in this study is useful for identifying the mechanisms of vascular degradation.
Collapse
Affiliation(s)
- Mari Akiyama
- Department of Biomaterials/Osaka Dental University, 8-1, Kuzuhahanazono-cho, Osaka, 573-1121, Japan.
| |
Collapse
|
2
|
Wang Z, Mithieux SM, Blum KM, Yi T, Matsuzaki Y, Pham NTH, Hawkett BS, Shinoka T, Breuer CK, Weiss AS. Regional Differences in Vascular Graft Degradation and Regeneration Contribute to Dilation. Tissue Eng Part A 2024. [PMID: 39302061 DOI: 10.1089/ten.tea.2024.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Severe coronary artery disease is often treated with a coronary artery bypass graft using an autologous blood vessel. When this is not available, a commercially available synthetic graft can be used as an alternative but is associated with high failure rates and complications. Therefore, the research focus has shifted toward the development of biodegradable, regenerative vascular grafts that can convert into neoarteries. We previously developed an electrospun tropoelastin (TE)-polyglycerol sebacate (PGS) vascular graft that rapidly regenerated into a neoartery, with a cellular composition and extracellular matrix approximating the native aorta. We noted, however, that the TE-PGS graft underwent dilation until sufficient neotissue had been regenerated. This study investigated the mechanisms behind the observed dilation following TE-PGS vascular graft implantation in mice. We saw more pronounced dilation at the graft middle compared with the graft proximal and graft distal regions at 8 weeks postimplantation. Histological analysis revealed less degradation at the graft middle, although the remaining graft material appeared pitted, suggesting compromised structural and mechanical integrity. We also observed delayed cellular infiltration and extracellular matrix (ECM) deposition at the graft middle, corresponding with the area's reduced ability to resist dilation. In contrast, the graft proximal region exhibited greater degradation and significantly enhanced cellular infiltration and ECM regeneration. The nonuniform dilation was attributed to the combined effect of the regional differences in graft degradation and arterial regeneration. Consideration of these findings is crucial for graft optimization prior to its use in clinical applications.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tai Yi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nguyen T H Pham
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, New South Wales, Australia
| | - Brian S Hawkett
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, New South Wales, Australia
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Ershad-Langroudi A, Babazadeh N, Alizadegan F, Mehdi Mousaei S, Moradi G. Polymers for implantable devices. J IND ENG CHEM 2024; 137:61-86. [DOI: 10.1016/j.jiec.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Lau K, Reichheld S, Xian M, Sharpe SJ, Cerruti M. Directed Assembly of Elastic Fibers via Coacervate Droplet Deposition on Electrospun Templates. Biomacromolecules 2024; 25:3519-3531. [PMID: 38742604 DOI: 10.1021/acs.biomac.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Elastic fibers provide critical elasticity to the arteries, lungs, and other organs. Elastic fiber assembly is a process where soluble tropoelastin is coacervated into liquid droplets, cross-linked, and deposited onto and into microfibrils. While much progress has been made in understanding the biology of this process, questions remain regarding the timing of interactions during assembly. Furthermore, it is unclear to what extent fibrous templates are needed to guide coacervate droplets into the correct architecture. The organization and shaping of coacervate droplets onto a fiber template have never been previously modeled or employed as a strategy for shaping elastin fiber materials. Using an in vitro system consisting of elastin-like polypeptides (ELPs), genipin cross-linker, electrospun polylactic-co-glycolic acid (PLGA) fibers, and tannic acid surface coatings for fibers, we explored ELP coacervation, cross-linking, and deposition onto fiber templates. We demonstrate that integration of coacervate droplets into a fibrous template is primarily influenced by two factors: (1) the balance of coacervation and cross-linking and (2) the surface energy of the fiber templates. The success of this integration affects the mechanical properties of the final fiber network. Our resulting membrane materials exhibit highly tunable morphologies and a range of elastic moduli (0.8-1.6 MPa) comparable to native elastic fibers.
Collapse
Affiliation(s)
- Kirklann Lau
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| | - Sean Reichheld
- Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Room 20.9714, Toronto, Ontario M5G 1X8, Canada
| | - Mingqian Xian
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| | - Simon J Sharpe
- Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Room 20.9714, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 5207, Toronto, Ontario M5S 1A8, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
5
|
Zoneff E, Wang Y, Jackson C, Smith O, Duchi S, Onofrillo C, Farrugia B, Moulton SE, Williams R, Parish C, Nisbet DR, Caballero-Aguilar LM. Controlled oxygen delivery to power tissue regeneration. Nat Commun 2024; 15:4361. [PMID: 38778053 PMCID: PMC11111456 DOI: 10.1038/s41467-024-48719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Oxygen plays a crucial role in human embryogenesis, homeostasis, and tissue regeneration. Emerging engineered regenerative solutions call for novel oxygen delivery systems. To become a reality, these systems must consider physiological processes, oxygen release mechanisms and the target application. In this review, we explore the biological relevance of oxygen at both a cellular and tissue level, and the importance of its controlled delivery via engineered biomaterials and devices. Recent advances and upcoming trends in the field are also discussed with a focus on tissue-engineered constructs that could meet metabolic demands to facilitate regeneration.
Collapse
Affiliation(s)
- Elizabeth Zoneff
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT, Australia
| | - Oliver Smith
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT, Australia
| | - Serena Duchi
- Department of Surgery, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Carmine Onofrillo
- Department of Surgery, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Brooke Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Simon E Moulton
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Richard Williams
- IMPACT, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Clare Parish
- The Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia.
| | - Lilith M Caballero-Aguilar
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Wang Z, Zhang M, Liu L, Mithieux SM, Weiss AS. Polyglycerol sebacate-based elastomeric materials for arterial regeneration. J Biomed Mater Res A 2024; 112:574-585. [PMID: 37345954 DOI: 10.1002/jbm.a.37583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Synthetic vascular grafts are commonly used in patients with severe occlusive arterial disease when autologous grafts are not an option. Commercially available synthetic grafts are confronted with challenging outcomes: they have a lower patency rate than autologous grafts and are currently unable to promote arterial regeneration. Polyglycerol sebacate (PGS), a non-toxic polymer with a tunable degradation profile, has shown promising results as a small-diameter vascular graft component that can support the formation of neoarteries. In this review, we first present an overview of the synthesis and modification of PGS followed by an examination of its mechanical properties. We then report on the performance, degradation, regeneration, and remodeling of PGS-based small-diameter vascular grafts, with a focus on efforts to reduce thrombosis, prevent dilation, and promote cellular residency and extracellular matrix regeneration that resembles the native artery in spatial distribution and organization. We also highlight recent advances in the incorporation of novel in situ cell sources for arterial regeneration and their potential application in PGS-based vascular grafts. Finally, we compare vascular grafts fabricated using PGS-based materials with other elastomeric alternatives.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Miao Zhang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- The University of Sydney Nano Institute, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
8
|
Ding X, Zhang Z, Kluka C, Asim S, Manuel J, Lee BP, Jiang J, Heiden PA, Heldt CL, Rizwan M. Pair of Functional Polyesters That Are Photo-Cross-Linkable and Electrospinnable to Engineer Elastomeric Scaffolds with Tunable Structure and Properties. ACS APPLIED BIO MATERIALS 2024; 7:863-878. [PMID: 38207114 PMCID: PMC10954299 DOI: 10.1021/acsabm.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A pair of alkyne- and thiol-functionalized polyesters are designed to engineer elastomeric scaffolds with a wide range of tunable material properties (e.g., thermal, degradation, and mechanical properties) for different tissues, given their different host responses, mechanics, and regenerative capacities. The two prepolymers are quickly photo-cross-linkable through thiol-yne click chemistry to form robust elastomers with small permanent deformations. The elastic moduli can be easily tuned between 0.96 ± 0.18 and 7.5 ± 2.0 MPa, and in vitro degradation is mediated from hours up to days by adjusting the prepolymer weight ratios. These elastomers bear free hydroxyl and thiol groups with a water contact angle of less than 85.6 ± 3.58 degrees, indicating a hydrophilic nature. The elastomer is compatible with NIH/3T3 fibroblast cells with cell viability reaching 88 ± 8.7% relative to the TCPS control at 48 h incubation. Differing from prior soft elastomers, a mixture of the two prepolymers without a carrying polymer is electrospinnable and UV-cross-linkable to fabricate elastic fibrous scaffolds for soft tissues. The designed prepolymer pair can thus ease the fabrication of elastic fibrous conduits, leading to potential use as a resorbable synthetic graft. The elastomers could find use in other tissue engineering applications as well.
Collapse
Affiliation(s)
- Xiaochu Ding
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Christopher Kluka
- Department of Materials Science and Engineering, Michigan Technological University, 609 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - James Manuel
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Jingfeng Jiang
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Patricia A. Heiden
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Caryn L. Heldt
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemical Engineering, Michigan Technological University, 203 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| |
Collapse
|
9
|
Behr JM, Wong YS, Venkatraman S. Small-Diameter Blood Vessel Substitutes: Biomimetic Approaches to Improve Patency. Biomimetics (Basel) 2024; 9:97. [PMID: 38392143 PMCID: PMC10886630 DOI: 10.3390/biomimetics9020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024] Open
Abstract
Small-dimeter blood vessels (<6 mm) are required in coronary bypass and peripheral bypass surgery to circumvent blocked arteries. However, they have poor patency rates due to thrombus formation, intimal hyperplasia at the distal anastomosis, and compliance mismatch between the native artery and the graft. This review covers the state-of-the-art technologies for improving graft patency with a focus on reducing compliance mismatch between the prosthesis and the native artery. The focus of this article is on biomimetic design strategies to match the compliance over a wide pressure range.
Collapse
Affiliation(s)
- Jean-Marc Behr
- SMD Swiss Medical Devices AG, 8222 Beringen, Switzerland
| | - Yee Shan Wong
- Biomedical Engineering, School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Subbu Venkatraman
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthTech, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
10
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
11
|
Dai Y, Wang W, Zhou X, li L, Tang Y, Shao M, Lyu F. Biomimetic Electrospun PLLA/PPSB Nanofibrous Scaffold Combined with Human Neural Stem Cells for Spinal Cord Injury Repair. ACS APPLIED NANO MATERIALS 2023; 6:5980-5993. [DOI: 10.1021/acsanm.3c00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yuan Dai
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Weizhong Wang
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200240, China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Linli li
- Department of Orthopedics, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Yuyi Tang
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200240, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Orthopedics, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
12
|
Goldman J, Liu SQ, Tefft BJ. Anti-Inflammatory and Anti-Thrombogenic Properties of Arterial Elastic Laminae. Bioengineering (Basel) 2023; 10:bioengineering10040424. [PMID: 37106611 PMCID: PMC10135563 DOI: 10.3390/bioengineering10040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Elastic laminae, an elastin-based, layered extracellular matrix structure in the media of arteries, can inhibit leukocyte adhesion and vascular smooth muscle cell proliferation and migration, exhibiting anti-inflammatory and anti-thrombogenic properties. These properties prevent inflammatory and thrombogenic activities in the arterial media, constituting a mechanism for the maintenance of the structural integrity of the arterial wall in vascular disorders. The biological basis for these properties is the elastin-induced activation of inhibitory signaling pathways, involving the inhibitory cell receptor signal regulatory protein α (SIRPα) and Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1). The activation of these molecules causes deactivation of cell adhesion- and proliferation-regulatory signaling mechanisms. Given such anti-inflammatory and anti-thrombogenic properties, elastic laminae and elastin-based materials have potential for use in vascular reconstruction.
Collapse
|
13
|
Antonova L, Kutikhin A, Sevostianova V, Lobov A, Repkin E, Krivkina E, Velikanova E, Mironov A, Mukhamadiyarov R, Senokosova E, Khanova M, Shishkova D, Markova V, Barbarash L. Controlled and Synchronised Vascular Regeneration upon the Implantation of Iloprost- and Cationic Amphiphilic Drugs-Conjugated Tissue-Engineered Vascular Grafts into the Ovine Carotid Artery: A Proteomics-Empowered Study. Polymers (Basel) 2022; 14:polym14235149. [PMID: 36501545 PMCID: PMC9736446 DOI: 10.3390/polym14235149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Implementation of small-diameter tissue-engineered vascular grafts (TEVGs) into clinical practice is still delayed due to the frequent complications, including thrombosis, aneurysms, neointimal hyperplasia, calcification, atherosclerosis, and infection. Here, we conjugated a vasodilator/platelet inhibitor, iloprost, and an antimicrobial cationic amphiphilic drug, 1,5-bis-(4-tetradecyl-1,4-diazoniabicyclo [2.2.2]octan-1-yl) pentane tetrabromide, to the luminal surface of electrospun poly(ε-caprolactone) (PCL) TEVGs for preventing thrombosis and infection, additionally enveloped such TEVGs into the PCL sheath to preclude aneurysms, and implanted PCLIlo/CAD TEVGs into the ovine carotid artery (n = 12) for 6 months. The primary patency was 50% (6/12 animals). TEVGs were completely replaced with the vascular tissue, free from aneurysms, calcification, atherosclerosis and infection, completely endothelialised, and had clearly distinguishable medial and adventitial layers. Comparative proteomic profiling of TEVGs and contralateral carotid arteries found that TEVGs lacked contractile vascular smooth muscle cell markers, basement membrane components, and proteins mediating antioxidant defense, concurrently showing the protein signatures of upregulated protein synthesis, folding and assembly, enhanced energy metabolism, and macrophage-driven inflammation. Collectively, these results suggested a synchronised replacement of PCL with a newly formed vascular tissue but insufficient compliance of PCLIlo/CAD TEVGs, demanding their testing in the muscular artery position or stimulation of vascular smooth muscle cell specification after the implantation.
Collapse
Affiliation(s)
- Larisa Antonova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
- Correspondence: ; Tel.: +7-9609077067
| | - Viktoriia Sevostianova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Arseniy Lobov
- Department of Regenerative Biomedicine, Research Institute of Cytology, 4 Tikhoretskiy Prospekt, Saint Petersburg 194064, Russia
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, Saint Petersburg State University, Universitetskaya Embankment, 7/9, Saint Petersburg 199034, Russia
| | - Evgenia Krivkina
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Elena Velikanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Andrey Mironov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Rinat Mukhamadiyarov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Evgenia Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Mariam Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Leonid Barbarash
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| |
Collapse
|