1
|
Fu Z, Qiao JW, Cui FZ, Gui RH, Lu P, Yin H, Du XY, Hao XT. Suppressing Static and Dynamic Disorder for High-Efficiency and Stable Thick-Film Organic Solar Cells via Synergistic Dilution Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413317. [PMID: 39463130 DOI: 10.1002/adma.202413317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Developing stable and highly efficient thick-film organic solar cells (OSCs) is crucial for the large-scale commercial application of organic photovoltaics. A novel synergistic dilution strategy to address this issue, using Polymethyl Methacrylate (PMMA) -modified zinc oxide (ZnO) as the interfacial layer, is introduced. This strategy effectively mitigates oxygen defects in ZnO while also regulating the self-assembly process of the active layer to achieve an ordered distribution of donors and acceptors. In synergistic diluted devices, the dynamic disorder is reduced owing to the suppression of electron-phonon coupling, while the static disorder is suppressed by improved molecular stacking and enhanced intermolecular interactions. Consequently, the 300 nm PM6:L8-BO device post-synergistic dilution manifests a marked enhancement in device performance, achieving a photovoltaic power conversion efficiency (PCE) >17% with excellent thermal stability. A typical ternary system is selected to explore the general applicability of synergistic dilution strategy, the PCE has been enhanced significantly from 17.89% to 18.72%, which falls within the range of the highest values among inverted single junction OSCs. As a practical application that depends on the pivotal synergy between high efficiency and stability, this approach paves the way for large-scale implementation of OSCs and ensures cost-effectiveness.
Collapse
Affiliation(s)
- Zhen Fu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jia-Wei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Feng-Zhe Cui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Ruo-Hua Gui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Peng Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, 250100, China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
2
|
Liu Y, Zhan L, Li Z, Jiang H, Qiu H, Sun X, Hu H, Sun R, Min J, Yu J, Fu W, Yin S, Chen H. The Multi-Functional Third Acceptor Realizes the Synergistic Improvement in Photovoltaic Parameters and the High-Ratio Tolerance of Ternary Organic Photovoltaics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405303. [PMID: 39135539 PMCID: PMC11497047 DOI: 10.1002/advs.202405303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Indexed: 10/25/2024]
Abstract
The ternary strategy proves effective for breakthroughs in organic photovoltaics (OPVs). Elevating three photovoltaic parameters synergistically, especially the proportion-insensitive third component, is crucial for efficient ternary devices. This work introduces a molecular design strategy by comprehensively analyzing asymmetric end groups, side-chain engineering, and halogenation to explore the outstanding optoelectronic properties of the proportion-insensitive third component in efficient ternary systems. Three asymmetric non-fullerene acceptors (BTP-SA1, BTP-SA2, and BTP-SA3) are synthesized based on the Y6 framework and incorporated as the third component into the D18:Y6 binary system. BTP-SA3, featuring asymmetric terminal (difluoro-indone and dichloride-cyanoindone terminal), with branched alkyl side chains, exhibited high open-circuit voltage (VOC), balanced crystallinity and compatibility, achieving synergistic enhancements in VOC (0.862 V), short circuit-current density (JSC, 27.52 mA cm-2), fill fact (FF, 81.01%), and power convert efficiency (PCE, 19.19%). Device based on D18/Y6:BTP-SA3 (layer-by-layer processed) reached a high efficiency of 19.36%, demonstrating a high tolerance for BTP-SA3 (10-50%). This work provides novel insights into optimizing OPVs performances in multi-component systems and designing components with enhanced tolerance.
Collapse
Affiliation(s)
- Yuhao Liu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Lingling Zhan
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Zhongjie Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Hang Jiang
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Huayu Qiu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhen518055P. R. China
| | - Hanlin Hu
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhen518055P. R. China
| | - Rui Sun
- The Institute for Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - Jie Min
- The Institute for Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - Jinyang Yu
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Weifei Fu
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of EducationCollege of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| |
Collapse
|
3
|
Wang T, Zhang J, Shen Y, Zhang H, Tian C, Xie M, Zhang W, Hao X, Lu K, Wei Z. Morphological Homogeneity and Interface Modification as Determinant Factors of the Efficiency and Stability for Upscaling Organic Solar Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311596. [PMID: 38381025 DOI: 10.1002/smll.202311596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Morphological homogeneity and interfacial traps are essential issues to achieve high-efficiency and stable large-area organic solar cells (OSCs). Herein, by the investigation of three quinoxaline-based acceptors, i.e., PM6:Qx-1, PM6:Qx-2, and PM6:Qx-p-4Cl, the performance degradation in up-scaling OSCs is explored. The inhomogeneous morphology in PM6:Qx-2 induces a nonuniform spatial distribution of charge generation, showing a rapid decline in efficiency and stability in large-area OSCs. In comparison, the homogeneous morphology in PM6:Qx-1 and PM6:Qx-p-4Cl alleviates the stability drop. When utilizing 2-phenylethylmercaptan to fill the interfacial traps, the stability drop disappears for PM6:Qx-1 and PM6:Qx-p-4Cl, while it persists for PM6:Qx-2. The PM6:Qx-1 large-are device yields a high efficiency of 13.47% and superior thermal stability (T80 = 2888 h). Consequently, the interface modification dominates the performance degradation of large-area devices with homogeneous morphology, while it cannot eliminate the traps in inhomogeneous film. These results provide a clear understanding of degradation mechanisms in upscaling devices.
Collapse
Affiliation(s)
- Tong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yifan Shen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Hao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiling Xie
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqing Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Cheng Y, Ji Y, Zhang D, Liu X, Xia Z, Liu X, Yang X, Huang W. Nitrogen-Blowing Assisted Strategy for Fabricating Large-Area Organic Solar Modules with an Efficiency of 15.6. Polymers (Basel) 2024; 16:1590. [PMID: 38891536 PMCID: PMC11174350 DOI: 10.3390/polym16111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
Organic solar cells (OSCs) are one of the most promising photovoltaic technologies due to their affordability and adaptability. However, upscaling is a critical issue that hinders the commercialization of OSCs. A significant challenge is the lack of cost-effective and facile techniques to modulate the morphology of the active layers. The slow solvent evaporation leads to an unfavorable phase separation, thus resulting in a low power conversion efficiency (PCE) of organic solar modules. Here, a nitrogen-blowing assisted method is developed to fabricate a large-area organic solar module (active area = 12 cm2) utilizing high-boiling-point solvents, achieving a PCE of 15.6%. The device fabricated with a high-boiling-point solvent produces a more uniform and smoother large-area film, and the assistance of nitrogen-blowing accelerates solvent evaporation, resulting in an optimized morphology with proper phase separation and finer aggregates. Moreover, the device fabricated by the nitrogen-blowing assisted method exhibits improved exciton dissociation, balanced carrier mobility, and reduced charge recombination. This work proposes a universal and cost-effective technique for the fabrication of high-efficiency organic solar modules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xueyuan Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Wenchao Huang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
5
|
Zhang H, Liu Y, Ran G, Li H, Zhang W, Cheng P, Bo Z. Sequentially Processed Bulk-Heterojunction-Buried Structure for Efficient Organic Solar Cells with 500 nm Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400521. [PMID: 38477468 DOI: 10.1002/adma.202400521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Large-area printing fabrication is a distinctive feature of organic solar cells (OSCs). However, the advance of upscalable fabrication is challenged by the thickness of organic active layers considering the importance of both exciton dissociation and charge collection. In this work, a bulk-heterojunction-buried (buried-BHJ) structure is introduced by sequential deposition to realize efficient exciton dissociation and charge collection, thereby contributing to efficient OSCs with 500 nm thick active layers. The buried-BHJ distributes donor and acceptor phases in the vertical direction as charge transport channels, while numerous BHJ interfaces are buried in each phase to facilitate exciton dissociation simultaneously. It is found that buried-BHJ configurations possess efficient exciton dissociation and rapid charge transport, resulting in reduced recombination losses. In comparison with traditional structures, the buried-BHJ structure displays a decent tolerance to film thickness. In particular, a power conversion efficiency of 16.0% is achieved with active layers at a thickness of 500 nm. To the best of the authors' knowledge, this represents the champion efficiency of thick film OSCs.
Collapse
Affiliation(s)
- Huarui Zhang
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuqiang Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Hongxiang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Pei Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhishan Bo
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Hung CM, Wang SF, Chao WC, Li JL, Chen BH, Lu CH, Tu KY, Yang SD, Hung WY, Chi Y, Chou PT. High-performance near-infrared OLEDs maximized at 925 nm and 1022 nm through interfacial energy transfer. Nat Commun 2024; 15:4664. [PMID: 38821968 PMCID: PMC11143248 DOI: 10.1038/s41467-024-49127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Using a transfer printing technique, we imprint a layer of a designated near-infrared fluorescent dye BTP-eC9 onto a thin layer of Pt(II) complex, both of which are capable of self-assembly. Before integration, the Pt(II) complex layer gives intense deep-red phosphorescence maximized at ~740 nm, while the BTP-eC9 layer shows fluorescence at > 900 nm. Organic light emitting diodes fabricated under the imprinted bilayer architecture harvest most of Pt(II) complex phosphorescence, which undergoes triplet-to-singlet energy transfer to the BTP-eC9 dye, resulting in high-intensity hyperfluorescence at > 900 nm. As a result, devices achieve 925 nm emission with external quantum efficiencies of 2.24% (1.94 ± 0.18%) and maximum radiance of 39.97 W sr-1 m-2. Comprehensive morphology, spectroscopy and device analyses support the mechanism of interfacial energy transfer, which also is proved successful for BTPV-eC9 dye (1022 nm), making bright and far-reaching the prospective of hyperfluorescent OLEDs in the near-infrared region.
Collapse
Affiliation(s)
- Chieh-Ming Hung
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Sheng-Fu Wang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Chih Chao
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jian-Liang Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Yen Tu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Yun Chi
- Department of Materials Sciences and Engineering and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Liu H, Xin Y, Suo Z, Yang L, Zou Y, Cao X, Hu Z, Kan B, Wan X, Liu Y, Chen Y. Dipole Moments Regulation of Biphosphonic Acid Molecules for Self-assembled Monolayers Boosts the Efficiency of Organic Solar Cells Exceeding 19.7. J Am Chem Soc 2024; 146:14287-14296. [PMID: 38718348 DOI: 10.1021/jacs.4c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
PEDOT PSS has been widely used as a hole extraction layer (HEL) in organic solar cells (OSCs). However, their acidic nature can potentially corrode the indium tin oxide (ITO) electrode over time, leading to adverse effects on the longevity of the OSCs. Herein, we have developed a class of biphosphonic acid molecules with tunable dipole moments for self-assembled monolayers (SAMs), namely, 3-BPIC(i), 3-BPIC, and 3-BPIC-F, which exhibit an increasing dipole moment in sequence. Compared to centrosymmetric 3-BPIC(i), the axisymmetric 3-BPIC and 3-BPIC-F exhibit higher adsorption energies (Eads) with ITO, shorter interface spacing, more uniform coverage on ITO surface, and better interfacial compatibility with the active layer. Thanks to the incorporation of fluorine atoms, 3-BPIC-F exhibits a deeper highest occupied molecular orbital (HOMO) energy level and a larger dipole moment compared to 3-BPIC, resulting in an enlarged work function (WF) for the ITO/3-BPIC-F substrate. These advantages of 3-BPIC-F could not only improve hole extraction within the device but also lower the interfacial impedance and reduce nonradiative recombination at the interface. As a result, the OSCs using SAM based on 3-BPIC-F obtained a record high efficiency of 19.71%, which is higher than that achieved from the cells based on 3-BPIC(i) (13.54%) and 3-BPIC (19.34%). Importantly, 3-BPIC-F-based OSCs exhibit significantly enhanced stability compared to that utilizing PEDOT:PSS as HEL. Our work offers guidance for the future design of functional molecules for SAMs to realize even higher performance in organic solar cells.
Collapse
Affiliation(s)
- Hang Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaochen Suo
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liu Yang
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangjian Cao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Duan X, Yang Y, Yu J, Liu C, Li X, Jee MH, Gao J, Chen L, Tang Z, Woo HY, Lu G, Sun Y. Solid Additive Dual-Regulates Spectral Response Enabling High-Performance Semitransparent Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308750. [PMID: 38289228 DOI: 10.1002/adma.202308750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Semi-transparent organic solar cells (ST-OSCs) possess significant potential for applications in vehicles and buildings due to their distinctive visual transparency. Conventional device engineering strategies are typically used to optimize photon selection and utilization at the expense of power conversion efficiency (PCE); moreover, the fixed spectral utilization range always imposes an unsatisfactory upper limit to its light utilization efficiency (LUE). Herein, a novel solid additive named 1,3-diphenoxybenzene (DB) is employed to dual-regulate donor/acceptor molecular aggregation and crystallinity, which effectively broadens the spectral response of ST-OSCs in near-infrared region. Besides, more visible light is allowed to pass through the devices, which enables ST-OSCs to possess satisfactory photocurrent and high average visible transmittance (AVT) simultaneously. Consequently, the optimal ST-OSC based on PP2+DB/BTP-eC9+DB achieves a superior LUE of 4.77%, representing the highest value within AVT range of 40-50%, which also correlates with the formation of multi-scale phase-separated morphology. Such results indicate that the ST-OSCs can simultaneously meet the requirements for minimum commercial efficiency and plant photosynthesis when integrated with the roofs of agricultural greenhouses. This work emphasizes the significance of additives to tune the spectral response in ST-OSCs, and charts the way for organic photovoltaics in economically sustainable agricultural development.
Collapse
Affiliation(s)
- Xiaopeng Duan
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yinuo Yang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jifa Yu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Chunhui Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiaoming Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Min Hun Jee
- Department of Chemistry, College of Science, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-713, Republic of Korea
| | - Jiaxin Gao
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Lingyu Chen
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zheng Tang
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Han Young Woo
- Department of Chemistry, College of Science, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 136-713, Republic of Korea
| | - Guanghao Lu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
9
|
Fu Z, Qiao JW, Cui FZ, Zhang WQ, Wang LH, Lu P, Yin H, Du XY, Qin W, Hao XT. π-π Stacking Modulation via Polymer Adsorption for Elongated Exciton Diffusion in High-Efficiency Thick-Film Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313532. [PMID: 38386402 DOI: 10.1002/adma.202313532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Developing efficient organic solar cells (OSCs) with thick active layers is crucial for roll-to-roll printing. However, thicker layers often result in lower efficiency. This study tackles this challenge using a polymer adsorption strategy combined with a layer-by-layer approach. Incorporating insulator polystyrene (PS) into the PM6:L8-BO system creates PM6+PS:L8-BO blends, effectively suppressing trap states and extending exciton diffusion length in the mixed donor domain. Adding insulating polymers with benzene rings to the donor enhances π-π stacking of donors, boosting intermolecular interactions and electron wave function overlap. This results in more orderly molecular stacking, longer exciton lifetimes, and higher diffusion lengths. The promoted long-range exciton diffusion leads to high power conversion efficiencies of 19.05% and 18.15% for PM6+PS:L8-BO blend films with 100 and 300 nm thickness, respectively, as well as a respectable 16.00% for 500 nm. These insights guide material selection for better exciton diffusion, and offer a method for thick-film OSC fabrication, promoting a prosperous future for practical OSC mass production.
Collapse
Affiliation(s)
- Zhen Fu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jia-Wei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Feng-Zhe Cui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Wen-Qing Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Ling-Hua Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Peng Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, 250100, China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
10
|
Zhang M, Chang B, Zhang R, Li S, Liu X, Zeng L, Chen Q, Wang L, Yang L, Wang H, Liu J, Gao F, Zhang ZG. Tethered Small-Molecule Acceptor Refines Hierarchical Morphology in Ternary Polymer Solar Cells: Enhanced Stability and 19% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308606. [PMID: 37816121 DOI: 10.1002/adma.202308606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Polymer solar cells (PSCs) are promising for efficient solar energy conversion, but achieving high efficiency and device longevity within a bulk-heterojunction (BHJ) structure remains a challenge. Traditional small-molecule acceptors (SMAs) in the BHJ blend show thermodynamic instability affecting the morphology. In contrast, tethered SMAs exhibit higher glass transition temperatures, mitigating these concerns. Yet, they might not integrate well with polymer donors, causing pronounced phase separation and overpurification of mixed domains. Herein, a novel ternary device is introduced that uses DY-P2EH, a tethered dimeric SMA with conjugated side-chains as host acceptor, and BTP-ec9, a monomeric SMA as secondary acceptor, which respectively possess hypomiscibility and hypermiscibility with the polymer donor PM6. This unique combination affords a parallel-connected ternary BHJ blend, leading to a hierarchical and stable morphology. The ternary device achieves a remarkable fill factor of 80.61% and an impressive power conversion efficiency of 19.09%. Furthermore, the ternary device exhibits exceptional stability, retaining over 85% of its initial efficiency even after enduring 1100 h of thermal stress at 85 °C. These findings highlight the potential advantage of tethered SMAs in the design of ternary devices with a refined hierarchical structure for more efficient and durable solar energy conversion technologies.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bowen Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Zhang
- Department of Physics, Biomolecular and organic electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Shangyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinpeng Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Liang Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Wang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of, Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liangrong Yang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Haiqiao Wang
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiangang Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Feng Gao
- Department of Physics, Biomolecular and organic electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Yeop J, Park KH, Rasool S, Lee HM, Jeon S, Kim Y, Lee W, Kim S, Yang C, Lim B, Kim JY. Thickness Tolerance in Large-Area Organic Photovoltaics with Fluorine-Substituted Regioregular Conjugated Polymer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:704-711. [PMID: 38148320 DOI: 10.1021/acsami.3c14790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Large areas and simple processing methods are necessary for the commercialization of organic photovoltaics (OPVs). However, the efficiency drop due to the variation in thickness of OPVs limits their large-scale applications. Regioregular polymers with good crystallinity and packing properties that exhibit high charge mobility and extraction ability can help overcome these limitations. In this study, a regioregular polymer named PDBD-2FBT was synthesized. The crystallinity and packing properties of PDBD-2FBT were enhanced by a simple thermal treatment. Using PDBD-2FBT material as a donor and Y6-HU as an acceptor, we fabricated binary blend OPV devices. The devices with optimized active layer thickness achieved a power conversion efficiency (PCE) of 14.14%. A PCE of 13.18% was maintained even in thick-film conditions (400 nm), and thickness tolerance was observed. Based on the thickness tolerance, a 5-line module measuring 36 cm2 was fabricated via the bar-coating method, and a PCE of approximately 10% was achieved.
Collapse
Affiliation(s)
- Jiwoo Yeop
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Kwang Hun Park
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, South Korea
| | - Shafket Rasool
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Hye Min Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, South Korea
| | - Seungju Jeon
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, South Korea
| | - Yejin Kim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, South Korea
| | - Woojin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Seoyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Changduk Yang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Bogyu Lim
- Department of Engineering Chemistry, Chungbuk National University (CBNU), Cheongju, Chungbuk 28644, South Korea
| | - Jin Young Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
12
|
Wen L, Mao H, Zhang L, Zhang J, Qin Z, Tan L, Chen Y. Achieving Desired Pseudo-Planar Heterojunction Organic Solar Cells via Binary-Dilution Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308159. [PMID: 37831921 DOI: 10.1002/adma.202308159] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The sequential deposition process has demonstrated the great possibility to achieve a photolayer architecture with an ideal gradient phase separation morphology, which has a vital influence on the physical processes that determine the performance of organic solar cells (OSCs). However, the controllable preparation of pseudo-planar heterojunction (P-PHJ) with gradient distribution has not been effectively elucidated. Herein, a binary-dilution strategy is proposed, the PM6 solution with micro acceptor BO-4Cl and the L8-BO solution with micro donor PM6 respectively, to form P-PHJ film. This architecture exists good donor (D) and acceptor (A) vertical gradient distribution and larger D/A interpenetrating regions, which promotes exciton generation and dissociation, shortens charge transport distance and optimizes carrier dynamics. Moreover, the dilution of PM6 by BO-4Cl promotes the regulation of active layer aggregation size and phase purity, thus alleviating energy disorder and voltage loss. As a result, the P-PHJ device exhibits an outstanding power conversion efficiency of 19.32% with an excellent short-circuit current density of 26.92 mA cm-2 , much higher than planar binary heterojunction (17.67%) and ternary bulk heterojunction (18.49%) devices. This research proves a simple but effective method to provide an avenue for constructing desirable active layer morphology and high-performance OSCs.
Collapse
Affiliation(s)
- Lin Wen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Houdong Mao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lifu Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Jiayou Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Zhao Qin
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
13
|
Ren SG, Dong AW, Yang L, Xue YB, Li JC, Yu YJ, Zhou HJ, Zuo WB, Li Y, Cheng WM, Miao XS. Self-Rectifying Memristors for Three-Dimensional In-Memory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307218. [PMID: 37972344 DOI: 10.1002/adma.202307218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Costly data movement in terms of time and energy in traditional von Neumann systems is exacerbated by emerging information technologies related to artificial intelligence. In-memory computing (IMC) architecture aims to address this problem. Although the IMC hardware prototype represented by a memristor is developed rapidly and performs well, the sneak path issue is a critical and unavoidable challenge prevalent in large-scale and high-density crossbar arrays, particularly in three-dimensional (3D) integration. As a perfect solution to the sneak-path issue, a self-rectifying memristor (SRM) is proposed for 3D integration because of its superior integration density. To date, SRMs have performed well in terms of power consumption (aJ level) and scalability (>102 Mbit). Moreover, SRM-configured 3D integration is considered an ideal hardware platform for 3D IMC. This review focuses on the progress in SRMs and their applications in 3D memory, IMC, neuromorphic computing, and hardware security. The advantages, disadvantages, and optimization strategies of SRMs in diverse application scenarios are illustrated. Challenges posed by physical mechanisms, fabrication processes, and peripheral circuits, as well as potential solutions at the device and system levels, are also discussed.
Collapse
Affiliation(s)
- Sheng-Guang Ren
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - A-Wei Dong
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ling Yang
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi-Bai Xue
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jian-Cong Li
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yin-Jie Yu
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hou-Ji Zhou
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen-Bin Zuo
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Li
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - Wei-Ming Cheng
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - Xiang-Shui Miao
- School of Integrated Circuits, Hubei Key Laboratory of Advanced Memories, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| |
Collapse
|
14
|
Chen T, Zheng X, Wang D, Zhu Y, Ouyang Y, Xue J, Wang M, Wang S, Ma W, Zhang C, Ma Z, Li S, Zuo L, Chen H. Delayed Crystallization Kinetics Allowing High-Efficiency All-Polymer Photovoltaics with Superior Upscaled Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308061. [PMID: 37734746 DOI: 10.1002/adma.202308061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Though encouraging performance is achieved in small-area organic photovoltaics (OPVs), reducing efficiency loss when evoluted to large-area modules is an important but unsolved issue. Considering that polymer materials show benefits in film-forming processability and mechanical robustness, a high-efficiency all-polymer OPV module is demonstrated in this work. First, a ternary blend consisting of two polymer donors, PM6 and PBQx-TCl, and one polymer acceptor, PY-IT, is developed, with which triplet state recombination is suppressed for a reduced energy loss, thus allowing a higher voltage; and donor-acceptor miscibility is compromised for enhanced charge transport, thus resulting in improved photocurrent and fill factor; all these contribute to a champion efficiency of 19% for all-polymer OPVs. Second, the delayed crystallization kinetics from solution to film solidification is achieved that gives a longer operation time window for optimized blend morphology in large-area module, thus relieving the loss of fill factor and allowing a record efficiency of 16.26% on an upscaled module with an area of 19.3 cm2 . Besides, this all-polymer system also shows excellent mechanical stability. This work demonstrates that all-polymer ternary systems are capable of solving the upscaled manufacturing issue, thereby enabling high-efficiency OPV modules.
Collapse
Affiliation(s)
- Tianyi Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiangjun Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Di Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuxuan Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yanni Ouyang
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Centre for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shanlu Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chunfeng Zhang
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Centre for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shuixing Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| |
Collapse
|
15
|
Zheng X, Wu X, Wu Q, Han Y, Ding G, Wang Y, Kong Y, Chen T, Wang M, Zhang Y, Xue J, Fu W, Luo Q, Ma C, Ma W, Zuo L, Shi M, Chen H. Thorough Optimization for Intrinsically Stretchable Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307280. [PMID: 38100730 DOI: 10.1002/adma.202307280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/27/2023] [Indexed: 12/17/2023]
Abstract
The development of intrinsically stretchable organic photovoltaics (is-OPVs) with a high efficiency is of significance for practical application. However, their efficiencies lag far behind those of rigid or even flexible counterparts. To address this issue, an advanced top-illuminated OPV is designed and fabricated, which is intrinsically stretchable and has a high performance, through systematic optimizations from material to device. First, the stretchability of the active layer is largely increased by adding a low-elastic-modulus elastomer of styrene-ethylene-propylene-styrene tri-block copolymer (SEPS). Second, the stretchability and conductivity of the opaque electrode are enhanced by a conductive polymer/metal (denoted as M-PH1000@Ag) composite electrode strategy. Third, the optical and electrical properties of a sliver nanowire transparent electrode are improved by a solvent vapor annealing strategy. High-performance is-OPVs are successfully fabricated with a top-illuminated structure, which provides a record-high efficiency of 16.23%. Additionally, by incorporating 5-10% elastomer, a balance between the efficiency and stretchability of the is-OPVs is achieved. This study provides valuable insights into material and device optimizations for high-efficiency is-OPVs, with a low-cost production and excellent stretchability, which indicates a high potential for future applications of OPVs.
Collapse
Affiliation(s)
- Xiangjun Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qiang Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yunfei Han
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Guanyu Ding
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yiming Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yibo Kong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yiqing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weifei Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| | - Qun Luo
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Changqi Ma
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| | - Minmin Shi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| |
Collapse
|
16
|
Yang X, Shao Y, Wang S, Chen M, Xiao B, Sun R, Min J. Processability Considerations for Next-Generation Organic Photovoltaic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307863. [PMID: 38048536 DOI: 10.1002/adma.202307863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Indexed: 12/06/2023]
Abstract
The evolution of organic semiconductors for organic photovoltaics (OPVs) has resulted in unforeseen outcomes. This has provided substitute choices of photoactive layer materials, which effectively convert sunlight into electricity. Recently developed OPV materials have narrowed down the gaps in efficiency, stability, and cost in devices. Records now show power conversion efficiency in single-junction devices closing to 20%. Despite this, there is still a gap between the currently developed OPV materials and those that meet the requirements of practical applications, especially the solution processability issue widely concerned in the field of OPVs. Based on the general rule that structure determines properties, methodologies to enhance the processability of OPV materials are reviewed and explored from the perspective of material design and views on the further development of processable OPV materials are presented. Considering the current dilemma that the existing evaluation indicators cannot reflect the industrial processability of OPV materials, a more complete set of key performance indicators are proposed for their processability considerations. The purpose of this perspective is to raise awareness of the boundary conditions that exist in industrial OPV manufacturing and to provide guidance for academic research that aspires to contribute to technological advancements.
Collapse
Affiliation(s)
- Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiming Shao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Shanshan Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Mingxia Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Bo Xiao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
17
|
Yang C, An Q, Jiang M, Ma X, Mahmood A, Zhang H, Zhao X, Zhi HF, Jee MH, Woo HY, Liao X, Deng D, Wei Z, Wang JL. Optimized Crystal Framework by Asymmetric Core Isomerization in Selenium-Substituted Acceptor for Efficient Binary Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202313016. [PMID: 37823882 DOI: 10.1002/anie.202313016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Both the regional isomerization and selenium-substitution of the small molecular acceptors (SMAs) play significant roles in developing efficient organic solar cells (OSCs), while their synergistic effects remain elusive. Herein, we developed three isomeric SMAs (S-CSeF, A-ISeF, and A-OSeF) via subtly manipulating the mono-selenium substituted position (central, inner, or outer) and type of heteroaromatic ring on the central core by synergistic strategies for efficient OSCs, respectively. Crystallography of asymmetric A-OSeF presents a closer intermolecular π-π stacking and more ordered 3-dimensional network packing and efficient charge-hopping pathways. With the successive out-shift of the mono-selenium substituted position, the neat films give a slightly wider band gap and gradually higher crystallinity and electron mobility. The PM1 : A-OSeF afford favourable fibrous phase separation morphology with more ordered molecular packing and efficient charge transportation compared to the other two counterparts. Consequently, the A-OSeF-based devices achieve a champion efficiency of 18.5 %, which represents the record value for the reported selenium-containing SMAs in binary OSCs. Our developed precise molecular engineering of the position and type of selenium-based heteroaromatic ring of SMAs provides a promising synergistic approach to optimizing crystal stacking and boosting top-ranked selenium-containing SMAs-based OSCs.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoming Ma
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Xilin Liao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dan Deng
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
18
|
Cheng Y, Wang X, Pei Z, Chen YN, Lu H, Liu Y, Bo Z. Spontaneously spreading film process to improve the photovoltaic performance of organic solar cells with PHJ structure. Chem Commun (Camb) 2023; 59:14273-14276. [PMID: 37961868 DOI: 10.1039/d3cc04568d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Efficient charge transport and extraction within the active layer plays a major role in the photovoltaic performance of organic solar cells (OSCs). In this work, the spontaneously spreading (SS) process was utilized to achieve sequential deposition of the active layer with a planar heterojunction (PHJ) structure. The SS process avoids the damage of the upper layer solution to the lower layer film by the spin coating process. The film with PHJ structure exhibits notable vertical phase separation compared to the bulk heterojunction (BHJ). Moreover, the power conversion efficiency (PCE) of the PHJ device (12.00%) is significantly higher than that of the BHJ (10.84%) due to the efficient charge transport. This work offers a novel fabrication method and device structure to enhance the photovoltaic performance of OSCs.
Collapse
Affiliation(s)
- Yetai Cheng
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Xiaodong Wang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Zengliang Pei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Ya-Nan Chen
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Hao Lu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Zhishan Bo
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
19
|
Zou B, Wu W, Dela Peña TA, Ma R, Luo Y, Hai Y, Xie X, Li M, Luo Z, Wu J, Yang C, Li G, Yan H. Step-by-Step Modulation of Crystalline Features and Exciton Kinetics for 19.2% Efficiency Ortho-Xylene Processed Organic Solar Cells. NANO-MICRO LETTERS 2023; 16:30. [PMID: 37995001 PMCID: PMC10667184 DOI: 10.1007/s40820-023-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/06/2023] [Indexed: 11/24/2023]
Abstract
With plenty of popular and effective ternary organic solar cells (OSCs) construction strategies proposed and applied, its power conversion efficiencies (PCEs) have come to a new level of over 19% in single-junction devices. However, previous studies are heavily based in chloroform (CF) leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component. Herein, we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy, named BTP-BO-3FO with enlarged bandgap, brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9, processed by CF and ortho-xylene (o-XY). With detailed analyses supported by a series of experiments, the best PCE of 19.24% for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif, which furthermore nourishes a favorable charge generation and recombination behavior. Likewise, over 19% PCE can be achieved by replacing spin-coating with blade coating for active layer deposition. This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance, hence, will be instructive to other ternary OSC works in the future.
Collapse
Affiliation(s)
- Bosen Zou
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | - Weiwei Wu
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | - Top Archie Dela Peña
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Ruijie Ma
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China.
| | - Yongmin Luo
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China
| | - Yulong Hai
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China
| | - Xiyun Xie
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Zhenghui Luo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Jiaying Wu
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Gang Li
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | - He Yan
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China.
| |
Collapse
|
20
|
Kong X, He T, Qiu H, Zhan L, Yin S. Progress in organic photovoltaics based on green solvents: from solubility enhancement to morphology optimization. Chem Commun (Camb) 2023; 59:12051-12064. [PMID: 37740301 DOI: 10.1039/d3cc04412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Solution-processed organic photovoltaics (OPVs) is one of the most promising photovoltaic technologies in the energy field, due to their clean and renewable low-cost manufacturing potential. OPV has rapidly developed with the design and synthesis of highly efficient photovoltaic materials and the development of smart device engineering. To date, the majority of advanced OPV devices have been prepared using halogenated solvents, achieving power conversion efficiencies (PCE) exceeding 19% on a laboratory scale. However, for industrial-scale production, less toxic manufacturing processes and environmental sustainability are the key considerations. Therefore, this review summarizes recent advances in green solvent-based approaches for the preparation of OPVs, highlighting material design (including polymer donors and small molecule acceptors) and device engineering (co-solvent methods, additive strategies, post-treatment methods, and regulation of coating method), emphasizing crucial factors for achieving high performance in green solvent-processed OPV devices. This review presents potential future directions for green solvent-based OPVs, which may pave the way for future industrial development.
Collapse
Affiliation(s)
- Xiangyue Kong
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.
| | - Tian He
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.
| | - Huayu Qiu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.
| | - Lingling Zhan
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.
| |
Collapse
|
21
|
Wu G, Xu X, Liao C, Yu L, Li R, Peng Q. Improving Cooperative Interactions Between Halogenated Aromatic Additives and Aromatic Side Chain Acceptors for Realizing 19.22% Efficiency Polymer Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302127. [PMID: 37116119 DOI: 10.1002/smll.202302127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Processing additive plays an important role in the standard operation procedures for fabricating top performing polymer solar cells (PSCs) through efficient interactions with key photovoltaic materials. However, improving interaction study of acceptor materials to high performance halogenated aromatic additives such as diiodobenzene (DIB) is a widely neglected route for molecular engineering toward more efficient device performances. In this work, two novel Y-type acceptor molecules of BTP-TT and BTP-TTS with different aromatic side chains on the outer positions are designed and synthesized. The resulting aromatic side chains significantly enhanced the interactions between the acceptor molecules and DIB through an arene/halogenated arene interaction, which improved the crystallinity of the acceptor molecules and induced a polymorph with better photovoltaic performances. Thus, high power conversion efficiencies (PCEs) of 18.04% and 19.22% are achieved in binary and ternary blend devices using BTP-TTS as acceptor and DIB as additive. Aromatic side chain engineering for improving additive interactions is proved to be an effective strategy for achieving much higher performance photovoltaic materials and devices.
Collapse
Affiliation(s)
- Guowei Wu
- School of Chemical Engineering and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chentong Liao
- School of Chemical Engineering and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liyang Yu
- School of Chemical Engineering and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Lab, Suffolk, Upton, NY, 11973, USA
| | - Qiang Peng
- School of Chemical Engineering and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
22
|
Wan J, Wang T, Sun R, Wu X, Wang S, Zhang M, Min J. Enabling Highly Efficient and Thermal-Stable Polymer Solar Cells through Semi-Alloy Acceptors Composed of a Hinge-Like Dimer: A Versatile Doping Protocol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302592. [PMID: 37211895 DOI: 10.1002/adma.202302592] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Indexed: 05/23/2023]
Abstract
The simultaneous improvement of power conversion efficiency (PCE) and thermal stability is a critical scientific challenge in advancing the commercial applications of polymer solar cells. To address this challenge, a dumbbell-shaped dimeric acceptor, DT19, is successfully designed and synthesized. It is incorporated as a third component into the PM1:BTP-eC9 system. This ternary strategy demonstrates a synergistic enhancement of the PCE and thermal stability of the host binary system. In particular, the PM1:BTP-eC9:DT19 system maintains a PCE of over 90% even after heating at 120 °C for 200 h. Additionally, the dimer-doping ternary strategy exhibits excellent generality for the other four Y-series systems and outperforms ternary systems containing alloy-like acceptors in terms of thermal stability. It is because DT19, with its hinge-like structure, can form a semi-alloy acceptor with the host acceptor, leading to strong interchain entanglement with the polymer donor, thus overcoming phase separation and excessive aggregation under thermal stress. This new type of dimeric material, which can synergistically enhance the device efficiency and thermal stability of active layers, presents promising application prospects.
Collapse
Affiliation(s)
- Ji Wan
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Tao Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Xiaohei Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Shanshan Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Meimei Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
23
|
Jiang Y, Li Y, Liu F, Wang W, Su W, Liu W, Liu S, Zhang W, Hou J, Xu S, Yi Y, Zhu X. Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion. Nat Commun 2023; 14:5079. [PMID: 37604923 PMCID: PMC10442373 DOI: 10.1038/s41467-023-40806-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
The nonradiative energy loss (∆Enr) is a critical factor to limit the efficiency of organic solar cells. Generally, strong electron-phonon coupling induced by molecular motion generates fast nonradiative decay and causes high ∆Enr. How to restrict molecular motion and achieve a low ∆Enr is a sticking point. Herein, the free volume ratio (FVR) is proposed as an indicator to evaluate molecular motion, providing new molecular design rationale to suppress nonradiative decay. Theoretical and experimental results indicate proper proliferation of alkyl side-chain can decrease FVR and restrict molecular motion, leading to reduced electron-phonon coupling while maintaining ideal nanomorphology. The reduced FVR and favorable morphology are simultaneously obtained in AQx-6 with pinpoint alkyl chain proliferation, achieving a high PCE of 18.6% with optimized VOC, JSC and FF. Our study discovered aggregation-state regulation is of great importance to the reduction of electron-phonon coupling, which paves the way to high-efficiency OSCs.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenxuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenli Su
- Department of Physics and Applied Optics, Beijing Area Major Laboratory Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Songjun Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics, Beijing Area Major Laboratory Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Chen T, Li S, Li Y, Chen Z, Wu H, Lin Y, Gao Y, Wang M, Ding G, Min J, Ma Z, Zhu H, Zuo L, Chen H. Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300400. [PMID: 36863938 DOI: 10.1002/adma.202300400] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/12/2023] [Indexed: 05/26/2023]
Abstract
The ternary blend is demonstrated as an effective strategy to promote the device performance of organic photovoltaics (OPVs) due to the dilution effect. While the compromise between the charge generation and recombination remains a challenge. Here, a mixed diluent strategy for further improving the device efficiency of OPV is proposed. Specifically, the high-performance OPV system with a polymer donor, i.e., PM6, and a nonfullerene acceptor (NFA), i.e., BTP-eC9, is diluted by the mixed diluents, which involve a high bandgap NFA of BTP-S17 and a low bandgap NFA of BTP-S16 (similar with that of the BTP-eC9). The BTP-S17 of better miscibility with BTP-eC9 can dramatically enhance the open-circuit voltage (VOC ), while the BTP-S16 maximizes the charge generation or the short-circuit current density (JSC ). The interplay of BTP-17 and BTP-S16 enables better compromise between charge generation and recombination, thus leading to a high device performance of 19.76% (certified 19.41%), which is the best among single-junction OPVs. Further analysis on carrier dynamics validates the efficacy of mixed diluents for balancing charge generation and recombination, which can be further attributed to the more diverse energetic landscapes and improved morphology. Therefore, this work provides an effective strategy for high-performance OPV for further commercialization.
Collapse
Affiliation(s)
- Tianyi Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shuixing Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yaokai Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zeng Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haotian Wu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yi Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yuan Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Mengting Wang
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guanyu Ding
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
25
|
Ding G, Chen T, Wang M, Xia X, He C, Zheng X, Li Y, Zhou D, Lu X, Zuo L, Xu Z, Chen H. Solid Additive-Assisted Layer-by-Layer Processing for 19% Efficiency Binary Organic Solar Cells. NANO-MICRO LETTERS 2023; 15:92. [PMID: 37036549 PMCID: PMC10086087 DOI: 10.1007/s40820-023-01057-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 06/15/2023]
Abstract
Morphology is of great significance to the performance of organic solar cells (OSCs), since appropriate morphology could not only promote the exciton dissociation, but also reduce the charge recombination. In this work, we have developed a solid additive-assisted layer-by-layer (SAA-LBL) processing to fabricate high-efficiency OSCs. By adding the solid additive of fatty acid (FA) into polymer donor PM6 solution, controllable pre-phase separation forms between PM6 and FA. This intermixed morphology facilitates the diffusion of acceptor Y6 into the donor PM6 during the LBL processing, due to the good miscibility and fast-solvation of the FA with chloroform solution dripping. Interestingly, this results in the desired morphology with refined phase-separated domain and vertical phase-separation structure to better balance the charge transport /collection and exciton dissociation. Consequently, the binary single junction OSCs based on PM6:Y6 blend reach champion power conversion efficiency (PCE) of 18.16% with SAA-LBL processing, which can be generally applicable to diverse systems, e.g., the PM6:L8-BO-based devices and thick-film devices. The efficacy of SAA-LBL is confirmed in binary OSCs based on PM6:L8-BO, where record PCEs of 19.02% and 16.44% are realized for devices with 100 and 250 nm active layers, respectively. The work provides a simple but effective way to control the morphology for high-efficiency OSCs and demonstrates the SAA-LBL processing a promising methodology for boosting the industrial manufacturing of OSCs.
Collapse
Affiliation(s)
- Guanyu Ding
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Tianyi Chen
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Mengting Wang
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, People's Republic of China
| | - Chengliang He
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiangjun Zheng
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yaokai Li
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, People's Republic of China
| | - Lijian Zuo
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, People's Republic of China.
| | - Zhikang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
26
|
Gao Y, Yang X, Wang W, Sun R, Cui J, Fu Y, Li K, Zhang M, Liu C, Zhu H, Lu X, Min J. High-Performance Small Molecule Organic Solar Cells Enabled by a Symmetric-Asymmetric Alloy Acceptor with a Broad Composition Tolerance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300531. [PMID: 36989324 DOI: 10.1002/adma.202300531] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Indexed: 05/17/2023]
Abstract
Using a combinatory blending strategy is demonstrated as a promising path for designing efficient organic solar cells (OSCs) by boosting the short-circuit current density and fill factor. Herein, a high-performance ternary all-small molecule OSC (all-SMOSCs) using a narrow-bandgap alloy acceptor containing symmetric and asymmetric molecules (BTP-eC9 and SSe-NIC) and a wide-bandgap small molecule donor MPhS-C2 is reported. Introducing the synthesized SSe-NIC into the MPhS-C2:BTP-eC9 host system can broaden the absorption spectrum, modulate energy offsets, and optimize the molecular packing of the host materials. After systematically optimizing the weight ratio of MPhS-C2:BTP-eC9:SSe-NIC, a champion efficiency of 18.02% is achieved. Impressively, the ternary system not only delivered a broad composition tolerance with device efficiencies over 17% throughout the whole blend ratios, but also exhibited less non-geminate recombination and energy loss, and better-light-soaking stability than the corresponding binary systems. This work promotes the development of high-performance ternary all-SMOSCs and heralds their brighter application prospects.
Collapse
Affiliation(s)
- Yuan Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiting Cui
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuang Fu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Kai Li
- Skate Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Meimei Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Chao Liu
- Skate Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
27
|
Shi S, Hou Y, Yang T, Huang C, Yao S, Zhao C, Liu Y, Zhang Z, Liu T, Zou B. Simple Solvent Treatment Enabled Improved PEDOT:PSS Performance toward Highly Efficient Binary Organic Solar Cells. ACS OMEGA 2022; 7:41789-41795. [PMID: 36406480 PMCID: PMC9670710 DOI: 10.1021/acsomega.2c06181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
PSS is the most popular hole-transporting material (HTM) for conventional structural organic solar cell (OSC) devices, whose performance is of great importance for realizing high power conversion efficiency (PCE). However, its performance in OSC devices has been continuously challenged by various replacing materials and different doping strategies, for better conductivity, work function, and surface property. Here, we report a simple dopant-free method to tune the phase separation of the PEDOT:PSS layer, which results in better charge transport and extraction in devices. Specifically, high PCEs for binary polymer-small-molecule (>18%) and polymer-polymer (>17%) systems are simultaneously achieved. This work engineeringly provides encouraging improvement for OSC device performance with easy modification and scientifically offers insights into tuning the property of the PEDOT:PSS layer.
Collapse
Affiliation(s)
- Shasha Shi
- Julong
College, Shenzhen Technology University, Shenzhen 518118, China
- Guangxi
Key Lab of Processing for Nonferrous Metals and Featured Materials
and Key Lab of New Processing Technology for Nonferrous Metals and
Materials, Ministry of Education; School of Resources, Environments
and Materials, Guangxi University, Nanning 530004, China
| | - Yiwen Hou
- Julong
College, Shenzhen Technology University, Shenzhen 518118, China
| | - Tao Yang
- Julong
College, Shenzhen Technology University, Shenzhen 518118, China
| | - Ciyuan Huang
- Guangxi
Key Lab of Processing for Nonferrous Metals and Featured Materials
and Key Lab of New Processing Technology for Nonferrous Metals and
Materials, Ministry of Education; School of Resources, Environments
and Materials, Guangxi University, Nanning 530004, China
| | - Shangfei Yao
- Guangxi
Key Lab of Processing for Nonferrous Metals and Featured Materials
and Key Lab of New Processing Technology for Nonferrous Metals and
Materials, Ministry of Education; School of Resources, Environments
and Materials, Guangxi University, Nanning 530004, China
| | - Chenfu Zhao
- Guangxi
Key Lab of Processing for Nonferrous Metals and Featured Materials
and Key Lab of New Processing Technology for Nonferrous Metals and
Materials, Ministry of Education; School of Resources, Environments
and Materials, Guangxi University, Nanning 530004, China
| | - Yudie Liu
- Guangxi
Key Lab of Processing for Nonferrous Metals and Featured Materials
and Key Lab of New Processing Technology for Nonferrous Metals and
Materials, Ministry of Education; School of Resources, Environments
and Materials, Guangxi University, Nanning 530004, China
| | - Ziyang Zhang
- Guangxi
Key Lab of Processing for Nonferrous Metals and Featured Materials
and Key Lab of New Processing Technology for Nonferrous Metals and
Materials, Ministry of Education; School of Resources, Environments
and Materials, Guangxi University, Nanning 530004, China
| | - Tao Liu
- Guangxi
Key Lab of Processing for Nonferrous Metals and Featured Materials
and Key Lab of New Processing Technology for Nonferrous Metals and
Materials, Ministry of Education; School of Resources, Environments
and Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- Guangxi
Key Lab of Processing for Nonferrous Metals and Featured Materials
and Key Lab of New Processing Technology for Nonferrous Metals and
Materials, Ministry of Education; School of Resources, Environments
and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|