1
|
Li Q, Wang J, Zhang Y, Ma C, Wang J, Qiao W, Ling L. In situ construction of 3D 1T-VS 2/V 2C heterostructures for enhanced polysulfide trapping and catalytic conversion in lithium-sulfur batteries. J Colloid Interface Sci 2025; 681:106-118. [PMID: 39602963 DOI: 10.1016/j.jcis.2024.11.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Lithium-sulfur (Li-S) batteries represent a promising next-generation energy storage solution, yet their performance is hindered by the insulating nature of sulfur and the detrimental shuttle effect. This study presents the in-situ synthesis of metal-phase 1T-VS2 as a modified separator material on a two-dimensional Mxene substrate V2C (VSC). The synergistic effect of strong adsorption by V2C and highly conductive catalysis provided by 1T-VS2 significantly enhances the transport of ions and electrons between lithium polysulfide and the interface. The combinations of experimental data and density functional theory (DFT) indicate that 1T-VS2, which is characterized by its high density of defective active sites and high conductivity, not only effectively improves the adsorption of lithium polysulfides, but also dramatically lowers the redox energy barrier of Li2S, thereby accelerating the chemical reaction kinetics. As a result, the Li-S cells assembled by the VSC-modified separator exhibit an impressive initial capacity of 1131 mAh/g at 1 C with a capacity decay rate of only 0.05% per cycle. In addition, even after 100 cycles and at a high sulfur loading of 5.6 mg cm-2, the cells maintain a discharge capacity of 817 mAh/g. Impressively, the VSC continues to deliver excellent cycling and rate performance even when the environmental temperature is reduced to 0 °C. These findings offer valuable insights into the potential for the advancement of highly practical Li-S batteries.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Wang
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongzheng Zhang
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Ma
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jitong Wang
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Wenming Qiao
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Licheng Ling
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Zhang K, Zhao Z, Chen H, Pan Y, Niu B, Long D, Zhang Y. A Review of Advances in Heterostructured Catalysts for Li-S Batteries: Structural Design and Mechanism Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409674. [PMID: 39544121 DOI: 10.1002/smll.202409674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Lithium-sulfur (Li-S) batteries, acclaimed for their high energy density, cost-effectiveness, and environmental benefits, are widely considered as a leading candidate for the next-generation energy storage systems. However, their commercialization is impeded by critical challenges, such as the shuttle effect of lithium polysulfides and sluggish reaction kinetics. These issues can be effectively mitigated through the design of heterojunction catalysts. Despite the remarkable advancements in this field, a comprehensive elucidation of the underlying mechanisms and structure-performance relationships of heterojunction catalysts in sulfur electrocatalysis systems remains conspicuously absent. Here, it is expounded upon the mechanisms underlying heterostructure engineering in Li-S batteries and the latest advancements in heterostructure catalysts guided by these multifarious mechanisms are examined. Furthermore, it illuminates groundbreaking paradigms in heterostructure design, encompassing the realms of composition, structure, function, and application. Finally, the research trends and future development directions for the novel heterojunction materials are extensively deliberated. This study not only provides a comprehensive and profound understanding of heterostructure catalysts in Li-S batteries but also facilitates the exploration of new electrocatalyst systems.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiqiang Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huan Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yukun Pan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Bo Niu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Donghui Long
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yayun Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
3
|
Liu M, Hou R, Zhang P, Li Y, Shao G, Zhang P. A Universal Electronic Structure Modulation Strategy: Is Strong Adsorption Always Correlated with High Catalysis? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402725. [PMID: 38837316 DOI: 10.1002/smll.202402725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Unveiling the inherent link between polysulfide adsorption and catalytic activity is key to achieving optimal performance in Lithium-sulfur (Li-S) batteries. Current research on the sulfur reaction process mainly relies on the strong adsorption of catalysts to confine lithium polysulfides (LiPSs) to the cathode side, effectively suppressing the shuttle effect of polysulfides. However, is strong adsorption always correlated with high catalysis? The inherent relationship between adsorption and catalytic activity remains unclear, limiting the in-depth exploration and rational design of catalysts. Herein, the correlation between "d-band center-adsorption strength-catalytic activity" in porous carbon nanofiber catalysts embedded with different transition metals (M-PCNF-3, M = Fe, Co, Ni, Cu) is systematically investigated, combining the d-band center theory and the Sabatier principle. Theoretical calculations and experimental analysis results indicate that Co-PCNF-3 electrocatalyst with appropriate d-band center positions exhibits moderate adsorption capability and the highest catalytic conversion activity for LiPSs, validating the Sabatier relationship in Li-S battery electrocatalysts. These findings provide indispensable guidelines for the rational design of more durable cathode catalysts for Li-S batteries.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Ruohan Hou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Pengpeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Yukun Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
| | - Guosheng Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| |
Collapse
|
4
|
Sun W, Hou J, Zhou Y, Zhu T, Yuan Q, Wang S, Manshaii F, Song C, Lei X, Wu X, Kim H, Yu Y, Xiao C, Zhang H, Song Y, Sun D, Jia B, Zhou G, Zhao J. Amorphous FeSnO x Nanosheets with Hierarchical Vacancies for Room-Temperature Sodium-Sulfur Batteries. Angew Chem Int Ed Engl 2024; 63:e202404816. [PMID: 38788189 DOI: 10.1002/anie.202404816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Room-temperature sodium-sulfur (RT Na-S) batteries, noted for their low material costs and high energy density, are emerging as a promising alternative to lithium-ion batteries (LIBs) in various applications including power grids and standalone renewable energy systems. These batteries are commonly assembled with glass fiber membranes, which face significant challenges like the dissolution of polysulfides, sluggish sulfur conversion kinetics, and the growth of Na dendrites. Here, we develop an amorphous two-dimensional (2D) iron tin oxide (A-FeSnOx) nanosheet with hierarchical vacancies, including abundant oxygen vacancies (Ovs) and nano-sized perforations, that can be assembled into a multifunctional layer overlaying commercial separators for RT Na-S batteries. The Ovs offer strong adsorption and abundant catalytic sites for polysulfides, while the defect concentration is finely tuned to elucidate the polysulfides conversion mechanisms. The nano-sized perforations aid in regulating Na ions transport, resulting in uniform Na deposition. Moreover, the strategic addition of trace amounts of Ti3C2 (MXene) forms an amorphous/crystalline (A/C) interface that significantly improves the mechanical properties of the separator and suppresses dendrite growth. As a result, the task-specific layer achieves ultra-light (~0.1 mg cm-2), ultra-thin (~200 nm), and ultra-robust (modulus=4.9 GPa) characteristics. Consequently, the RT Na-S battery maintained a high capacity of 610.3 mAh g-1 and an average Coulombic efficiency of 99.9 % after 400 cycles at 0.5 C.
Collapse
Affiliation(s)
- Wu Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Junyu Hou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, P. R. China
| | - Tianke Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Qunyao Yuan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
| | - Changsheng Song
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xingyu Lei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaoyan Wu
- School of Physical Science and Technology &, Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Hern Kim
- Department of Energy Science and Technology Director, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Yi Yu
- School of Physical Science and Technology &, Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chuanxiao Xiao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yun Song
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Binbin Jia
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jie Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
5
|
Xiao M, Tao P, Wang Y, Sha W, Wang S, Zeng W, Zhao J, Ruan L. Intricate Ionic Behaviors in High-Performance Self-Powered Hydrothermal Chemical Generator Using Water and Iron (III) Gate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400477. [PMID: 38402438 DOI: 10.1002/smll.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 02/26/2024]
Abstract
Utilizing the ionic flux to generate voltage output has been confirmed as an effective way to meet the requirements of clean energy sources. Different from ionic thermoelectric (i-TE) and hydrovoltaic devices, a new hydrothermal chemical generator is designed by amorphous FeCl3 particles dispersing in MWCNT and unique ferric chloride or water gate. In the presence of gate, the special ion behaviors enable the cell to present a constant voltage of 0.60 V lasting for over 96 h without temperature difference. Combining the differences of cation concentration, humidity and temperature between the right and left side of sample, the maximum short-circuit current and power output can be obtained to 168.46 µA and 28.11 µW, respectively. The generator also can utilize the low-grade heat to produce electricity wherein Seebeck coefficient is 6.79 mV K-1. The emerged hydrothermal chemical generator offers a novel approach to utilize the low-grade heat, water and salt solution resources, which provides a simple, sustainable and low-cost strategy to realize energy supply.
Collapse
Affiliation(s)
- Ming Xiao
- School of Electronics and Information Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Panmeng Tao
- School of Electronics and Information Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Yuqin Wang
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, 230601, P. R. China
| | - Wenqi Sha
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, 230601, P. R. China
| | - Siliang Wang
- School of Electronics and Information Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Wei Zeng
- School of Electronics and Information Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Jinling Zhao
- School of Electronics and Information Engineering, Anhui University, Hefei, 230601, P. R. China
- National Engineering Research Center for Analysis and Application of Agro-Ecological Big Data, Anhui University, Hefei, 230601, P. R. China
| | - Limin Ruan
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, 230601, P. R. China
- National Engineering Research Center for Analysis and Application of Agro-Ecological Big Data, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
6
|
Miao X, Song C, Hu W, Ren Y, Shen Y, Nan CW. Achieving High-Performance Lithium-Sulfur Batteries by Modulating Li + Desolvation Barrier with Liquid Crystal Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401473. [PMID: 38663859 DOI: 10.1002/adma.202401473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/17/2024] [Indexed: 05/08/2024]
Abstract
Lithium-sulfur (Li-S) batteries offer high theoretical capacity but are hindered by poor rate capability and cycling stability due to sluggish Li2S precipitation kinetics. Here a sulfonate-group-rich liquid crystal polymer (poly-2,2'-disulfonyl-4,4'-benzidine terephthalamide, PBDT) is designed and fabricated to accelerate Li2S precipitation by promoting the desolvation of Li+ from electrolyte. PBDT-modified separators are employed to assemble Li-S batteries, which deliver a remarkable rate capacity (761 mAh g-1 at 4 C) and cycling stability (500 cycles with an average decay rate of 0.088% per cycle at 0.5 C). A PBDT-based pouch cell even delivers an exceptional capacity of ≈1400 mAh g-1 and an areal capacity of ≈11 mAh cm-2 under lean-electrolyte and high-sulfur-loading condition, demonstrating promise for practical applications. Results of Raman spectra, molecular dynamic (MD) and density functional theory (DFT) calculations reveal that the abundant anionic sulfonate groups of PBDT aid in Li+ desolvation by attenuating Li+-solvent interactions and lowering the desolvation energy barrier. Plus, the polysulfide adsorption/catalysis is also excluded via electrostatic repulsion. This work elucidates the critical impact of Li+ desolvation on Li-S batteries and provides a new design direction for advanced Li-S batteries.
Collapse
Affiliation(s)
- Xiang Miao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenxi Song
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wei Hu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yaoyu Ren
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Deng R, Lu G, Wang Z, Tan S, Huang X, Li R, Li M, Wang R, Xu C, Huang G, Wang J, Zhou X, Pan F. Catalyzing Desolvation at Cathode-Electrolyte Interface Enabling High-Performance Magnesium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311587. [PMID: 38385836 DOI: 10.1002/smll.202311587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Magnesium ion batteries (MIBs) are expected to be the promising candidates in the post-lithium-ion era with high safety, low cost and almost dendrite-free nature. However, the sluggish diffusion kinetics and strong solvation capability of the strongly polarized Mg2+ are seriously limiting the specific capacity and lifespan of MIBs. In this work, catalytic desolvation is introduced into MIBs for the first time by modifying vanadium pentoxide (V2O5) with molybdenum disulfide quantum dots (MQDs), and it is demonstrated via density function theory (DFT) calculations that MQDs can effectively lower the desolvation energy barrier of Mg2+, and therefore catalyze the dissociation of Mg2+-1,2-Dimethoxyethane (Mg2+-DME) bonds and release free electrolyte cations, finally contributing to a fast diffusion kinetics within the cathode. Meanwhile, the local interlayer expansion can also increase the layer spacing of V2O5 and speed up the magnesiation/demagnesiation kinetics. Benefiting from the structural configuration, MIBs exhibit superb reversible capacity (≈300 mAh g-1 at 50 mA g-1) and unparalleled cycling stability (15 000 cycles at 2 A g-1 with a capacity of ≈70 mAh g-1). This approach based on catalytic reactions to regulate the desolvation behavior of the whole interface provides a new idea and reference for the development of high-performance MIBs.
Collapse
Affiliation(s)
- Rongrui Deng
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Guanjie Lu
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Zhongting Wang
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Shuangshuang Tan
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xueting Huang
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Rong Li
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Menghong Li
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Ronghua Wang
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Chaohe Xu
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Guangsheng Huang
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jingfeng Wang
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xiaoyuan Zhou
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Fusheng Pan
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
8
|
Shen S, Chen Y, Gu X, Chen K, Qiu Z, Liu P, Zhang Y, Xiang J, Yang Y, Cao F, Wang C, Wan W, He X, Liang X, Bao N, Chen M, Xia Y, Xia X, Zhang W. Juice Vesicles Bioreactors Technology for Constructing Advanced Carbon-Based Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400245. [PMID: 38377331 DOI: 10.1002/adma.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Indexed: 02/22/2024]
Abstract
The construction of high-quality carbon-based energy materials through biotechnology has always been an eager goal of the scientific community. Herein, juice vesicles bioreactors (JVBs) bio-technology based on hesperidium (e.g., pomelo, waxberry, oranges) is first reported for preparation of carbon-based composites with controllable components, adjustable morphologies, and sizes. JVBs serve as miniature reaction vessels that enable sophisticated confined chemical reactions to take place, ultimately resulting in the formations of complex carbon composites. The newly developed approach is highly versatile and can be compatible with a wide range of materials including metals, alloys, and metal compounds. The growth and self-assembly mechanisms of carbon composites via JVBs are explained. For illustration, NiCo alloy nanoparticles are successfully in situ implanted into pomelo vesicles crosslinked carbon (PCC) by JVBs, and their applications as sulfur/carbon cathodes for lithium-sulfur batteries are explored. The well-designed PCC/NiCo-S electrode exhibits superior high-rate properties and enhanced long-term stability. Synergistic reinforcement mechanisms on transportation of ions/electrons of interface reactions and catalytic conversion of lithium polysulfides arising from metal alloy and carbon architecture are proposed with the aid of DFT calculations. The research provides a novel biosynthetic route to rational design and fabrication of carbon composites for advanced energy storage.
Collapse
Affiliation(s)
- Shenghui Shen
- School of Materials Science and & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Narada Powder Source Co. Ltd., Hangzhou, 310014, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yanbin Chen
- School of Materials Science and & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xinyi Gu
- School of Materials Science and & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ketong Chen
- School of Materials Science and & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhong Qiu
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, P. R. China
| | - Ping Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, P. R. China
| | - Jiayuan Xiang
- Narada Powder Source Co. Ltd., Hangzhou, 310014, P. R. China
| | - Yefeng Yang
- School of Materials Science and & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Feng Cao
- Department of Engineering Technology, Huzhou College, Huzhou, 313000, P. R. China
| | - Chen Wang
- Zhejiang Academy of Science and Technology for Inspection & Quarantine, Hangzhou, 311215, P. R. China
| | - Wangjun Wan
- Zhejiang Academy of Science and Technology for Inspection & Quarantine, Hangzhou, 311215, P. R. China
| | - Xinping He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinqi Liang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, P. R. China
- Key Laboratory of Engineering Dielectric and Applications, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Ningzhong Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Yang Xia
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinhui Xia
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wenkui Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
9
|
Jiang M, Li M, Cui C, Wang J, Cheng Y, Wang Y, Zhang X, Qin J, Cao M. Molecular-Level Interfacial Chemistry Regulation of MXene Enables Energy Storage beyond Theoretical Limit. ACS NANO 2024; 18:7532-7545. [PMID: 38412072 DOI: 10.1021/acsnano.3c12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Ti3C2Tx MXene often suffers from poor lithium storage behaviors due to its electrochemically unfavorable OH terminations. Herein, we propose molecular-level interfacial chemistry regulation of Ti3C2Tx MXene with phytic acid (PA) to directly activate its OH terminations. Through constructing hydrogen bonds (H-bonds) between oxygen atoms of PA and OH terminations on Ti3C2Tx surface, interfacial charge distribution of Ti3C2Tx has been effectively regulated, thereby enabling sufficient ion-storage sites and expediting ion transport kinetics for high-performance energy storage. The results show that Li ions preferably bind to H-bond acceptors (oxygen atoms from PA), and the flexibility of H-bonds therefore renders their interactions with adsorbed Li ions chemically "tunable", thus alleviating undesirable localized geometric changes of the OH terminations. Meanwhile the H-bond-induced microscopic dipoles can act as directional Li-ion pumps to expedite ion diffusion kinetics with lower energy barrier. As a result, the as-designed Ti3C2Tx/PA achieves a 2.4-fold capacity enhancement compared with pristine Ti3C2Tx (even beyond theoretical capacity), superior long-term cyclability (220.0 mAh g-1 after 2000 cycles at 2.0 A g-1), and broad temperature adaptability (-20 to 50 °C). This work offers a promising interface engineering strategy to regulate microenvironments of inherent terminations for breaking through the energy storage performance of MXenes.
Collapse
Affiliation(s)
- Minxia Jiang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Minxi Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chang Cui
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jie Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yang Cheng
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yixin Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xing Zhang
- China Academy of Aerospace Science and Innovation, No. 2, Taihe Third Street, Yizhuang Zone, Daxing District, Beijing 100176, P. R. China
| | - Jinwen Qin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
10
|
Lu H, Zeng Q, Xu L, Xiao Y, Xie L, Yang J, Rong J, Weng J, Zheng C, Zhang Q, Huang S. Multimodal Engineering of Catalytic Interfaces Confers Multi-Site Metal-Organic Framework for Internal Preconcentration and Accelerating Redox Kinetics in Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2024; 63:e202318859. [PMID: 38179841 DOI: 10.1002/anie.202318859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The development of highly efficient catalysts to address the shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs) in lithium-sulfur batteries (LSBs) remains a formidable challenge. In this study, a series of multi-site catalytic metal-organic frameworks (MSC-MOFs) were elaborated through multimodal molecular engineering to regulate both the reactant diffusion and catalysis processes. MSC-MOFs were crafted with nanocages featuring collaborative specific adsorption/catalytic interfaces formed by exposed mixed-valence metal sites and surrounding adsorption sites. This design facilitates internal preconcentration, a coadsorption mechanism, and continuous efficient catalytic conversion toward polysulfides concurrently. Leveraging these attributes, LSBs with an MSC-MOF-Ti catalytic interlayer demonstrated a 62 % improvement in discharge capacity and cycling stability. This resulted in achieving a high areal capacity (11.57 mAh cm-2 ) at a high sulfur loading (9.32 mg cm-2 ) under lean electrolyte conditions, along with a pouch cell exhibiting an ultra-high gravimetric energy density of 350.8 Wh kg-1 . Lastly, this work introduces a universal strategy for the development of a new class of efficient catalytic MOFs, promoting SRR and suppressing the shuttle effect at the molecular level. The findings shed light on the design of advanced porous catalytic materials for application in high-energy LSBs.
Collapse
Affiliation(s)
- Haibin Lu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Qinghan Zeng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
| | - Yingbo Xiao
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Lin Xie
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Junhua Yang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Jionghui Rong
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Jingqia Weng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Cheng Zheng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
| | - Qi Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
- State key Laboratory of Silicon Materials, Zhejiang University, 310027, Hangzhou, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, 510006, Guangzhou, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
| |
Collapse
|
11
|
Li J, Gao L, Pan F, Gong C, Sun L, Gao H, Zhang J, Zhao Y, Wang G, Liu H. Engineering Strategies for Suppressing the Shuttle Effect in Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2023; 16:12. [PMID: 37947874 PMCID: PMC10638349 DOI: 10.1007/s40820-023-01223-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost. Nevertheless, the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value. Many methods were proposed for inhibiting the shuttle effect of polysulfide, improving corresponding redox kinetics and enhancing the integral performance of Li-S batteries. Here, we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li-S batteries. First, the electrochemical principles/mechanism and origin of the shuttle effect are described in detail. Moreover, the efficient strategies, including boosting the sulfur conversion rate of sulfur, confining sulfur or lithium polysulfides (LPS) within cathode host, confining LPS in the shield layer, and preventing LPS from contacting the anode, will be discussed to suppress the shuttle effect. Then, recent advances in inhibition of shuttle effect in cathode, electrolyte, separator, and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li-S batteries. Finally, we present prospects for inhibition of the LPS shuttle and potential development directions in Li-S batteries.
Collapse
Affiliation(s)
- Jiayi Li
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Li Gao
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Fengying Pan
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Cheng Gong
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Limeng Sun
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Hong Gao
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China.
| | - Jinqiang Zhang
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Yufei Zhao
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| | - Hao Liu
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
12
|
Guo J, Jiang H, Wang K, Yu M, Jiang X, He G, Li X. Enhancing Electron Conductivity and Electron Density of Single Atom Based Core-Shell Nanoboxes for High Redox Activity in Lithium Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301849. [PMID: 37093540 DOI: 10.1002/smll.202301849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Herein, an integrated structure of single Fe atom doped core-shell carbon nanoboxes wrapped by self-growing carbon nanotubes (CNTs) is designed. Within the nanoboxes, the single Fe atom doped hollow cores are bonded to the shells via the carbon needles, which act as the highways for the electron transport between cores and shells. Moreover, the single Fe atom doped nanobox shells is further wrapped and connected by self-growing carbon nanotubes. Simultaneously, the needles and carbon nanotubes act as the highways for electron transport, which can improve the overall electron conductivity and electron density within the nanoboxes. Finite element analysis verifies the unique structure including both internal and external connections realize the integration of active sites in nano scale, and results in significant increase in electron transfer and the catalytic performance of Fe-N4 sites in both Li2 Sn lithiation and Li2 S delithiation. The Li-S batteries with the double-shelled single atom catalyst delivered the specific capacity of 702.2 mAh g-1 after 550 cycles at 1.0 C. The regional structure design and evaluation method provide a new strategy for the further development of single atom catalysts for more electrochemical processes.
Collapse
Affiliation(s)
- Jiao Guo
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Helong Jiang
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Kuandi Wang
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Miao Yu
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
13
|
Chen Y, Wu J, Li Y. A "Catalysis-Immobilization-Deposition" Stepwise Strategy toward Dynamic Equilibrium of Polysulfides Conversion and Diffusion in Lithium-Sulfur Batteries. SMALL METHODS 2023:e2300086. [PMID: 37035958 DOI: 10.1002/smtd.202300086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Stepwise electrocatalysis can remarkably accelerate the kinetics of two consecutive reactions in sulfur electrochemistry. However, the significant difference between the catalysis and diffusion rates of polysulfides results in persistent shuttling in the stepwise electrocatalysts. Here, a stepwise electrocatalytic strategy of catalysis-immobilization-deposition is proposed for achieving the consistency of diffusion and catalysis of polysulfides. Accordingly, a sandwich-like stepwise electrocatalyst is designed, which is composed of Co nanoparticles (Co-NP), mesoporous SiO2 , and iron single atom (Fe-SA) (denoted as Co-NP@SiO2 @Fe-SA), serving as catalysis core, immobilization interlayer, and deposition shell, respectively. Benefitting from the dynamic equilibrium between production and consumption of polysulfides achieved by the spatial synergistic effect of the triple sites, the S/Co-NP@SiO2 @Fe-SA cathode delivers a high reversible capacity of 731 mAh g-1 over 500 cycles at 1 C with a small capacity decay of 0.039% per cycle. Moreover, a high areal capacity of 3.8 mAh cm-2 at a sulfur loading of 4.5 mg cm-2 is achieved with a low electrolyte/sulfur ratio of 5.9. This work sheds light on a new host design concept with high catalytic activity, stability, and selectivity to enable high performance lithium-sulfur batteries.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiafeng Wu
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
14
|
Zhang Q, Zhang X, Qiao S, Lei D, Wang Q, Shi X, Huang C, Lu W, Yang S, Tian Y, Liu Z, He G, Zhang F. Synthesis of the Ni 2P-Co Mott-Schottky Junction as an Electrocatalyst to Boost Sulfur Conversion Kinetics and Application in Separator Modification in Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5253-5264. [PMID: 36683487 DOI: 10.1021/acsami.2c19735] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To overcome the shuttling effect and sluggish conversion kinetics of polysulfides, a large number of catalysts have been designed for lithium-sulfur (Li-S) batteries. Herein, a Mott-Schottky junction catalyst composed of Co nanoparticles and Ni2P was designed to improve polysulfide kinetics. Our investigations reveal the rearrangement of charges at the Schottky junction interface and the construction of the built-in electric field are crucial for lowering the activation energy of the dissolved Li2Sn reduction and Li2S nucleation reaction. Furthermore, a series of experimental and electrochemical tests were performed to demonstrate that the Schottky catalytic effect enhanced the synergistic catalytic effect. With a Ni2P-Co@CNT catalyst, the battery exhibits an initial specific capacity of 874 mAh g-1 at a rate of 4.0 C, and the decay rate per cycle is 0.049% in 700 cycles. Meanwhile, the battery shows 0.118% decay rate per cycle at 0.5 C in 100 cycles at a high sulfur loading of 10 mg cm-2. The Schottky heterojunction structure proposed here has been shown to have a good catalytic effect on the reduction of Li2Sn and nucleation of Li2S, which provides a profound guidance for efficient and rational catalyst design.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Xu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Shaoming Qiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Da Lei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Qian Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Xiaoshan Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Chunhong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Wang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Shixuan Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Yuhan Tian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Zhiqing Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| | - Fengxiang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116023, PR China
- School of Chemical Engineering, Dalian University of Technology, Panjin124221, PR China
| |
Collapse
|