1
|
Jin M, Han X, Chou T, Li S, Pi Y, Chen K, Chen T, Wang S, Yang Y, Wang J, Jin H. Interfacial engineering of ruthenium-nickel for efficient hydrogen electrocatalysis in alkaline medium. J Colloid Interface Sci 2025; 678:272-280. [PMID: 39197370 DOI: 10.1016/j.jcis.2024.08.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Developing highly efficient electrocatalyst with heterostructure for hydrogen evolution and oxidation reactions (HER/HOR) in alkaline media is crucial to the fabrication and conversion of hydrogen energy but also remains a great challenge. Herein, the synthesis of ruthenium-nickel nanoparticles (Ru3-Ni NPs) with heterostructure for hydrogen electrocatalysis is reported, and studies show that their catalytic activity is improved by electron redistribution caused by the distinctly heterogeneous interface. Impressively, Ru3-Ni NPs possess the remarkable exchange current density (2.22 mA cm-2) for HOR. Additionally, an ultra-low overpotential of 28 mV is required to attain a current density of 10 mA cm-2 and superior stability of 200 h for HER. The highly efficient catalytic activity can be attributed to the electron transfer from Ni to Ru and the optimal adsorption of H* on Ru-Ni sites. Our study showcases a reliable heterostructure that boosts the HOR/HER activity of the catalyst in alkaline environments. This work provides a new pathway for designing high-performance electrocatalyst for energy storage and conversion.
Collapse
Affiliation(s)
- Mengyuan Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiang Han
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Ting Chou
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shuangyan Li
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Kai Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Tingting Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yun Yang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Juan Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China; Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Liu Y, Cheng L, Zhou S, Niu C, Taylor Isimjan T, Yang X. Electronic regulation of hcp-Ru by d-d orbital coupling for robust electrocatalytic hydrogen oxidation in alkaline electrolytes. J Colloid Interface Sci 2025; 677:997-1004. [PMID: 39178678 DOI: 10.1016/j.jcis.2024.08.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Bimetallic alloys hold exceptional promise as candidate materials because they offer a diverse parameter space for optimizing electronic structures and catalytic sites. Herein, we fabricate ruthenium-cobalt alloy nanoparticles uniformly dispersed within hollow mesoporous carbon spheres (hcp-RuCo@C) via impregnation and pyrolysis strategies. The intriguing hollow mesopore structure of hcp-RuCo@C facilitates efficient contact between active sites and reactants, thereby accelerating hydrogen oxidation reaction (HOR) kinetics. As anticipated, the hcp-RuCo@C showcases remarkable exchange current density and mass activity of 3.73 mA cm-2 and 2.8 mA μgRu-1, respectively, surpassing those of commercial Pt/C and documented Ru-based electrocatalysts. Notably, hcp-RuCo@C demonstrates robust resistance to 1000 ppm CO, a trait lacking in Pt/C catalysts. Comprehensive experimental results reveal that the alloying-induced d-d electronic interactions between Ru and Co species significantly optimizes hydrogen binding energy (HBE) and hydroxide binding energy (OHBE). This optimization promotes the vital Volmer step, ameliorating the alkaline HOR properties of hcp-RuCo@C.
Collapse
Affiliation(s)
- Yi Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lianrui Cheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shuqing Zhou
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chenggong Niu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
3
|
Yuan Y, Wu XQ, Yin X, Ruan HY, Wu YP, Li S, Hai G, Zhang G, Sun S, Li DS. Dilute Pd-Ni Alloy through Low-temperature Pyrolysis for Enhanced Electrocatalytic Hydrogen Oxidation. Angew Chem Int Ed Engl 2024; 63:e202412680. [PMID: 39166757 DOI: 10.1002/anie.202412680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Designing highly active and cost-effective electrocatalysts for the alkaline hydrogen oxidation reaction (HOR) is critical for advancing anion-exchange membrane fuel cells (AEMFCs). While dilute metal alloys have demonstrated substantial potential in enhancing alkaline HOR performance, there has been limited exploration in terms of rational design, controllable synthesis, and mechanism study. Herein, we developed a series of dilute Pd-Ni alloys, denoted as x% Pd-Ni, based on a trace-Pd decorated Ni-based coordination polymer through a facile low-temperature pyrolysis approach. The x% Pd-Ni alloys exhibit efficient electrocatalytic activity for HOR in alkaline media. Notably, the optimal 0.5 % Pd-Ni catalyst demonstrates high intrinsic activity with an exchange current density of 0.055 mA cm-2, surpassing that of many other alkaline HOR catalysts. The mechanism study reveals that the strong synergy between Pd single atoms (SAs)/Pd dimer and Ni substrate can modulate the binding strength of proton (H)/hydroxyl (OH), thereby significantly reducing the activation energy barrier of a decisive reaction step. This work offers new insights into designing advanced dilute metal or single-atom-alloys (SAAs) for alkaline HOR and potentially other energy conversion processes.
Collapse
Affiliation(s)
- Yi Yuan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xue-Qian Wu
- College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xi Yin
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Heng-Yu Ruan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Shuang Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Guangtong Hai
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montréal, Québec H3C 1K3, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Center Energy, Materials and Telecommunications, Varennes, Québec J3X 1P7, Canada
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
4
|
Zhang L, Chen S, Du T, Zhao X, Dong A, Zhang L, Li T, Li L, Yan C, Qian T. Expediting the Volmer Step of Alkaline Hydrogen Oxidation with High-Efficiency and CO-Tolerance by Ru-O-Eu Bridge. ACS NANO 2024; 18:34195-34206. [PMID: 39628117 DOI: 10.1021/acsnano.4c11614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The quest for economical and highly efficient nanomaterials for the alkaline hydrogen oxidation reaction (HOR) is imperative in advancing the technology of anion exchange membrane fuel cells (AEMFCs). Efforts using Pt-based electrocatalysts for alkaline HOR are greatly plagued by their finitely intrinsic activities and significant CO poisoning, stemming from the difficulty of simultaneously optimizing surface adsorption toward different hydrogen-related adsorbates. Herein, Ru clusters coupled with Eu2O3 immobilized within N-doped carbon nanofibers (Ru/Eu2O3@N-CNFs) are developed toward drastically boosted electrocatalysis for HOR via a d-p-f gradient orbital coupling strategy. Theoretical calculations and in situ operando spectroscopy discover that the induction of Eu2O3 optimizes the Ru site electronic structure via constructing the gradient orbital coupling of Ru(3d)-O(2p)-Eu(4f), leading to optimal H intermediates, improved adsorption ability of OH and reduced energy barrier of water formation, and promoted CO oxidation, endowing the Ru/Eu2O3 as the promising catalyst alternative for fast alkaline hydrogen electrooxidation. As a result, the Ru/Eu2O3@N-CNFs reach an impressive kinetic current densities (jk) value of 156.3 mA cm-2 at 50 mV (38.4 times higher than Pt/C), and decent stability over 35000 s continuous operation. This comprehensive investigation featuring d-p-f gradient orbital coupling provides valuable insights for the strategic development of high-performance Ru-based materials for HOR and beyond.
Collapse
Affiliation(s)
- Luping Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Sijie Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tianheng Du
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xianzhe Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Anqi Dong
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Linbo Li
- Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences 518055, Shenzhen, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
5
|
Liu J, Xiang Y, Fang S, Du Z, Li Z, Gao L, Fu F, Lv L, Gao X, Zhou J, Wu D, Jian X. Construction of Mo 2TiC 2T x MXene as a Superior Carrier to Support Ru-CuO Heterojunctions for Improving Alkaline Hydrogen Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39659232 DOI: 10.1021/acsami.4c14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The sluggish anodic hydrogen oxidation reaction (HOR) of the hydroxide exchange membrane fuel cell (HEMFC) is a significant barrier for practical implementation. Herein, we designed a catalyst of Mo2TiC2Tx MXene-supported Ru-CuO heterojunctions (named as Ru-CuO/MXene). The XPS spectra and the d-band center data of the different amounts of Cu of the Ru-CuO/MXene suggested that there existed a strongly electronic metal-support interaction between the active species and the substrate with MXene as the excellent carrier. Furthermore, the in situ electrochemical experimental results (operando electrochemical impedance spectroscopy and in situ electrochemical Raman spectroscopy) and density functional theory (DFT) calculations showed that Ru and CuO were the optimal adsorption sites for surface species *H and *OH, respectively, endowing Ru-CuO/MXene with the ability to weaken the hydrogen binding energy (HBE) and strengthen the hydroxide binding energy (OHBE). Remarkably, the optimized catalyst modified an impressive HOR activity in the 0.1 M KOH electrolyte with a kinetic and an exchange current density of 7.63 and 1.37 mA cm-2 at 50 mV overpotential (vs. RHE), respectively, which were 1.98- and 1.2-fold higher than those of commercial Pt/C (20 wt %). Finally, the as-prepared catalyst also exhibited superior durability and exceptional CO antipoisoning ability in 1000 ppm of the CO/H2-saturated 0.1 M KOH electrolyte. This work provides an inspiring strategy to design high-activity HOR electrocatalyst-based metallic Ru in alkaline environments.
Collapse
Affiliation(s)
- Juanjuan Liu
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Yu Xiang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Sitao Fang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Zifu Du
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Zuosi Li
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Loujun Gao
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Feng Fu
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Lei Lv
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Xiaoming Gao
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| | - Jianzhang Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry for Solid Surface, Xiamen University, Xiamen, Fujian 361005, People Republic of China
| | - Deyin Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry for Solid Surface, Xiamen University, Xiamen, Fujian 361005, People Republic of China
| | - Xuan Jian
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People Republic of China
| |
Collapse
|
6
|
Wang D, Fan G, Luan D, Guo Y, Gu X, Lou XWD. Ru-Incorporation-Induced Phase Transition in Co Nanoparticles for Low-Concentration Nitric Oxide Electroreduction to Ammonia at Low Potential. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408580. [PMID: 39506426 DOI: 10.1002/adma.202408580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/27/2024] [Indexed: 11/08/2024]
Abstract
Electrocatalytic reduction of nitric oxide (NO) to ammonia (NH3) represents a potential solution for improving the disrupted nitrogen cycle balance. Unfortunately, designing efficient electrocatalysts for NO reduction reaction (NORR) remains a notable challenge, especially at low concentrations. Herein, a displacement-alloying strategy is reported to successfully induce the phase transition of Co nanoparticles supported on carbon nanosheets from face-centered cubic (fcc) to hexagonal close-packed (hcp) structure through Ru incorporation. The obtained RuCo alloy with hcp phase structure (hcp-RuCo) exhibits apparent NORR activity with a record-high Faraday efficiency of 99.2% and an NH3 yield of 77.76 µg h-1 mgcat -1 at -0.1 V versus reversible hydrogen electrode at a NO concentration of 1 vol %, surpassing Co nanoparticles with fcc phase structure and most reported catalysts. Density functional theory calculations reveal that the excellent NORR activity of hcp-RuCo can be attributed to the optimized electronic structure of Co site and lowered energy barrier of the potential rate-determining step through phase transition. Furthermore, the assembled Zn-NO battery using hcp-RuCo as the cathode achieves a power density of 2.33 mW cm-2 and an NH3 yield of 45.94 µg h-1 mgcat -1. This work provides a promising research perspective for low-concentration NO conversion.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Guilan Fan
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
7
|
Fu X, Huang X, Cen Y, Ren X, Yan L, Jin S, Zhuang Z, Li W, Tian S. Ru Nanoparticles Encapsulated by Defective TiO 2 Boost the Hydrogen Oxidation/ Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406387. [PMID: 39385625 DOI: 10.1002/smll.202406387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/21/2024] [Indexed: 10/12/2024]
Abstract
The development of efficient and durable electrocatalysts for the alkaline hydrogen oxidation/evolution reaction is crucial for anion exchange membrane fuel cells/water electrolyzers. However, designing such electrocatalysts poses a challenge due to the need for optimizing various adsorbates. Herein, highly dispersed Ru nanoparticles catalysts is reported encapsulated and supported by defective anatase phase of titanium dioxide (named as Ru NPs/def-TiO2(A)) for boosting hydrogen-cycle electrocatalysis with robust anti-CO-poisoning in alkaline conditions. The Ru NPs/def-TiO2(A) achieves a high-quality activity of 7.65 A mgRu -1, which is 23.2 and 9.5-fold higher than commercial Ru/C and Pt/C in alkaline HOR. Moreover, this catalyst exhibits an outstanding overpotential of 21 mV at 10 mA cm-2 in alkaline HER. Hydrogen underpotential deposition (Hupd) and CO stripping experiments demonstrate that Ru NPs/def-TiO2(A) has the optimized H*, OH*, and CO* adsorption strength, enabling the Ru NPs/def-TiO2(A) catalyst to display excellent and robust HOR/HER performance under alkaline conditions. Using density functional theory calculations, the enhanced HOR performance mechanism for the Ru NPs/def-TiO2(A) catalyst originates from the TiO2 step face in contact with the Ru nanoparticles, indicating that the kinetics of water formation are considerably more favorable at the Ru NPs/def-TiO2(A) interface.
Collapse
Affiliation(s)
- Xiuting Fu
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoxiao Huang
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaping Cen
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyang Ren
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Yan
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shao Jin
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wanlu Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, CA, 92093, USA
- Program in Materials Science and Engineering, University of California San Diego, CA, 92093, USA
| | - Shubo Tian
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Su L, Wu H, Zhang S, Cui C, Zhou S, Pang H. Insight Into Intermediate Behaviors and Design Strategies of Platinum Group Metal-Based Alkaline Hydrogen Oxidation Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414628. [PMID: 39558771 DOI: 10.1002/adma.202414628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Indexed: 11/20/2024]
Abstract
Hydrogen oxidation reaction (HOR) can effectively convert the hydrogen energy through the hydrogen fuel cells, which plays an increasingly important role in the renewable hydrogen cycle. Nevertheless, when the electrolyte pH changes from acid to base, even with platinum group metal (PGM) catalysts, the HOR kinetics declines with several orders of magnitude. More critically, the pivotal role of reaction intermediates and interfacial environment during intermediate behaviors on alkaline HOR remains controversial. Therefore, exploring the exceptional PGM-based alkaline HOR electrocatalysts and identifying the reaction mechanism are indispensable for promoting the commercial development of hydrogen fuel cells. Consequently, the fundamental understanding of the HOR mechanism is first introduced, with emphases on the adsorption/desorption process of distinct reactive intermediates and the interfacial structure during catalytic process. Subsequently, with the guidance of reaction mechanism, the latest advances in the rational design of advanced PGM-based (Pt, Pd, Ir, Ru, Rh-based) alkaline HOR catalysts are discussed, focusing on the correlation between the intermediate behaviors and the electrocatalytic performance. Finally, given that the challenges standing in the development of the alkaline HOR, the prospect for the rational catalysts design and thorough mechanism investigation towards alkaline HOR are emphatically proposed.
Collapse
Affiliation(s)
- Lixin Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Hao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shaokun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Chenxi Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shengnan Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
9
|
Lu S, Fu L, Yang F, Wang S, Feng L. Deciphering Doping Effects in a V-Doped Ni Catalyst for Hydrogen Electrooxidation. Inorg Chem 2024; 63:21293-21302. [PMID: 39440886 DOI: 10.1021/acs.inorgchem.4c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The improved performance of soluble metal-doped Ni catalysts is perplexed by the evolvable surface structures in the alkaline electrolytes for hydrogen oxidation reaction (HOR). Herein, V-doped Ni nanoparticles, as a proof of concept, were carefully evaluated to explore the intrinsic function of the enthetic V-species in assisting the HOR kinetic improvement. As expected, it exhibits a mass-normalized kinetic current density of 50.34 mA mgNi-1, more than 12 times that of the Ni counterpart without the introduction of V. Systematic investigations prove that the surface V-species, including the V-oxides and the doped V atoms at the outmost layer, would be dissolved into the electrolytes during the alkaline HOR process. The remaining V-dopants inside the nanoparticles would rationally weaken the hydroxyl binding energy (OHBE) of the Ni-based surfaces, thereby accelerating the formation of water molecules. We also uncover that Ni is located at the overstrong branch of the OHBE-described volcano plot through theoretical calculations and alkali-metal cation probe experiments, and weakening the OHBE by internal V-doping can leave the activity to the volcanic apex.
Collapse
Affiliation(s)
- Siguang Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Luhong Fu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
10
|
Zhang JJ, Lou YY, Wu Z, Huang XJ, Sun SG. Spatially Separated Cu/Ru on Ordered Mesoporous Carbon for Superior Ammonia Electrosynthesis from Nitrate over a Wide Potential Window. J Am Chem Soc 2024; 146:24966-24977. [PMID: 39197103 DOI: 10.1021/jacs.4c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Nitrate (NO3-) in wastewater poses a serious threat to human health and the ecological environment. The electrocatalytic NO3- reduction to ammonia (NH3) reaction (NO3-RR) emerges as a promising carbon-free energy route for enabling NO3- removal and sustainable NH3 synthesis. However, it remains a challenge to achieve high Faraday efficiencies at a wide potential window due to the complex multiple-electron reduction process. Herein, spatially separated dual-metal tandem electrocatalysts made of a nitrogen-doped ordered mesoporous carbon support with ultrasmall and high-content Cu nanoparticles encapsulated inside and large and low-content Ru nanoparticles dispersed on the external surface (denoted as Ru/Cu@NOMC) are designed. In electrocatalytic NO3-RR, the Cu sites can quickly convert NO3- to adsorbed NO2- (*NO2-), while the Ru sites can efficiently produce active hydrogen (*H) to enhance the kinetics of converting *NO2- to NH3 on the Cu sites. Due to the synergistic effect between the Cu and Ru sites, Ru/Cu@NOMC exhibits a maximum NH3 Faradaic efficiency (FENH3) of approximately 100% at -0.1 V vs reversible hydrogen electrode (RHE) and a high NH3 yield rate of 1267 mmol gcat-1 h-1 at -0.5 V vs RHE. Finite element method (FEM) simulation and electrochemical in situ Raman spectroscopy revealed that the mesoporous framework can enhance the intermediate concentration due to the in situ confinement effect. Thanks to the Cu-Ru synergistic effect and the mesopore confinement effect, a wide potential window of approximately 500 mV for FENH3 over 90% and a superior stability for NH3 production over 156 h can be achieved on the Ru/Cu@NOMC catalyst.
Collapse
Affiliation(s)
- Jia-Jia Zhang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Yao-Yin Lou
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Zhangxiong Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, and Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyang Jerry Huang
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| | - Shi-Gang Sun
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Shi H, Dai TY, Sun XY, Zhou ZL, Zeng SP, Wang TH, Han GF, Wen Z, Fang QR, Lang XY, Jiang Q. Dual-Intermetallic Heterostructure on Hierarchical Nanoporous Metal for Highly Efficient Alkaline Hydrogen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406711. [PMID: 39046064 DOI: 10.1002/adma.202406711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Constructing well-defined active multisites is an effective strategy to break linear scaling relationships to develop high-efficiency catalysts toward multiple-intermediate reactions. Here, dual-intermetallic heterostructure composed of tungsten-bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high-performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column-nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel-supported Co3W-WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm-2) and hydrogen evolution reaction (current density of ≈1.45 A cm-2 at overpotential of 200 mV). Such atom-ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide-exchange-membrane water electrolyzers and fuel cells.
Collapse
Affiliation(s)
- Hang Shi
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tian-Yi Dai
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Xin-Ying Sun
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zhi-Lan Zhou
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Shu-Pei Zeng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tong-Hui Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qian-Rong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
12
|
Li C, Kim B, Li Z, Thapa R, Zhang Y, Seo JM, Guan R, Tang F, Baek JH, Kim YH, Jeon JP, Park N, Baek JB. Direct Electroplating Ruthenium Precursor on the Surface Oxidized Nickel Foam for Efficient and Stable Bifunctional Alkaline Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403151. [PMID: 38842511 DOI: 10.1002/adma.202403151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Water electrolysis to produce hydrogen (H2) using renewable energy is one of the most promising candidates for realizing carbon neutrality, but its reaction kinetics is hindered by sluggish anodic oxygen evolution reaction (OER). Ruthenium (Ru) in its high-valence state (oxide) provides one of the most active OER sites and is less costly, but thermodynamically unstable. The strong interaction between Ru nanoparticles (NPs) and nickel hydroxide (Ni(OH)2) is leveraged to directly form Ru-Ni(OH)2 on the surface of a porous nickel foam (NF) electrode via spontaneous galvanic replacement reaction. The formation of Ru─O─Ni bonds at the interface of the Ru NPs and Ni(OH)2 (Ru-Ni(OH)2) on the surface oxidized NF significantly enhance stability of the Ru-Ni(OH)2/NF electrode. In addition to OER, the catalyst is active enough for the hydrogen evolution reaction (HER). As a result, it is able to deliver overpotentials of 228 and 15 mV to reach 10 mA cm-2 for OER and HER, respectively. An industry-scale evaluation using Ru-Ni(OH)2/NF as both OER and HER electrodes demonstrates a high current density of 1500 mA cm-2 (OER: 410 mV; HER: 240 mV), surpassing commercial RuO2 (OER: 600 mV) and Pt/C based performance (HER: 265 mV).
Collapse
Affiliation(s)
- Changqing Li
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Bumseop Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Zhongping Li
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Ranjit Thapa
- Department of Physics, SRM University - AP, Amaravati, Andhra Pradesh, 522 502, India
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jeong-Min Seo
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Runnan Guan
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Feng Tang
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jae-Hoon Baek
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Young Hyun Kim
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jong-Pil Jeon
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Noejung Park
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
13
|
Wu J, Gao X, Liu G, Qiu X, Xia Q, Wang X, Zhu W, He T, Zhou Y, Feng K, Wang J, Huang H, Liu Y, Shao M, Kang Z, Zhang X. Immobilizing Ordered Oxophilic Indium Sites on Platinum Enabling Efficient Hydrogen Oxidation in Alkaline Electrolyte. J Am Chem Soc 2024; 146:20323-20332. [PMID: 38995375 DOI: 10.1021/jacs.4c05844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Addressing the sluggish kinetics in the alkaline hydrogen oxidation reaction (HOR) is a pivotal yet challenging step toward the commercialization of anion-exchange membrane fuel cells (AEMFCs). Here, we have successfully immobilized indium (In) atoms in an orderly fashion into platinum (Pt) nanoparticles supported by reduced graphene oxide (denoted as O-Pt3In/rGO), significantly enhancing alkaline HOR kinetics. We have revealed that the ordered atomic matrix enables uniform and optimized hydrogen binding energy (HBE), hydroxyl binding energy (OHBE), and carbon monoxide binding energy (COBE) across the catalyst. With a mass activity of 2.3066 A mg-1 at an overpotential of 50 mV, over 10 times greater than that of Pt/C, the catalyst also demonstrates admirable CO resistance and stability. Importantly, the AEMFC implementing this catalyst as the anode catalyst has achieved an impressive power output compared to Pt/C. This work not only highlights the significance of constructing ordered oxophilic sites for alkaline HOR but also sheds light on the design of well-structured catalysts for energy conversion.
Collapse
Affiliation(s)
- Jie Wu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xin Gao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Guimei Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xiaoyi Qiu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Qing Xia
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xinzhong Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tiwei He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yunjie Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jiaxuan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- CAS-HK Joint Laboratory for Hydrogen Energy, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, Guangdong 511458, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Advanced Manufacturing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
Cui Z, Ren Z, Ma C, Chen B, Chen G, Lu R, Zhu W, Gan T, Wang Z, Zhuang Z, Han Y. Dilute RuCo Alloy Synergizing Single Ru and Co Atoms as Efficient and CO-Resistant Anode Catalyst for Anion Exchange Membrane Fuel Cells. Angew Chem Int Ed Engl 2024; 63:e202404761. [PMID: 38664844 DOI: 10.1002/anie.202404761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 06/05/2024]
Abstract
Ruthenium (Ru) is considered a promising candidate catalyst for alkaline hydroxide oxidation reaction (HOR) due to its hydrogen binding energy (HBE) like that of platinum (Pt) and its much higher oxygenophilicity than that of Pt. However, Ru still suffers from insufficient intrinsic activity and CO resistance, which hinders its widespread use in anion exchange membrane fuel cells (AEMFCs). Here, we report a hybrid catalyst (RuCo)NC+SAs/N-CNT consisting of dilute RuCo alloy nanoparticles and atomically single Ru and Co atoms on N-doped carbon nanotubes The catalyst exhibits a state-of-the-art activity with a high mass activity of 7.35 A mgRu -1. More importantly, when (RuCo)NC+SAs/N-CNT is used as an anode catalyst for AEMFCs, its peak power density reaches 1.98 W cm-2, which is one of the best AEMFCs properties of noble metal-based catalysts at present. Moreover, (RuCo)NC+SAs/N-CNT has superior long-time stability and CO resistance. The experimental and density functional theory (DFT) results demonstrate that the dilute alloying and monodecentralization of the exotic element Co greatly modulates the electronic structure of the host element Ru, thus optimizing the adsorption of H and OH and promoting the oxidation of CO on the catalyst surface, and then stimulates alkaline HOR activity and CO tolerance of the catalyst.
Collapse
Affiliation(s)
- Zhibo Cui
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhanghao Ren
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bowen Chen
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruihu Lu
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facilities, Shanghai institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
15
|
Gao J, Yu W, Liu J, Qin L, Cheng H, Cui X, Jiang L. Regulation of hydrogen binding energy via oxygen vacancy enables an efficient trifunctional Rh-Rh 2O 3 electrocatalyst for fuel cells and water splitting. J Colloid Interface Sci 2024; 664:766-778. [PMID: 38492378 DOI: 10.1016/j.jcis.2024.03.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Developing multi-functional electrocatalysts is of great practical significance for fuel cells and water splitting. Herein, Rh-Rh2O3 nanoclusters are prepared and the surface oxygen vacancy content is regulated elaborately by post-treatment. The optimized Rh-Rh2O3/C-400 exhibits superior trifunctional catalytic activity for hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR), i.e., the mass activity for HOR is 2.29 mA μgRh-1, and the overpotential for HER and HzOR at 10 mA cm-2 is as low as 12 mV and 31 mV, respectively, superior to the benchmark Pt/C. Rh-Rh2O3/C-400 also displays promising performance in practical devices, with the H2-O2 anion-exchange-membrane fuel cell delivering a peak power density of 0.66 W cm-2, and the hydrazine-assisted water splitting electrolyzer requiring a low electrolysis voltage of 0.161 V at 0.1 A cm-2. The experimental and theoretical investigations discover that the hydrogen binding energy (HBE) is linearly depended on surface oxygen vacancy contents, and the HBE directly determines the catalytic activity for HOR, HER and HzOR. This work not only innovates an efficient Rh-based nanocluster tri-functional electrocatalyst, but also eludicates the intrinsic relationship of surface structure-intermediate adsorption-catalytic activity.
Collapse
Affiliation(s)
- Jie Gao
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wanqing Yu
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jing Liu
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Lishuai Qin
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Haodong Cheng
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xuejing Cui
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Luhua Jiang
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
16
|
Shi H, Yang Y, Meng P, Yang J, Zheng W, Wang P, Zhang Y, Chen X, Cheng Z, Zong C, Wang D, Chen Q. Local Charge Transfer Unveils Antideactivation of Ru at High Potentials for the Alkaline Hydrogen Oxidation Reaction. J Am Chem Soc 2024. [PMID: 38838245 DOI: 10.1021/jacs.4c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The activity of Ru-based alkaline hydrogen oxidation reaction (HOR) electrocatalysts usually decreases rapidly at potentials higher than 0.1 V (vs a reversible hydrogen electrode (RHE)), which significantly limits the lifetime of fuel cells. It is found that this phenomenon is caused by the overadsorption of the O species due to the overcharging of Ru nanoparticles at high potentials. Here, Mn1Ox(OH)y clusters-modified Ru nanoparticles (Mn1Ox(OH)y@Ru/C) were prepared to promote charge transfer from overcharged Ru nanoparticles to Mn1Ox(OH)y clusters. Mn1Ox(OH)y@Ru/C exhibits high HOR activity and stability over a wide potential range of 0-1.0 V. Moreover, a hydroxide exchange membrane fuel cell with a Mn1Ox(OH)y@Ru/C anode delivers a high peak power density of 1.731 W cm-2, much superior to that of a Pt/C anode. In situ X-ray absorption fine structure (XAFS) analysis and density functional theory (DFT) calculations reveal that Mn in Mn1Ox(OH)y clusters could receive more electrons from overcharged Ru at higher potentials and significantly decrease the overadsorption of the O species on Ru, thus permitting the HOR on Ru to proceed at high potentials. This study provides guidance for the design of alkaline HOR catalysts without activity decay at high potentials.
Collapse
Affiliation(s)
- Hongda Shi
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pin Meng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiahe Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pengcheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yunlong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xingyan Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhiyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Cichang Zong
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
17
|
Zheng N, Hu X, Yan L, Ding LY, Feng J, Li D, Ji T, Ai F, Yu K, Hu J. Bimetallic Cu@Ru Core-Shell Structures with Ligand Effects for Endo-Exogenous Stimulation-Mediated Dynamic Oncotherapy. NANO LETTERS 2024; 24:6165-6173. [PMID: 38717317 DOI: 10.1021/acs.nanolett.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Dynamic therapies, which induce reactive oxygen species (ROS) production in situ through endogenous and exogenous stimulation, are emerging as attractive options for tumor treatment. However, the complexity of the tumor substantially limits the efficacy of individual stimulus-triggered dynamic therapy. Herein, bimetallic copper and ruthenium (Cu@Ru) core-shell nanoparticles are applied for endo-exogenous stimulation-triggered dynamic therapy. The electronic structure of Cu@Ru is regulated through the ligand effects to improve the adsorption level for small molecules, such as water and oxygen. The core-shell heterojunction interface can rapidly separate electron-hole pairs generated by ultrasound and light stimulation, which initiate reactions with adsorbed small molecules, thus enhancing ROS generation. This synergistically complements tumor treatment together with ROS from endogenous stimulation. In vitro and in vivo experiments demonstrate that Cu@Ru nanoparticles can induce tumor cell apoptosis and ferroptosis through generated ROS. This study provides a new paradigm for endo-exogenous stimulation-based synergistic tumor treatment.
Collapse
Affiliation(s)
- Nannan Zheng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Xin Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Ling-Yun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Dan Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Tao Ji
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Keda Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
- Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| |
Collapse
|
18
|
Sun X, Cheng Z, Liu H, Chen S, Zheng YR. Porous Ruthenium-Tungsten-Zinc Nanocages for Efficient Electrocatalytic Hydrogen Oxidation Reaction in Alkali. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:808. [PMID: 38727403 PMCID: PMC11085371 DOI: 10.3390/nano14090808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
With the rapid development of anion exchange membrane technology and the availability of high-performance non-noble metal cathode catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells has become feasible. Currently, anode materials for alkaline anion-exchange membrane fuel cells still rely on platinum-based catalysts, posing a challenge to the development of efficient low-Pt or Pt-free catalysts. Low-cost ruthenium-based anodes are being considered as alternatives to platinum. However, they still suffer from stability issues and strong oxophilicity. Here, we employ a metal-organic framework compound as a template to construct three-dimensional porous ruthenium-tungsten-zinc nanocages via solvothermal and high-temperature pyrolysis methods. The experimental results demonstrate that this porous ruthenium-tungsten-zinc nanocage with an electrochemical surface area of 116 m2 g-1 exhibits excellent catalytic activity for hydrogen oxidation reaction in alkali, with a kinetic density 1.82 times and a mass activity 8.18 times higher than that of commercial Pt/C, and a good catalytic stability, showing no obvious degradation of the current density after continuous operation for 10,000 s. These findings suggest that the developed catalyst holds promise for use in alkaline anion-exchange membrane fuel cells.
Collapse
|
19
|
Fu X, Chen Z, Zhang S, Wang J, Ding J, Han X. High-Stability RuNi/C Electrocatalyst for Efficient Hydrogen Oxidation Reaction in Alkaline Condition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307725. [PMID: 38057130 DOI: 10.1002/smll.202307725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/07/2023] [Indexed: 12/08/2023]
Abstract
The Ru-based catalyst for hydrogen oxidation reaction (HOR) with remarkable activity and reliability at high potential range remains a formidable challenge. Herein, the RuNi/C nanoparticles are customized, in which NiRu alloy is tightly wrapped with a carbon layer, delivering 2.2-fold and 8.3-fold enhancement in kinetic current density than that of commercial Pt/C and Ru/C, respectively. Notably, the current density maintains 2.93 mA cm-2 disk at 0.6 V vs RHE, which effectively improves the stability of Ru-based catalysts at high voltage. The NiRu alloy triggers electron redistribution between two metal elements and regulates the surface adsorption performance, coupled with a tightly wrapped outer carbon layer which is in situ formed with alloy as a good conductor of electronic and protection from the electrolyte. This work not only provides a novel electrocatalyst for efficient HOR with its potential for industrial application but also opens up a new avenue for designing highly active catalytic systems.
Collapse
Affiliation(s)
- Xiaorui Fu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Zanyu Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Shiyu Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Jiajun Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Jia Ding
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
20
|
Douglin JC, Sekar A, Singh RK, Chen Z, Li J, Dekel DR. Hydrogenated TiO 2 Carbon Support for PtRu Anode Catalyst in High-Performance Anion-Exchange Membrane Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307497. [PMID: 38088587 DOI: 10.1002/smll.202307497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Indexed: 05/18/2024]
Abstract
The availability of durable, high-performance electrocatalysts for the hydrogen oxidation reaction (HOR) is currently a constraint for anion-exchange membrane fuel cells (AEMFCs). Herein, a rapid microwave-assisted synthesis method is used to develop a core-shell catalyst support based on a hydrogenated TiO2/carbon for PtRu nanoparticles (NPs). The hydrogenated TiO2 provides a strong metal-support interaction with the PtRu NPs, which improves the catalyst's oxophilicity and HOR activity compared to commercial PtRu/C and enables greater size control of the catalyst NPs. The as-synthesized PtRu/TiO2/C-400 electrocatalyst exhibits respectable performance in an AEMFC operated at 80 °C, yielding the highest current density (up to 3× higher) within the catalytic region (compared at 0.80-0.90 V) and voltage efficiency (68%@ 0.5 A cm-2) values in the compared literature. In addition, the cell demonstrates promising short-term voltage stability with a minor voltage decay of 1.5 mV h-1. This "first-of-its-kind in alkaline" work may open further research avenues to develop rapid synthesis methods to prepare advanced core-shell metal-oxide/carbon supports for electrocatalysts for use in the next-generation of AEMFCs with potential applicability to the broader electrochemical systems research community.
Collapse
Affiliation(s)
- John C Douglin
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Archana Sekar
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramesh K Singh
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- CO2 Research and Green Technologies Centre, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Zihua Chen
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Jun Li
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
21
|
Yang C, Yue J, Wang G, Luo W. Activating and Identifying the Active Site of RuS 2 for Alkaline Hydrogen Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202401453. [PMID: 38366202 DOI: 10.1002/anie.202401453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Searching for highly efficient and economical electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is crucial for the development of alkaline polymer membrane fuel cells. Here, we report a valid strategy to active pyrite-type RuS2 for alkaline HOR electrocatalysis by introducing sulfur vacancies. The obtained S-vacancies modified RuS2-x exhibits outperformed HOR activity with a current density of 0.676 mA cm-2 and mass activity of 1.43 mA μg-1, which are 15-fold and 40-fold improvement than those of Ru catalyst. In situ Raman spectra demonstrate the formation of S-H bond during the HOR process, identifying the S atom of RuS2-x is the real active site for HOR catalysis. Density functional theory calculations and experimental results including in situ surface-enhanced infrared absorption spectroscopy suggest the introduction of S vacancies can rationally modify the p orbital of S atoms, leading to enhanced binding strength between the S sites and H atoms on the surface of RuS2-x, together with the promoted connectivity of hydrogen-bonding network and lowered water formation energy, contributes to the enhanced HOR performance.
Collapse
Affiliation(s)
- Chaoyi Yang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Jianchao Yue
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Guangqin Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| |
Collapse
|
22
|
Mu XQ, Liu SL, Zhang MY, Zhuang ZC, Chen D, Liao YR, Zhao HY, Mu SC, Wang DS, Dai ZH. Symmetry-Broken Ru Nanoparticles with Parasitic Ru-Co Dual-Single Atoms Overcome the Volmer Step of Alkaline Hydrogen Oxidation. Angew Chem Int Ed Engl 2024; 63:e202319618. [PMID: 38286759 DOI: 10.1002/anie.202319618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Efficient dual-single-atom catalysts are crucial for enhancing atomic efficiency and promoting the commercialization of fuel cells, but addressing the sluggish kinetics of hydrogen oxidation reaction (HOR) in alkaline media and the facile dual-single-atom site generation remains formidable challenges. Here, we break the local symmetry of ultra-small ruthenium (Ru) nanoparticles by embedding cobalt (Co) single atoms, which results in the release of Ru single atoms from Ru nanoparticles on reduced graphene oxide (Co1 Ru1,n /rGO). In situ operando spectroscopy and theoretical calculations reveal that the oxygen-affine Co atom disrupts the symmetry of ultra-small Ru nanoparticles, resulting in parasitic Ru and Co dual-single-atom within Ru nanoparticles. The interaction between Ru single atoms and nanoparticles forms effective active centers. The parasitism of Co atoms modulates the adsorption of OH intermediates on Ru active sites, accelerating HOR kinetics through faster formation of *H2 O. As anticipated, Co1 Ru1,n /rGO exhibits ultrahigh mass activity (7.68 A mgRu -1 ) at 50 mV and exchange current density (0.68 mA cm-2 ), which are 6 and 7 times higher than those of Ru/rGO, respectively. Notably, it also displays exceptional durability surpassing that of commercial Pt catalysts. This investigation provides valuable insights into hybrid multi-single-atom and metal nanoparticle catalysis.
Collapse
Affiliation(s)
- Xueqin Q Mu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Suli L Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Mengyang Y Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zechao C Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuru R Liao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hongyu Y Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun C Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Dingsheng S Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhihui H Dai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
23
|
Fang Y, Wei C, Bian Z, Yin X, Liu B, Liu Z, Chi P, Xiao J, Song W, Niu S, Tang C, Liu J, Ge X, Xu T, Wang G. Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction. Nat Commun 2024; 15:1614. [PMID: 38388525 PMCID: PMC10884033 DOI: 10.1038/s41467-024-45873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
While Ru owns superior catalytic activity toward hydrogen oxidation reaction and cost advantages, the catalyst deactivation under high anodic potential range severely limits its potential to replace the Pt benchmark catalyst. Unveiling the deactivation mechanism of Ru and correspondingly developing protection strategies remain a great challenge. Herein, we develop atomic Pt-functioned Ru nanoparticles with excellent anti-deactivation feature and meanwhile employ advanced operando characterization tools to probe the underlying roles of Pt in the anti-deactivation. Our studies reveal the introduced Pt single atoms effectively prevent Ru from oxidative passivation and consequently preserve the interfacial water network for the critical H* oxidative release during catalysis. Clearly understanding the deactivation nature of Ru and Pt-induced anti-deactivation under atomic levels could provide valuable insights for rationally designing stable Ru-based catalysts for hydrogen oxidation reaction and beyond.
Collapse
Affiliation(s)
- Yanyan Fang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Cong Wei
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zenan Bian
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xuanwei Yin
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bo Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhaohui Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Chi
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Junxin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wanjie Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shuwen Niu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chongyang Tang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaolin Ge
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Tongwen Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Gongming Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
24
|
Han P, Yang X, Wu L, Jia H, Chen J, Shi W, Cheng G, Luo W. A Highly-Efficient Boron Interstitially Inserted Ru Anode Catalyst for Anion Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304496. [PMID: 37934652 DOI: 10.1002/adma.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Indexed: 11/09/2023]
Abstract
Developing high-performance electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is crucial for the commercialization of anion exchange membrane fuel cells (AEMFCs). Here, boron interstitially inserted ruthenium (B-Ru/C) is synthesized and used as an anode catalyst for AEMFC, achieving a peak power density of 1.37 W cm-2 , close to the state-of-the-art commercial PtRu catalyst. Unexpectedly, instead of the monotonous decline of HOR kinetics with pH as generally believed, an inflection point behavior in the pH-dependent HOR kinetics on B-Ru/C is observed, showing an anomalous behavior that the HOR activity under alkaline electrolyte surpasses acidic electrolyte. Experimental results and density functional theory calculations reveal that the upshifted d-band center of Ru after the intervention of interstitial boron can lead to enhanced adsorption ability of OH and H2 O, which together with the reduced energy barrier of water formation, contributes to the outstanding alkaline HOR performance with a mass activity of 1.716 mA µgPGM -1 , which is 13.4-fold and 5.2-fold higher than that of Ru/C and commercial Pt/C, respectively.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyi Yang
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jingchao Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Wenwen Shi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
25
|
Li W, Liu K, Feng S, Xiao Y, Zhang L, Mao J, Liu Q, Liu X, Luo J, Han L. Well-defined Ni 3N nanoparticles armored in hollow carbon nanotube shell for high-efficiency bifunctional hydrogen electrocatalysis. J Colloid Interface Sci 2024; 655:726-735. [PMID: 37976746 DOI: 10.1016/j.jcis.2023.11.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Alkaline H2-O2 fuel cells and water electrolysis are crucial for hydrogen energy recycling. However, the sluggish kinetics of the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) in an alkaline medium pose significant obstacles. Thus, it is imperative but challenging to develop highly efficient and stable non-precious metal electrocatalysts for alkaline HOR and HER. Here, we present the intriguing synthesis of well-defined Ni3N nanoparticles armored within an N-doped hollow carbon nanotube shell (Ni3N@NC) via the conversion of a hydrogen-bonded organic framework (HOF) to metal-organic framework (MOF), followed by high-temperature pyrolysis. As-developed Ni3N@NC demonstrates exceptional bifunctionality in alkaline HOR/HER electrocatalysis, with a high HOR limiting current density of 2.67 mA cm-2 comparable to the benchmark 20 wt% Pt/C, while achieving a lead in overpotential of 145 mV and stronger CO-tolerance. Additionally, it achieves a low overpotential of 21 mV to attain a HER current density of 10 mA cm-2 with long-term stability up to 340 h, both exceeding those of Pt/C. Structural analyses and electrochemical studies reveal that the remarkable bifunctional hydrogen electrocatalytic performance of Ni3N@NC can be ascribed to the synergistic coupling among the well-dispersed small-sized Ni3N nanoparticles, chain-mail structure, and optimized electronic structure enabled by strong metal-support interaction. Furthermore, theoretical calculations indicate that the high-efficiency HOR/HER observed in Ni3N@NC is attributed to the strong OH- affinity, moderate H adsorption, and enhanced water formation/dissociation ability of the Ni3N active sites. This work underscores the significance of rational structural design in enhancing performance and inspires further development of advanced nanostructures for efficient hydrogen electrocatalysis.
Collapse
Affiliation(s)
- Wenbo Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China
| | - Kuo Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shiqiang Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yi Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jing Mao
- National Experimental Teaching Demonstration Center of Material Science and Engineering, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China.
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
26
|
Cao Z, Wang C, Sun Y, Liu M, Li W, Zhang J, Fu Y. A Ru/RuO 2 heterostructure boosting electrochemistry-assisted selective benzoic acid hydrogenation. Chem Sci 2024; 15:1384-1392. [PMID: 38274064 PMCID: PMC10806790 DOI: 10.1039/d3sc05312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Electrocatalytic hydrogenation of benzoic acid (BA) to cyclohexanecarboxylic acid (CCA) at ambient temperature and pressure has been recognized as a promising alternative to thermal hydrogenation since water is required as the hydrogen source. So far, only a few Pt-based electrocatalysts have been developed in acidic electrolyte. To overcome the limitations of reactant solubility and catalyst corrosion, herein, carbon fiber-supported Ru electrocatalysts with abundant Ru/RuO2 heterojunctions were fabricated via cyclic electrodeposition between -0.8 and 1.1 V vs. Ag/AgCl. In an alkaline environment, a Ru/RuO2 catalyst achieves an excellent ECH reactivity in terms of high BA conversion (100%) and selectivity towards CCA (100%) within 180 min at a current density of 200/3 mA cm-2, showing exceptional reusability and long-term stability. 1-Cyclohexenecarboxylic acid (CEA) was identified as the reaction intermediate, whose the selectivity is governed by the applied potential. Kinetic studies demonstrate that ECH of BA over Ru/RuO2 follows a Langmuir-Hinshelwood (L-H) mechanism. In situ Raman spectroscopy and theoretical calculations reveal that the Ru/RuO2 interface enhances the adsorption strength of CEA, thereby facilitating the production of fully hydrogenated CCA. This work provides a deep understanding of the ECH pathway of BA in alkaline media, and gives a new methodology to fabricate heterostructure electrocatalysts.
Collapse
Affiliation(s)
- Zifan Cao
- School of Chemical Engineering & Technology, Tianjin University Tianjin 300350 China
| | - Chenhui Wang
- School of Chemical Engineering & Technology, Tianjin University Tianjin 300350 China
| | - Yifan Sun
- School of Chemical Engineering & Technology, Tianjin University Tianjin 300350 China
| | - Menghui Liu
- School of Chemical Engineering & Technology, Tianjin University Tianjin 300350 China
| | - Wei Li
- School of Chemical Engineering & Technology, Tianjin University Tianjin 300350 China
| | - Jinli Zhang
- School of Chemical Engineering & Technology, Tianjin University Tianjin 300350 China
- School of Chemistry and Chemical Engineering, Shihezi University Shihezi 832003 China
| | - Yan Fu
- School of Chemical Engineering & Technology, Tianjin University Tianjin 300350 China
| |
Collapse
|
27
|
Liu X, Gong L, Wang L, Chang C, Su P, Dou Y, Dou SX, Li Y, Gong F, Liu J. Enabling Ultrafine Ru Nanoparticles with Tunable Electronic Structures via a Double-Shell Hollow Interlayer Confinement Strategy toward Enhanced Hydrogen Evolution Reaction Performance. NANO LETTERS 2024; 24:592-600. [PMID: 38039420 PMCID: PMC10797610 DOI: 10.1021/acs.nanolett.3c03514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023]
Abstract
Engineering of the catalysts' structural stability and electronic structure could enable high-throughput H2 production over electrocatalytic water splitting. Herein, a double-shell interlayer confinement strategy is proposed to modulate the spatial position of Ru nanoparticles in hollow carbon nanoreactors for achieving tunable sizes and electronic structures toward enhanced H2 evolution. Specifically, the Ru can be anchored in either the inner layer (Ru-DSC-I) or the external shell (Ru-DSC-E) of double-shell nanoreactors, and the size of Ru is reduced from 2.2 to 0.9 nm because of the double-shell confinement effect. The electronic structures are efficiently optimized thereby stabilizing active sites and lowering the reaction barrier. According to finite element analysis results, the mesoscale mass diffusion can be promoted in the double-shell configuration. The Ru-DSC-I nanoreactor exhibits a much lower overpotential (η10 = 73.5 mV) and much higher stability (100 mA cm-2). Our work might shed light on the precise design of multishell catalysts with efficient refining electrostructures toward electrosynthesis applications.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
- Institute
of Industrial Catalysis, Zhejiang University
of Technology, Hangzhou Chaowang Road 18, Hangzhou, Zhejiang 310014, PR China
| | - Lihua Gong
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
| | - Liwei Wang
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Chaoqun Chang
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
| | - Panpan Su
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Yuhai Dou
- Institute
of Energy Materials Science, University
of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Shi Xue Dou
- Institute
of Energy Materials Science, University
of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ying Li
- Institute
of Industrial Catalysis, Zhejiang University
of Technology, Hangzhou Chaowang Road 18, Hangzhou, Zhejiang 310014, PR China
| | - Feilong Gong
- Key
Laboratory of Surface and Interface Science and Technology of Henan
Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, PR China
| | - Jian Liu
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
- DICP-Surrey
Joint Centre for Future Materials, Department
of Chemical and Process Engineering and Advanced Technology Institute
of University of Surrey, Guildford, Surrey GU2 7XH, U.K.
- College
of Chemistry and Chemical Engineering, Inner
Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| |
Collapse
|
28
|
Wang P, Yang Y, Zheng W, Cheng Z, Wang C, Chen S, Wang D, Yang J, Shi H, Meng P, Wang P, Tong H, Chen J, Chen Q. V-O Species-Doped Carbon Frameworks Loaded with Ru Nanoparticles as Highly Efficient and CO-Tolerant Catalysts for Alkaline Hydrogen Oxidation. J Am Chem Soc 2023; 145:27867-27876. [PMID: 38079607 DOI: 10.1021/jacs.3c11734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Efficient and CO-tolerant catalysts for alkaline hydrogen oxidation (HOR) are vital to the commercial application of anion exchange membrane fuel cells (AEMFCs). Herein, a robust Ru-based catalyst (Ru/VOC) with ultrasmall Ru nanoparticles supported on carbon frameworks with atomically dispersed V-O species is prepared elaborately. The catalyst exhibits a remarkable mass activity of 3.44 mA μgPGM, which is 31.3 times that of Ru/C and even 4.7 times higher than that of Pt/C. Moreover, the Ru/VOC anode can achieve a peak power density (PPD) of 1.194 W cm-2, much superior to that of Ru/C anode and even better than that of Pt/C anode. In addition, the catalyst also exhibits superior stability and exceptional CO tolerance. Experimental results and density functional theory (DFT) calculations demonstrate that V-O species are ideal OH- adsorption sites, which allow Ru to release more sites for hydrogen adsorption. Furthermore, the electron transfer from Ru nanoparticles to the carbon substrate regulates the electronic structure of Ru, reducing the hydrogen binding energy (HBE) and the CO adsorption energy on Ru, thus boosting the alkaline HOR performance and CO tolerance of the catalyst. This is the first report that oxophilic single atoms distributed on carbon frameworks serve as OH- adsorption sites for efficient hydrogen oxidation, opening up new guidance for the elaborate design of high-activity catalysts for the alkaline HOR.
Collapse
Affiliation(s)
- Pengcheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhiyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changlai Wang
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shi Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiahe Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongda Shi
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pin Meng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Huigang Tong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jitang Chen
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Zhang Q, Qian Z, Wei Y, Liu X, Zhang P, Gao Y, Qiao Y, Liu X. Molten Salt-Derived RuO 2 Nanocrystals and Nanowires: Unveiling Correlations of Morphology, Microstructure, and Electrocatalytic Performance. Inorg Chem 2023; 62:18257-18266. [PMID: 37867365 DOI: 10.1021/acs.inorgchem.3c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Ruthenium oxide (RuO2), due to its comparable binding energy with *H and cost-effectiveness against Pt, has emerged as a pivotal electrocatalyst for oxygen evolution reaction (OER). In the present study, RuO2 nanocrystals (NCs) and nanowires (NWs) were obtained by a molten salt process and the morphology, crystal structure, and local bonding features were examined by using electron microscopy and X-ray absorption spectroscopy. From the electrochemical measurement, both RuO2 NCs and NWs exhibit favorable stability and activity toward oxygen evolution reaction in an alkali medium, althought NCs exhibit higher activity, which is likely attributed to the larger surface area and the high local structural disorder. The theoretical calculation reveals that RuO2 NWs with a primary (110) orientation show a higher overpotential due to its d-band center's proximity to the Fermi level versus (101). The present work suggests that the molten salt process could be an efficient method for producing metal oxide catalysts with tailorable geometry and performances.
Collapse
Affiliation(s)
- Qiang Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Sanghai 201800, People's Republic of China
| | - Zhenghua Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Sanghai 201800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yao Wei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Xueyang Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Sanghai 201800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ying Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yanbo Qiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Sanghai 201800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaofeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
30
|
Wang L, Xu Z, Kuo CH, Peng J, Hu F, Li L, Chen HY, Wang J, Peng S. Stabilizing Low-Valence Single Atoms by Constructing Metalloid Tungsten Carbide Supports for Efficient Hydrogen Oxidation and Evolution. Angew Chem Int Ed Engl 2023; 62:e202311937. [PMID: 37658707 DOI: 10.1002/anie.202311937] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Designing novel single-atom catalysts (SACs) supports to modulate the electronic structure is crucial to optimize the catalytic activity, but rather challenging. Herein, a general strategy is proposed to utilize the metalloid properties of supports to trap and stabilize single-atoms with low-valence states. A series of single-atoms supported on the surface of tungsten carbide (M-WCx , M=Ru, Ir, Pd) are rationally developed through a facile pyrolysis method. Benefiting from the metalloid properties of WCx , the single-atoms exhibit weak coordination with surface W and C atoms, resulting in the formation of low-valence active centers similar to metals. The unique metal-metal interaction effectively stabilizes the low-valence single atoms on the WCx surface and improves the electronic orbital energy level distribution of the active sites. As expected, the representative Ru-WCx exhibits superior mass activities of 7.84 and 62.52 A mgRu -1 for the hydrogen oxidation and evolution reactions (HOR/HER), respectively. In-depth mechanistic analysis demonstrates that an ideal dual-sites cooperative mechanism achieves a suitable adsorption balance of Had and OHad , resulting in an energetically favorable Volmer step. This work offers new guidance for the precise construction of highly active SACs.
Collapse
Affiliation(s)
- Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zipeng Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 30013 (Taiwan)
| | - Jian Peng
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW2522, Australia
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 30013 (Taiwan)
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW2522, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
31
|
Yang C, Wu Z, Zhao Z, Gao Y, Ma T, Luo X, Cheng C, Wang Y, Li S, Zhao C. Mn-Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer-Based H 2 -Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303331. [PMID: 37295069 DOI: 10.1002/adma.202303331] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Among the platinum-group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption-desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn-oxygen complex, this study reports to design Mn-oxygen compounds coordinated Ru sites (MOC-Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption-desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC-Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long-range H* spillover for H2 -release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC-Ru catalyst holds great potential as cathode for H2 -production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water-splitting cathode.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
32
|
Zhang Y, Zhang Y, Zeng Z, Ho D. Order-disorder engineering of RuO 2 nanosheets towards pH-universal oxygen evolution. MATERIALS HORIZONS 2023; 10:2904-2912. [PMID: 37194917 DOI: 10.1039/d3mh00339f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ru-based electrocatalysts are considered promising anode catalysts towards water electrolysis due to their impressive activity under acidic conditions. Yet, caused by the collapse of the local crystalline domains and concurrent leaching of Ru species during the OER process, durability against structural degradation remains poor. Herein, we present an order-disorder structure optimization strategy, based on RuO2 nanosheets with well-defined amorphous-crystalline boundaries supported on carbon cloth (a/c-RuO2/CC), to effectively catalyze water oxidation, especially in the case of an acidic medium. Specifically, the as-prepared a/c-RuO2/CC sample has achieved a lower overpotential of 150 mV at 10 mA cm-2, a smaller Tafel slope of 47 mV dec-1, and a significantly higher durability with suppressed dissolution of Ru, with regard to its crystalline (c-RuO2/CC) and amorphous (a-RuO2/CC) counterparts. Computational simulations combined with experimental characterizations uncover that the construction of the structurally ordered-disordered boundary enables a weakened Ru-O covalency with regard to the ordered counterpart, which suppresses the leaching of active Ru species from the crystalline phase, thus enhances stability. An upshift of the d-band center in a/c-RuO2/CC relative to a-RuO2/CC reduces the energy barrier of the potential-determining step (*O → *OOH), thereby dramatically boosting activity.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, China.
| | - Yuefeng Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, China.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518000, China
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, China.
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, City University of Hong Kong 83 Tat Chee Avenue, Kowloon, 999077, China
| |
Collapse
|