1
|
Zhang Z, Sun R, Wang Z. Recent Advances in Two-Dimensional Ferromagnetic Materials-Based van der Waals Heterostructures. ACS NANO 2025. [PMID: 39760296 DOI: 10.1021/acsnano.4c14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Two-dimensional (2D) ferromagnetic materials are subjects of intense research owing to their intriguing physicochemical properties, which hold great potential for fundamental research and spintronic applications. Specifically, 2D van der Waals (vdW) ferromagnetic materials retain both structural integrity and chemical stability even at the monolayer level. Moreover, due to their atomic thickness, these materials can be easily manipulated by stacking them with other 2D vdW ferroic and nonferroic materials, enabling precise control over their physical properties and expanding their functional applications. Consequently, 2D vdW ferromagnetic materials-based heterostructures offer a platform to tailor magnetic properties and explore advanced spintronic devices. This review aims to provide an overview of recent developments in emerging 2D vdW ferromagnetic materials-based heterostructures and devices. The fabrication approaches for 2D ferromagnetic vdW heterostructures are primarily summarized, followed by a review of two categories of heterostructures: ferromagnetic/ferroic and ferromagnetic/nonferroic vdW heterostructures. Subsequently, the progress made in modulating magnetic properties and emergence of various phenomena in these heterostructures is highlighted. Furthermore, the applications of such heterostructures in spintronic devices are discussed along with their future perspectives and potential directions in this exciting field.
Collapse
Affiliation(s)
- Zhiheng Zhang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Rong Sun
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Zhongchang Wang
- School of Chemistry, Beihang University, Beijing 100191, China
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Davoudiniya M, Sanyal B. Efficient spin filtering through Fe 4GeTe 2-based van der Waals heterostructures. NANOSCALE ADVANCES 2024:d4na00639a. [PMID: 39430301 PMCID: PMC11485126 DOI: 10.1039/d4na00639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024]
Abstract
Utilizing ab initio simulations, we study the spin-dependent electronic transport characteristics within Fe4GeTe2-based van der Waals heterostructures. The electronic density of states for both free-standing and device-configured Fe4GeTe2 (F4GT) confirms its ferromagnetic metallic nature and reveals a weak interface interaction between F4GT and PtTe2 electrodes, enabling efficient spin filtering. The ballistic transport through a double-layer F4GT with a ferromagnetic configuration sandwiched between two PtTe2 electrodes is predicted to exhibit an impressive spin polarization of 97% with spin-up electrons exhibiting higher transmission probability than spin-down electrons. Moreover, we investigate the spin transport properties of Fe4GeTe2/GaTe/Fe4GeTe2 van der Waals heterostructures sandwiched between PtTe2 electrodes to explore their potential as magnetic tunnel junctions in spintronic devices. The inclusion of monolayer GaTe as a 2D semiconducting spacer between F4GT layers results in a tunnel magnetoresistance of 487% at a low bias and decreases with increasing bias voltage. Overall, our findings underscore the potential of F4GT/GaTe/F4GT heterostructures in advancing spintronic devices based on van der Waals materials.
Collapse
Affiliation(s)
| | - Biplab Sanyal
- Department of Physics and Astronomy, Uppsala University Sweden
| |
Collapse
|
3
|
Zhu W, Sun J, Cheng Y, Bai H, Han L, Wang Y, Song C, Pan F. Photoresponsive Two-Dimensional Magnetic Junctions for Reconfigurable In-Memory Sensing. ACS NANO 2024; 18:27009-27015. [PMID: 39288273 DOI: 10.1021/acsnano.4c09735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Magnetic tunneling junctions (MTJs) lie in the core of magnetic random access memory, holding promise in integrating memory and computing to reduce hardware complexity, transition latency, and power consumption. However, traditional MTJs are insensitive to light, limiting their functionality in in-memory sensing─a crucial component for machine vision systems in artificial intelligence applications. Herein, the convergence of magnetic memory with optical sensing capabilities is achieved in the all-two-dimensional (2D) magnetic junction Fe3GaTe2/WSe2/Fe3GaTe2, which combines 2D magnetism and optoelectronic properties. The clean intrinsic band gap and prominent photoresponse of interlayer WSe2 endow the tunneling barrier with optical tunability. The on-off states of junctions and the magnetoresistance can be flexibly controlled by the intensity of the optical signal at room temperature. Based on the optical-tunable magnetoresistance in all-2D magnetic junctions, a machine vision system with the architecture of in-memory sensing and computing is constructed, which possesses high performance in image recognition. Our work exhibits the advantages of 2D magneto-electronic devices and extends the application scenarios of magnetic memory devices in artificial intelligence.
Collapse
Affiliation(s)
- Wenxuan Zhu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084,China
| | - Jiacheng Sun
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084,China
| | - Yuan Cheng
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084,China
- Department of Electronic Engineering, Tsinghua University, Beijing 100084,China
| | - Hua Bai
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084,China
| | - Lei Han
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084,China
| | - Yuyan Wang
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084,China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084,China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084,China
| |
Collapse
|
4
|
Chen Y, Samanta K, Shahed NA, Zhang H, Fang C, Ernst A, Tsymbal EY, Parkin SSP. Twist-assisted all-antiferromagnetic tunnel junction in the atomic limit. Nature 2024; 632:1045-1051. [PMID: 39143222 PMCID: PMC11358014 DOI: 10.1038/s41586-024-07818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Antiferromagnetic spintronics1,2 shows great potential for high-density and ultrafast information devices. Magnetic tunnel junctions (MTJs), a key spintronic memory component that are typically formed from ferromagnetic materials, have seen rapid developments very recently using antiferromagnetic materials3,4. Here we demonstrate a twisting strategy for constructing all-antiferromagnetic tunnel junctions down to the atomic limit. By twisting two bilayers of CrSBr, a 2D antiferromagnet (AFM), a more than 700% nonvolatile tunnelling magnetoresistance (TMR) ratio is shown at zero field (ZF) with the entire twisted stack acting as the tunnel barrier. This is determined by twisting two CrSBr monolayers for which the TMR is shown to be derived from accumulative coherent tunnelling across the individual CrSBr monolayers. The dependence of the TMR on the twist angle is calculated from the electron-parallel momentum-dependent decay across the twisted monolayers. This is in excellent agreement with our experiments that consider twist angles that vary from 0° to 90°. Moreover, we also find that the temperature dependence of the TMR is, surprisingly, much weaker for the twisted as compared with the untwisted junctions, making the twisted junctions even more attractive for applications. Our work shows that it is possible to push nonvolatile magnetic information storage to the atomically thin limit.
Collapse
Affiliation(s)
- Yuliang Chen
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Kartik Samanta
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Naafis A Shahed
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Haojie Zhang
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Chi Fang
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Arthur Ernst
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Institute of Theoretical Physics, Johannes Kepler University, Linz, Austria
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
5
|
Luo Z, Yu Z, Lu X, Niu W, Yu Y, Yao Y, Tian F, Tan CL, Sun H, Gao L, Qin W, Xu Y, Zhao Q, Song XX. Van der Waals Magnetic Electrode Transfer for Two-Dimensional Spintronic Devices. NANO LETTERS 2024; 24:6183-6191. [PMID: 38728596 DOI: 10.1021/acs.nanolett.4c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Two-dimensional (2D) materials are promising candidates for spintronic applications. Maintaining their atomically smooth interfaces during integration of ferromagnetic (FM) electrodes is crucial since conventional metal deposition tends to induce defects at the interfaces. Meanwhile, the difficulties in picking up FM metals with strong adhesion and in achieving conductance match between FM electrodes and spin transport channels make it challenging to fabricate high-quality 2D spintronic devices using metal transfer techniques. Here, we report a solvent-free magnetic electrode transfer technique that employs a graphene layer to assist in the transfer of FM metals. It also serves as part of the FM electrode after transfer for optimizing spin injection, which enables the realization of spin valves with excellent performance based on various 2D materials. In addition to two-terminal devices, we demonstrate that the technique is applicable for four-terminal spin valves with nonlocal geometry. Our results provide a promising future of realizing 2D spintronic applications using the developed magnetic electrode transfer technique.
Collapse
Affiliation(s)
- Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
| | - Zhihao Yu
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiangqian Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei Niu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yao Yu
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yu Yao
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fuguo Tian
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chee Leong Tan
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Huabin Sun
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Li Gao
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yong Xu
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiang-Xiang Song
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China Suzhou 215123, China
| |
Collapse
|
6
|
Stepanova AV, Mironov AV, Bogach AV, Azarevich AN, Presniakov IA, Sobolev AV, Pankratov DA, Zayakhanov VA, Starchikov SS, Verchenko VY, Shevelkov AV. Bulk ferromagnetism in cleavable van der Waals telluride NbFeTe 2. Chem Commun (Camb) 2024; 60:5518-5521. [PMID: 38693880 DOI: 10.1039/d4cc01160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A van der Waals telluride, NbFeTe2, has been synthesized using chemical vapor transport reactions. The optimized synthetic conditions yield high-quality single crystals with a novel monoclinic crystal structure. Monoclinic NbFeTe2 demonstrates a (100) cleavage plane, bulk ferromagnetism below 87 K, and a metallic ground state-the necessary prerequisites for needed spintronics technologies.
Collapse
Affiliation(s)
- Anna V Stepanova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Andrei V Mironov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Alexey V Bogach
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey N Azarevich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Igor A Presniakov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
- MSU-BIT University, Shenzhen, 517182 Guangdong Province, P. R. China
| | - Alexey V Sobolev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
- MSU-BIT University, Shenzhen, 517182 Guangdong Province, P. R. China
| | - Denis A Pankratov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | | - Valeriy Yu Verchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Andrei V Shevelkov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
7
|
Nguyen ST, Huong TTT, Ca NX, Nguyen CQ. Enhancing the electronic and optical properties of the metal/semiconductor NbS 2/BSe nanoheterostructure towards advanced electronics. NANOSCALE ADVANCES 2024; 6:1565-1572. [PMID: 38419869 PMCID: PMC10898431 DOI: 10.1039/d3na01086d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Metal-semiconductor (M-S) contacts play a vital role in advanced applications, serving as crucial components in ultracompact devices and exerting a significant impact on overall device performance. Here, in this work, we design a M-S nanoheterostructure between a metallic NbS2 monolayer and a semiconducting BSe monolayer using first-principles prediction. The stability of such an M-S nanoheterostructure is verified and its electronic and optical properties are also considered. Our results indicate that the NbS2/BSe nanoheterostructure is structurally, mechanically and thermally stable. The formation of the NbS2/BSe heterostructure leads to the generation of a Schottky contact with the Schottky barrier ranging from 0.36 to 0.51 eV, depending on the stacking configurations. In addition, the optical absorption coefficient of the NbS2/BSe heterostructure can reach up to 5 × 105 cm-1 at a photon energy of about 5 eV, which is still greater than that in the constituent NbS2 and BSe monolayers. This finding suggests that the formation of the M-S NbS2/BSe heterostructure gives rise to an enhancement in the optical absorption of both NbS2 and BSe monolayers. Notably, the tunneling probability and the contact tunneling-specific resistivity at the interface of the NbS2/BSe heterostructure are low, indicating its applicability in emerging nanoelectronic devices, such as Schottky diodes and field-effect transistors. Our findings offer valuable insights for the practical utilization of electronic devices based on the NbS2/BSe heterostructure.
Collapse
Affiliation(s)
- S T Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry Ha Noi 100000 Vietnam
| | - T T T Huong
- Institute of Science and Technology, TNU-University of Sciences Thai Nguyen Vietnam
- Department of Science and Technology, Ha Noi University of Industry Ha Noi 100000 Vietnam
| | - N X Ca
- Institute of Science and Technology, TNU-University of Sciences Thai Nguyen Vietnam
| | - C Q Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
8
|
Ngaloy R, Zhao B, Ershadrad S, Gupta R, Davoudiniya M, Bainsla L, Sjöström L, Hoque MA, Kalaboukhov A, Svedlindh P, Sanyal B, Dash SP. Strong In-Plane Magnetization and Spin Polarization in (Co 0.15Fe 0.85) 5GeTe 2/Graphene van der Waals Heterostructure Spin-Valve at Room Temperature. ACS NANO 2024. [PMID: 38330915 PMCID: PMC10883121 DOI: 10.1021/acsnano.3c07462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Van der Waals (vdW) magnets are promising, because of their tunable magnetic properties with doping or alloy composition, where the strength of magnetic interactions, their symmetry, and magnetic anisotropy can be tuned according to the desired application. However, so far, most of the vdW magnet-based spintronic devices have been limited to cryogenic temperatures with magnetic anisotropies favoring out-of-plane or canted orientation of the magnetization. Here, we report beyond room-temperature lateral spin-valve devices with strong in-plane magnetization and spin polarization of the vdW ferromagnet (Co0.15Fe0.85)5GeTe2 (CFGT) in heterostructures with graphene. Density functional theory (DFT) calculations show that the magnitude of the anisotropy depends on the Co concentration and is caused by the substitution of Co in the outermost Fe layer. Magnetization measurements reveal the above room-temperature ferromagnetism in CFGT and clear remanence at room temperature. Heterostructures consisting of CFGT nanolayers and graphene were used to experimentally realize basic building blocks for spin valve devices, such as efficient spin injection and detection. Further analysis of spin transport and Hanle spin precession measurements reveals a strong in-plane magnetization with negative spin polarization at the interface with graphene, which is supported by the calculated spin-polarized density of states of CFGT. The in-plane magnetization of CFGT at room temperature proves its usefulness in graphene lateral spin-valve devices, thus revealing its potential application in spintronic technologies.
Collapse
Affiliation(s)
- Roselle Ngaloy
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Bing Zhao
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Soheil Ershadrad
- Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala, Sweden
| | - Rahul Gupta
- Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala, Sweden
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden
| | - Masoumeh Davoudiniya
- Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala, Sweden
| | - Lakhan Bainsla
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
- Department of Physics, Indian Institute of Technology Ropar, Roopnagar 140001, Punjab, India
| | - Lars Sjöström
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Md Anamul Hoque
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Alexei Kalaboukhov
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden
| | - Biplab Sanyal
- Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala, Sweden
| | - Saroj Prasad Dash
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
- Graphene Center, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
9
|
Li W, Zhu W, Zhang G, Wu H, Zhu S, Li R, Zhang E, Zhang X, Deng Y, Zhang J, Zhao L, Chang H, Wang K. Room-Temperature van der Waals Ferromagnet Switching by Spin-Orbit Torques. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303688. [PMID: 37890473 DOI: 10.1002/adma.202303688] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/12/2023] [Indexed: 10/29/2023]
Abstract
The emerging wide varieties of the van der Waals (vdW) magnets with atomically thin and smooth interfaces hold great promise for next-generation spintronic devices. However, due to the lower Curie temperature of the vdW ferromagnets than room temperature, electrically manipulating its magnetization at room temperature has not been realized. In this work, it is demonstrated that the perpendicular magnetization of the vdW ferromagnet Fe3 GaTe2 can be effectively switched at room temperature in the Fe3 GaTe2 /Pt bilayer by spin-orbit torques (SOTs) with a relatively low current density of 1.3 × 107 A cm-2 . Moreover, the high SOT efficiency of ξDL ≈ 0.28 is quantitatively determined by harmonic measurements, which is higher than those in Pt-based heavy metal/conventional ferromagnet devices. The findings of room-temperature vdW ferromagnet switching by SOTs provide a significant basis for the development of vdW-ferromagnet-based spintronic applications.
Collapse
Affiliation(s)
- Weihao Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Zhu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaojie Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wu
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shouguo Zhu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runze Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enze Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongcheng Deng
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Lixia Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- School of Electrical and Electronic Engineering, Tiangong University, Tianjin, 300387, China
| | - Haixin Chang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kaiyou Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Zhang S, Huo S, Song X, Zhang X. Surface Stability and Exfoliability of Non-van der Waals Magnetic Chromium Tellurides. J Phys Chem Lett 2023; 14:10609-10616. [PMID: 37982382 DOI: 10.1021/acs.jpclett.3c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Exfoliation of two-dimensional (2D) magnetic materials from non-van der Waals (non-vdW) materials has attracted increasing attention because it provides a great platform for the construction of 2D magnetic materials. For non-vdW magnetic chromium tellurides with high Curie temperatures, their few-layer samples show promising applications in the field of spintronics. However, there is still no consensus on whether the surface structures of few-layer chromium tellurides should be terminated by Cr or Te atoms. By calculating the surface and exfoliation energy, we find that which structure is more stable depends greatly on the value of the chemical potential of Te atoms, and the few-layer sample with a Cr-terminated surface is easier to exfoliate than that with both Te-terminated surfaces. Finally, we propose that different exfoliated structures can be identified by using the atomic number ratio of Cr to Te and the average magnetic moment of Cr atoms in few-layer samples.
Collapse
Affiliation(s)
- Shuqing Zhang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Sitong Huo
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyan Song
- Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Xinping Zhang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
11
|
Ren H, Lan M. Progress and Prospects in Metallic Fe xGeTe 2 (3 ≤ x ≤ 7) Ferromagnets. Molecules 2023; 28:7244. [PMID: 37959664 PMCID: PMC10649090 DOI: 10.3390/molecules28217244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Thermal fluctuations in two-dimensional (2D) isotropy systems at non-zero finite temperatures can destroy the long-range (LR) magnetic order due to the mechanisms addressed in the Mermin-Wanger theory. However, the magnetic anisotropy related to spin-orbit coupling (SOC) may stabilize magnetic order in 2D systems. Very recently, 2D FexGeTe2 (3 ≤ x ≤ 7) with a high Curie temperature (TC) has not only undergone significant developments in terms of synthetic methods and the control of ferromagnetism (FM), but is also being actively explored for applications in various devices. In this review, we introduce six experimental methods, ten ferromagnetic modulation strategies, and four spintronic devices for 2D FexGeTe2 materials. In summary, we outline the challenges and potential research directions in this field.
Collapse
Affiliation(s)
- Hongtao Ren
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Mu Lan
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| |
Collapse
|
12
|
Lv H, da Silva A, Figueroa AI, Guillemard C, Aguirre IF, Camosi L, Aballe L, Valvidares M, Valenzuela SO, Schubert J, Schmidbauer M, Herfort J, Hanke M, Trampert A, Engel-Herbert R, Ramsteiner M, Lopes JMJ. Large-Area Synthesis of Ferromagnetic Fe 5- x GeTe 2 /Graphene van der Waals Heterostructures with Curie Temperature above Room Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302387. [PMID: 37231567 DOI: 10.1002/smll.202302387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Van der Waals (vdW) heterostructures combining layered ferromagnets and other 2D crystals are promising building blocks for the realization of ultracompact devices with integrated magnetic, electronic, and optical functionalities. Their implementation in various technologies depends strongly on the development of a bottom-up scalable synthesis approach allowing for realizing highly uniform heterostructures with well-defined interfaces between different 2D-layered materials. It is also required that each material component of the heterostructure remains functional, which ideally includes ferromagnetic order above room temperature for 2D ferromagnets. Here, it is demonstrated that the large-area growth of Fe5- x GeTe2 /graphene heterostructures is achieved by vdW epitaxy of Fe5- x GeTe2 on epitaxial graphene. Structural characterization confirms the realization of a continuous vdW heterostructure film with a sharp interface between Fe5- x GeTe2 and graphene. Magnetic and transport studies reveal that the ferromagnetic order persists well above 300 K with a perpendicular magnetic anisotropy. In addition, epitaxial graphene on SiC(0001) continues to exhibit a high electronic quality. These results represent an important advance beyond nonscalable flake exfoliation and stacking methods, thus marking a crucial step toward the implementation of ferromagnetic 2D materials in practical applications.
Collapse
Affiliation(s)
- Hua Lv
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, 10117, Berlin, Germany
| | - Alessandra da Silva
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, 10117, Berlin, Germany
| | - Adriana I Figueroa
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Charles Guillemard
- ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, 08290, Spain
| | - Iván Fernández Aguirre
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Lorenzo Camosi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Lucia Aballe
- ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, 08290, Spain
| | - Manuel Valvidares
- ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, 08290, Spain
| | - Sergio O Valenzuela
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Jürgen Schubert
- Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
- JARA-Fundamentals of Future Information Technology, Jülich-Aachen Research Alliance, 52425, Jülich, Germany
| | | | - Jens Herfort
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, 10117, Berlin, Germany
| | - Michael Hanke
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, 10117, Berlin, Germany
| | - Achim Trampert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, 10117, Berlin, Germany
| | - Roman Engel-Herbert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, 10117, Berlin, Germany
| | - Manfred Ramsteiner
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, 10117, Berlin, Germany
| | - Joao Marcelo J Lopes
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, 10117, Berlin, Germany
| |
Collapse
|
13
|
Wang H, Wen Y, Zeng H, Xiong Z, Tu Y, Zhu H, Cheng R, Yin L, Jiang J, Zhai B, Liu C, Shan C, He J. 2D Ferroic Materials for Nonvolatile Memory Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305044. [PMID: 37486859 DOI: 10.1002/adma.202305044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The emerging nonvolatile memory technologies based on ferroic materials are promising for producing high-speed, low-power, and high-density memory in the field of integrated circuits. Long-range ferroic orders observed in 2D materials have triggered extensive research interest in 2D magnets, 2D ferroelectrics, 2D multiferroics, and their device applications. Devices based on 2D ferroic materials and heterostructures with an atomically smooth interface and ultrathin thickness have exhibited impressive properties and significant potential for developing advanced nonvolatile memory. In this context, a systematic review of emergent 2D ferroic materials is conducted here, emphasizing their recent research on nonvolatile memory applications, with a view to proposing brighter prospects for 2D magnetic materials, 2D ferroelectric materials, 2D multiferroic materials, and their relevant devices.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hui Zeng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ziren Xiong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yangyuan Tu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hao Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Baoxing Zhai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430079, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|