1
|
Pohjola J, Jokinen M, Soukka T, Stolt M. Polymer microsphere inks for semi-solid extrusion 3D printing at ambient conditions. J Mech Behav Biomed Mater 2024; 160:106783. [PMID: 39486301 DOI: 10.1016/j.jmbbm.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Extrusion-based 3D printing methods have great potential for manufacturing of personalized polymer-based drug-releasing systems. However, traditional melt-based extrusion techniques are often unsuitable for processing thermally labile molecules. Consequently, methods that utilize the extrusion of semi-solid inks under mild conditions are frequently employed. The rheological properties of the semi-solid inks have a substantial impact on the 3D printability, making it necessary to evaluate and tailor these properties. Here, we report a novel semi-solid extrusion 3D printing method based on utilization of a Carbopol gel matrix containing various concentrations of polymeric microspheres. We also demonstrate the use of a solvent vapor-based post-processing method for enhancing the mechanical strength of the printed objects. As our approach enables room-temperature processing of polymers typically used in the pharmaceutical industry, it may also facilitate the broader application of 3D printing and microsphere technologies in preparation of personalized medicine.
Collapse
Affiliation(s)
- Juuso Pohjola
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland; Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland.
| | | | - Tero Soukka
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland
| | - Mikael Stolt
- Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland
| |
Collapse
|
2
|
Lyu X, Zhang H, Shen S, Gong Y, Zhou P, Zou Z. Multi-Modal Sensing Ionogels with Tunable Mechanical Properties and Environmental Stability for Aquatic and Atmospheric Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410572. [PMID: 39292213 DOI: 10.1002/adma.202410572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Ionogels have garnered significant interest due to their great potential in flexible iontronic devices. However, their limited mechanical tunability and environmental intolerance have posed significant challenges for their integration into next-generation flexible electronics in different scenarios. Herein, the synergistic effect of cation-oxygen coordination interaction and hydrogen bonding is leveraged to construct a 3D supramolecular network, resulting in ionogels with tunable modulus, stretchability, and strength, achieving an unprecedented elongation at break of 10 800%. Moreover, the supramolecular network endows the ionogels with extremely high fracture energy, crack insensitivity, and high elasticity. Meanwhile, the high environmental stability and hydrophobic network of the ionogels further shield them from the unfavorable effects of temperature variations and water molecules, enabling them to operate within a broad temperature range and exhibit robust underwater adhesion. Then, the ionogel is assembled into a wearable sensor, demonstrating its great potential in flexible sensing (temperature, pressure, and strain) and underwater signal transmission. This work can inspire the applications of ionogels in multifunctional sensing and wearable fields.
Collapse
Affiliation(s)
- Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Haoqi Zhang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shengtao Shen
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yue Gong
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Piaopiao Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Zhigang Zou
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
3
|
Zhu G, Javanmardia N, Qian L, Jin F, Li T, Zhang S, He Y, Wang Y, Xu X, Wang T, Feng ZQ. Advances of conductive hydrogel designed for flexible electronics: A review. Int J Biol Macromol 2024; 281:136115. [PMID: 39349076 DOI: 10.1016/j.ijbiomac.2024.136115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
In recent years, there has been considerable attention devoted to flexible electronic devices within the realm of biomedical engineering. These devices demonstrate the capability to accurately capture human physiological signals, thereby facilitating efficient human-computer interaction, and providing a novel approach of flexible electronics for monitoring and treating related diseases. A notable contribution to this domain is the emergence of conductive hydrogels as a novel flexible electronic material. Renowned for their exceptional flexibility, adjustable electrical conductivity, and facile processing, conductive hydrogels have emerged as the preferred material for designing and fabricating innovative flexible electronic devices. This paper provides a comprehensive review of the recent advancements in flexible electronic devices rooted in conductive hydrogels. It offers an in-depth exploration of existing synthesis strategies for conductive hydrogels and subsequently examines the latest progress in their applications, including flexible neural electrodes, sensors, energy storage devices and soft robots. The analysis extends to the identification of technological challenges and developmental opportunities in both the synthesis of new conductive hydrogels and their application in the dynamic field of flexible electronics.
Collapse
Affiliation(s)
- Guanzhou Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Negar Javanmardia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Siwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xuran Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
4
|
Li Q, Zheng S, Liu Z, Li W, Wang X, Cao Q, Yan F. Strong, Spontaneous, and Self-Healing Poly(Ionic Liquid) Elastomer Underwater Adhesive with Borate Ester Dynamic Crosslinking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413901. [PMID: 39436052 DOI: 10.1002/adma.202413901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Indexed: 10/23/2024]
Abstract
Adhesion in aqueous environments is often hindered by the water layer on the surface of the substrate due to the water sensitivity of the adhesive, greatly limiting the application environment. Here, a borate ester dynamically crosslinked poly(ionic liquid) elastomer adhesive (PIEA) with high strength, toughness, self-healing abilities, and ionic conductivity is synthesized by copolymerizing hydrophobic ionic liquid monomer ([HPVIm][TFSI]) and 2-methoxyethyl acrylate (MEA). The adhesion strength of PIEA can increase spontaneously from almost no adhesion to 314 kPa after 12 h without any external preloading due to the dissociation of the borate ester in water, leading to noncovalent interactions between the hydroxyl groups of PIEA and the substrate. Additionally, PIEA can be developed for soft sensors or ion electrodes to enable underwater detection and communication. This strategy offers broad application potential for the development of novel underwater smart adhesives.
Collapse
Affiliation(s)
- Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qiang Cao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Li C, Bian Y, Zhao Z, Liu Y, Guo Y. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. CYBORG AND BIONIC SYSTEMS 2024; 5:0172. [PMID: 39431246 PMCID: PMC11486891 DOI: 10.34133/cbsystems.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
With the prevalence of cardiovascular disease, it is imperative that medical monitoring and treatment become more instantaneous and comfortable for patients. Recently, wearable and implantable optoelectronic devices can be seamlessly integrated into human body to enable physiological monitoring and treatment in an imperceptible and spatiotemporally unconstrained manner, opening countless possibilities for the intelligent healthcare paradigm. To achieve biointegrated cardiac healthcare, researchers have focused on novel strategies for the construction of flexible/stretchable optoelectronic devices and systems. Here, we overview the progress of biointegrated flexible and stretchable optoelectronics for wearable and implantable cardiac healthcare devices. Firstly, the device design is addressed, including the mechanical design, interface adhesion, and encapsulation strategies. Next, the practical applications of optoelectronic devices for cardiac physiological monitoring, cardiac optogenetics, and nongenetic stimulation are presented. Finally, an outlook on biointegrated flexible and stretchable optoelectronic devices and systems for intelligent cardiac healthcare is discussed.
Collapse
Affiliation(s)
- Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangshuang Bian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Xu S, Liu Y, Lee H, Li W. Neural interfaces: Bridging the brain to the world beyond healthcare. EXPLORATION (BEIJING, CHINA) 2024; 4:20230146. [PMID: 39439491 PMCID: PMC11491314 DOI: 10.1002/exp.20230146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Neural interfaces, emerging at the intersection of neurotechnology and urban planning, promise to transform how we interact with our surroundings and communicate. By recording and decoding neural signals, these interfaces facilitate direct connections between the brain and external devices, enabling seamless information exchange and shared experiences. Nevertheless, their development is challenged by complexities in materials science, electrochemistry, and algorithmic design. Electrophysiological crosstalk and the mismatch between electrode rigidity and tissue flexibility further complicate signal fidelity and biocompatibility. Recent closed-loop brain-computer interfaces, while promising for mood regulation and cognitive enhancement, are limited by decoding accuracy and the adaptability of user interfaces. This perspective outlines these challenges and discusses the progress in neural interfaces, contrasting non-invasive and invasive approaches, and explores the dynamics between stimulation and direct interfacing. Emphasis is placed on applications beyond healthcare, highlighting the need for implantable interfaces with high-resolution recording and stimulation capabilities.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Yang Liu
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hyunjin Lee
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Weidong Li
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Zheng Z, Chen X, Wang Y, Wen P, Duan Q, Zhang P, Shan L, Ni Z, Feng Y, Xue Y, Li X, Zhang L, Liu J. Self-Growing Hydrogel Bioadhesives for Chronic Wound Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408538. [PMID: 39149779 DOI: 10.1002/adma.202408538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Hydrogel bioadhesives have emerged as a promising alternative to wound dressings for chronic wound management. However, many existing bioadhesives do not meet the functional requirements for efficient wound management through dynamically mechanical modulation, due to the reduced wound contractibility, frequent wound recurrence, incapability to actively adapt to external microenvironment variation, especially for those gradually-expanded chronic wounds. Here, a self-growing hydrogel bioadhesive (sGHB) patch that exhibits instant adhesion to biological tissues but also a gradual increase in mechanical strength and interfacial adhesive strength within a 120-h application is presented. The gradually increased mechanics of the sGHB patch could effectively mitigate the stress concentration at the wound edge, and also resist the wound expansion at various stages, thus mechanically contracting the chronic wounds in a programmable manner. The self-growing hydrogel patch demonstrated enhanced wound healing efficacy in a mouse diabetic wound model, by regulating the inflammatory response, promoting the faster re-epithelialization and angiogenesis through mechanical modulation. Such kind of self-growing hydrogel bioadhesives have potential clinical utility for a variety of wound management where dynamic mechanical modulation is indispensable.
Collapse
Affiliation(s)
- Ziman Zheng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yafei Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ping Wen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingfang Duan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liangjie Shan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Gao J, Li X, Xu L, Yan M, Wang Q. Dual design strategy for carboxymethyl cellulose-polyaniline composite hydrogels as super-sensitive amphibious sensors. Int J Biol Macromol 2024; 280:135630. [PMID: 39278445 DOI: 10.1016/j.ijbiomac.2024.135630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Conductive hydrogels as ideal candidate materials for flexible sensors have exhibited many promising applications. However, complex application environments, such as low temperatures or underwater conditions, have introduced new requirements for hydrogel sensors. Herein, a high-performance conductive hydrogel based on carboxymethyl cellulose-polyaniline (CMC-PANI) submicron spheres, poly (vinyl alcohol) (PVA) and phytic acid (PA) was designed and fabricated via a dual design strategy. CMC-PANI particles were introduced to not only empower the good electromechanical performance to the hydrogels, but also enhance the mechanical properties. The obtained hydrogel exhibited good mechanical property, anti-freezing, anti-swellable behavior and recyclable performance. Resistive-type strain sensors assembled by the prepared hydrogels exhibited high pressure sensitivity (34.17×10-2 kPa-1) and fast response time (100 ms), which can clearly detect the pulse beats. Moreover, the hydrogel sensors can achieve long-term stability, high sensitivity and fatigue resistance as an underwater sensor. Based on these favorable performances, the conductive polymer hydrogels may open up an enticing avenue for functional soft materials in health diagnostic and electronic components.
Collapse
Affiliation(s)
- Jianliang Gao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Lina Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Manqing Yan
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
9
|
Wang W, Zhou H, Xu Z, Li Z, Zhang L, Wan P. Flexible Conformally Bioadhesive MXene Hydrogel Electronics for Machine Learning-Facilitated Human-Interactive Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401035. [PMID: 38552161 DOI: 10.1002/adma.202401035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Wearable epidermic electronics assembled from conductive hydrogels are attracting various research attention for their seamless integration with human body for conformally real-time health monitoring, clinical diagnostics and medical treatment, and human-interactive sensing. Nevertheless, it remains a tremendous challenge to simultaneously achieve conformally bioadhesive epidermic electronics with remarkable self-adhesiveness, reliable ultraviolet (UV) protection ability, and admirable sensing performance for high-fidelity epidermal electrophysiological signals monitoring, along with timely photothermal therapeutic performances after medical diagnostic sensing, as well as efficient antibacterial activity and reliable hemostatic effect for potential medical therapy. Herein, a conformally bioadhesive hydrogel-based epidermic sensor, featuring superior self-adhesiveness and excellent UV-protection performance, is developed by dexterously assembling conducting MXene nanosheets network with biological hydrogel polymer network for conformally stably attaching onto human skin for high-quality recording of various epidermal electrophysiological signals with high signal-to-noise ratios (SNR) and low interfacial impedance for intelligent medical diagnosis and smart human-machine interface. Moreover, a smart sign language gesture recognition platform based on collected electromyogram (EMG) signals is designed for hassle-free communication with hearing-impaired people with the help of advanced machine learning algorithms. Meanwhile, the bioadhesive MXene hydrogel possesses reliable antibacterial capability, excellent biocompatibility, and effective hemostasis properties for promising bacterial-infected wound bleeding.
Collapse
Affiliation(s)
- Wei Wang
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hailiang Zhou
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhishan Xu
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zehui Li
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liqun Zhang
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengbo Wan
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Ji B, Gao K. Editorial for the Special Issue on Wearable and Implantable Bio-MEMS Devices and Applications. MICROMACHINES 2024; 15:955. [PMID: 39203606 PMCID: PMC11356249 DOI: 10.3390/mi15080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024]
Abstract
Wearable and implantable bio-MEMS sensors and actuators have attracted tremendous attention in the fields of health monitoring, disease treatment, and human-machine interaction, to name but a few [...].
Collapse
Affiliation(s)
- Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kunpeng Gao
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
12
|
Zeng X, Liu C, Wang X, Cao Y, He P, Li H, Wang L. Versatile Underwater Pressure Sensitive Adhesive: UV Curing Synthesis and Substrate-Independent Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39049199 DOI: 10.1021/acsami.4c06163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The demand for underwater pressure sensitive adhesives (PSAs) is rapidly increasing in fields such as underwater engineering and biomedicine. However, the achievement of underwater adhesion of PSAs remains a challenge because of the hydration layer that hinders the interaction between the adhesive and the substrate. Herein, a new type of underwater PSA was synthesized by the copolymerization of hydrophobic unsaturated poly(1,2-butylene oxide) (UPBO) and hydrophilic itaconic acid monomers using solvent-free ultraviolet curing. The PSA has demonstrated substrate-independent underwater adhesion strengths ranging from 108 to 141 kPa on both hydrophilic (glass, wood, steel) and hydrophobic (PET, PMMA, PTFE) substrates. The underwater adhesion performance of PSA remains stable during 30 adhesion-detachment cycles and incubation in water for 20 days. Notably, PSA shows cytocompatibility, antimicrobial, and degradable properties and can be used for rapid hemostasis of skin wounds. Experimental characterizations confirm that the process of underwater adhesion is achieved by hydrophobic alkyl side chains of the PBO chain segments, which repel water at the adhesive-substrate interface. This study should provide both practical and facile design strategies for multifunctional underwater PSAs that can be used in a variety of applications.
Collapse
Affiliation(s)
- Xianqiang Zeng
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Chen Liu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xue Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Cao
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng He
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huiquan Li
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Dong Y, Su J, Guo X, Zhang Q, Zhu S, Zhang K, Zhu H. Multifunctional protocatechuic acid-polyacrylic acid hydrogel adhesives for wound dressings. J Mater Chem B 2024; 12:6617-6626. [PMID: 38896436 DOI: 10.1039/d4tb00425f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Multifunctional hydrogel adhesives are highly desirable in wound healing applications, yet their preparation often requires complex material system design to achieve. Herein, a straightforward one-pot two-step polymerization method is developed to prepare adhesive hydrogels for wound dressing based on protocatechuic acid (PCA), polyacrylic acid (PAA), and polyamidoamine-epichlorohydrin (PAE), where PCA provides the catechol groups for strong adhesion, PAA serves as the primary polymer matrix, and PAE acts as a bridge connecting PCA and PAA. This design results in a PAA-PAE-PCA hydrogel having a remarkable instant 90-degree peeling interfacial toughness of 431 J m-2 on porcine skin, which is further amplified to 615 J m-2 after 30 minutes. The hydrogel also possesses the desired features for wound dressing, such as self-healing, antioxidant, anti-UV and antibacterial properties, good cytocompatibility, strong adhesion in use and weak adhesion on removal, as well as reversible and wet adhesion. Finally, in vivo data reveal that the PAA-PAE-PCA hydrogels can significantly accelerate wound healing, as evidenced by a noticeable reduction in the wound area and a diminished inflammatory response. Collectively, these results endorse the obtained multifunctional hydrogel as a promising candidate for wound healing and related fields.
Collapse
Affiliation(s)
- Yue Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Henan 450001, China.
| | - Xiwei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Henan 450001, China.
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
14
|
Jia L, Li Y, Ren A, Xiang T, Zhou S. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32887-32905. [PMID: 38904545 DOI: 10.1021/acsami.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hydrogel bioelectronics has been widely used in wearable sensors, electronic skin, human-machine interfaces, and implantable tissue-electrode interfaces, providing great convenience for human health, safety, and education. The generation of electronic waste from bioelectronic devices jeopardizes human health and the natural environment. The development of degradable and recyclable hydrogels is recognized as a paradigm for realizing the next generation of environmentally friendly and sustainable bioelectronics. This review first summarizes the wide range of applications for bioelectronics, including wearable and implantable devices. Then, the employment of natural and synthetic polymers in hydrogel bioelectronics is discussed in terms of degradability and recyclability. Finally, this work provides constructive thoughts and perspectives on the current challenges toward hydrogel bioelectronics, providing valuable insights and guidance for the future evolution of sustainable hydrogel bioelectronics.
Collapse
Affiliation(s)
- Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Aobo Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
15
|
Chen Y, Li H, Xu R, Fang Y, Chen Q, Wang Z, Liu H, Weng Y. Ferried Albumin-Inspired Bioadhesive With Dynamic Interfacial Bonds for Emergency Rescue. Adv Healthc Mater 2024; 13:e2400033. [PMID: 38483196 DOI: 10.1002/adhm.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Emergency prehospital wound closure and hemorrhage control are the first priorities for life-saving. Majority of bioadhesives form bonds with tissues through irreversible cross-linking, and the remobilization of misalignment may cause severe secondary damage to tissues. Therefore, developing an adhesive that can quickly and tolerably adhere to traumatized dynamic tissue or organ surfaces in emergency situations is a major challenge. Inspired by the structure of human serum albumin (HSA), a branched polymer with multitentacled sulfhydryl is synthesized, then, an instant and fault-tolerant tough wet-tissue adhesion (IFA) hydrogel is prepared. Adhesive application time is just 5 s (interfacial toughness of ≈580 J m-2), and favorable tissue-adhesion is maintained after ten cycles. IFA hydrogel shows unchangeable adhesive performance after 1 month of storage based on the internal oxidation-reduction mechanism. It not only can efficiently seal various organs but also achieves effective hemostasis in models of the rat femoral artery and rabbit-ear artery. This work also proposes an effective strategy for controllable adhesion, enabling the production of asymmetric adhesives with on-demand detachment. Importantly, IFA hydrogel has sound antioxidation, antibacterial property, hemocompatibility, and cytocompatibility. Hence, the HSA-inspired bioadhesive emerges as a promising first-aid supply for human-machine interface-based health management and non-invasive wound closure.
Collapse
Affiliation(s)
- Yiming Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Huiying Li
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Renfeng Xu
- College of Life Science, Fujian Normal University, Fujian, 350117, China
| | - Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian, 350117, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| |
Collapse
|
16
|
Zhang X, Wang Y, Shi B, Bi D, Chang Q, Zhang L, Wu H. Strongly plasticized gelatin-based hydrogel for flexible encapsulation of complex-shaped electronic devices. iScience 2024; 27:109725. [PMID: 38706866 PMCID: PMC11066429 DOI: 10.1016/j.isci.2024.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The growth of environmentally sensitive complex-shaped electronic devices (ECEDs) has led to a surging demand for flexible electromagnetic wave (EMW) absorbers. Herein, the water loss property of hydrogel was ingeniously applied for the flexible encapsulation (FE) of ECEDs. To be specific, saturated state (SGT) hydrogels were prepared by chemical cross-linking, and the hydrogen bond dissipation network promoted FE. Additionally, SGT has an effective absorption bandwidth (EAB) of 6.04 GHz at 1.65 mm due to the presence of dipole polarization. With the loss of water, SGT transitions to its natural state (NGT), and the decreasing conductivity leads to better impedance matching. NGT exhibited a broader EAB (9.20 GHz at 2.65 mm) and also strength and lightness (density of 0.3 g cm-3). Furthermore, the semi-automatic reversible cyclic transformation between SGT and NGT gels further broadens application scenarios. GT gel combines self-encapsulation and self-optimized performance as a potential EMW absorber for FE.
Collapse
Affiliation(s)
- Xinyu Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Yuntong Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Bin Shi
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Dongwei Bi
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Qing Chang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| |
Collapse
|
17
|
Li P, Sun W, Li J, Chen JP, Wang X, Mei Z, Jin G, Lei Y, Xin R, Yang M, Xu J, Pan X, Song C, Deng XY, Lei X, Liu K, Wang X, Zheng Y, Zhu J, Lv S, Zhang Z, Dai X, Lei T. N-type semiconducting hydrogel. Science 2024; 384:557-563. [PMID: 38696573 DOI: 10.1126/science.adj4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024]
Abstract
Hydrogels are an attractive category of biointerfacing materials with adjustable mechanical properties, diverse biochemical functions, and good ionic conductivity. Despite these advantages, their application in electronics has been restricted because of their lack of semiconducting properties, and they have traditionally only served as insulators or conductors. We developed single- and multiple-network hydrogels based on a water-soluble n-type semiconducting polymer, endowing conventional hydrogels with semiconducting capabilities. These hydrogels show good electron mobilities and high on/off ratios, enabling the fabrication of complementary logic circuits and signal amplifiers with low power consumption and high gains. We demonstrate that hydrogel electronics with good bioadhesive and biocompatible interface can sense and amplify electrophysiological signals with enhanced signal-to-noise ratios.
Collapse
Affiliation(s)
- Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Wenxi Sun
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiulong Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ju-Peng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xinyue Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zi Mei
- School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Guanyu Jin
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuqiu Lei
- College of Engineering, Peking University, Beijing 100871, China
| | - Ruiyun Xin
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Mo Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jingcao Xu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiran Pan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Cheng Song
- College of Engineering, Peking University, Beijing 100871, China
| | - Xin-Yu Deng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xun Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Kai Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiu Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuting Zheng
- College of Engineering, Peking University, Beijing 100871, China
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shixian Lv
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhi Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiaochuan Dai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
19
|
Wang S, Wang Z, Yang W, Xu Z, Dai H, He F, Yan S, Shi X. In Situ-Sprayed Bioinspired Adhesive Conductive Hydrogels for Cavernous Nerve Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311264. [PMID: 38330187 DOI: 10.1002/adma.202311264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Cavernous nerve injury (CNI), resulting in erectile dysfunction (ED), poses a significant threat to the quality of life for men. Strategies utilizing conductive hydrogels have demonstrated promising results for the treatment of peripheral nerves with a large diameter (>2 mm). However, integrating convenient minimally invasive operation, antiswelling and immunomodulatory conductive hydrogels for treating small-diameter injured cavernous nerves remains a great challenge. Here, a sprayable adhesive conductive hydrogel (GACM) composed of gelatin, adenine, carbon nanotubes, and mesaconate designed for cavernous nerve repair is developed. Multiple hydrogen bonds provide GACM with excellent adhesive and antiswelling properties, enabling it to establish a conformal electrical bridge with the damaged nerve and aiding in the regeneration process. Additionally, mesaconate-loaded GACM suppresses the release of inflammatory factors by macrophages and promotes the migration and proliferation of Schwann cells. In vivo tests demonstrate that the GACM hydrogel repairs the cavernous nerve and restores erectile function and fertility. Furthermore, the feasibility of sprayable GACM in minimally invasive robotic surgery in beagles is validated. Given the benefits of therapeutic effectiveness and clinical convenience, the research suggests a promising future for sprayable GACM materials as advanced solutions for minimally invasive nerve repair.
Collapse
Affiliation(s)
- Shuting Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhenqing Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Wei Yang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhen Xu
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hao Dai
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Yan
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
20
|
Shin Y, Lee HS, Hong YJ, Sunwoo SH, Park OK, Choi SH, Kim DH, Lee S. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. SCIENCE ADVANCES 2024; 10:eadi7724. [PMID: 38507496 PMCID: PMC10954228 DOI: 10.1126/sciadv.adi7724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Stretchable bioelectronics has notably contributed to the advancement of continuous health monitoring and point-of-care type health care. However, microscale nonconformal contact and locally dehydrated interface limit performance, especially in dynamic environments. Therefore, hydrogels can be a promising interfacial material for the stretchable bioelectronics due to their unique advantages including tissue-like softness, water-rich property, and biocompatibility. However, there are still practical challenges in terms of their electrical performance, material homogeneity, and monolithic integration with stretchable devices. Here, we report the synthesis of a homogeneously conductive polyacrylamide hydrogel with an exceptionally low impedance (~21 ohms) and a reasonably high conductivity (~24 S/cm) by incorporating polyaniline-decorated poly(3,4-ethylenedioxythiophene:polystyrene). We also establish robust adhesion (interfacial toughness: ~296.7 J/m2) and reliable integration between the conductive hydrogel and the stretchable device through on-device polymerization as well as covalent and hydrogen bonding. These strategies enable the fabrication of a stretchable multichannel sensor array for the high-quality on-skin impedance and pH measurements under in vitro and in vivo circumstances.
Collapse
Affiliation(s)
- Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Su Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sueng Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
21
|
Wu S, Liu S, Li T, Li J, Wang L, Wang T. Molecular intelligent perception on soft interfaces. Sci Bull (Beijing) 2024; 69:578-582. [PMID: 38238206 DOI: 10.1016/j.scib.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Affiliation(s)
- Shuangshuang Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Songrui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ting Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jinxing Li
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing MI 48823, USA
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
22
|
Ma P, Liang W, Huang R, Zheng B, Feng K, He W, Huang Z, Shen H, Wang H, Wu D. Super-Structured Wet-Adhesive Hydrogel with Ultralow Swelling, Ultrahigh Burst Pressure Tolerance, and Anti-Postoperative Adhesion Properties for Tissue Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305400. [PMID: 38010313 DOI: 10.1002/adma.202305400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Wet-adhesive hydrogels have been developed as an attractive strategy for tissue repair. However, achieving simultaneously low swelling and high burst pressure tolerance of wet-adhesive hydrogels is crucial for in vivo application which remains challenges. Herein, a novel super-structured porous hydrogel (denoted as PVA/PAAc-N+ ) is designed via facile moisture-induced phase separation-solvent exchange process for obtaining porous polyvinyl alcohol (PVA) hydrogel as dissipative layer and in situ photocuring technology for entangling quaternary ammonium-functionalized poly(acrylic acid)-based wet-adhesive layer (PAAc-N+ ) with the porous surface of PVA layer. Benefitting from the ionic crosslinking between quaternary ammonium ions and carboxylate ions in PAAc-N+ wet-adhesive layer as well as the high crystallinity induced by abundant hydrogen bonds of PVA layer, the hydrogel has unique ultralow swelling property (0.29) without sacrificing adhesion strength (63.1 kPa). The porous structure of PVA facilitates the mechanical interlock at the interface between PAAc-N+ wet-adhesive layer and tough PVA dissipative layer, leading to the ultrahigh burst pressure tolerance up to 493 mm Hg and effective repair for porcine heart rupture; the PVA layer surface of PVA/PAAc-N+ hydrogel can prevent postoperative adhesion. By integrating ultralow swelling, ultrahigh burst pressure tolerance, and anti-postoperative adhesion properties, PVA/PAAc-N+ hydrogel shows an appealing application prospect for tissue repair.
Collapse
Affiliation(s)
- Pengwei Ma
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Weiwen Liang
- Department of General Surgery (Colorectal Surgery), Guangdong Institute of Gastroenterology, Biomedical Innovation Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Rongkang Huang
- Department of General Surgery (Colorectal Surgery), Guangdong Institute of Gastroenterology, Biomedical Innovation Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Bingna Zheng
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, P. R. China
| | - Kangni Feng
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Wenyi He
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Zeping Huang
- Department of General Surgery (Colorectal Surgery), Guangdong Institute of Gastroenterology, Biomedical Innovation Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Huiyong Shen
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, P. R. China
| | - Hui Wang
- Department of General Surgery (Colorectal Surgery), Guangdong Institute of Gastroenterology, Biomedical Innovation Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, P. R. China
| |
Collapse
|
23
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
24
|
Cao Y, Liu X, Du X, Ren X, Jia F, Gao G. Solvent-Resistant Adhesive Gel with Thermal Post-Tunability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8140-8150. [PMID: 38295314 DOI: 10.1021/acsami.3c18076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Adhesives have received extensive attention in flexible bioelectronics, wearable electronic medical devices, and biofuel cells. However, it is a challenge to achieve late regulation of performance once polymer-based gels are formed. Here, a double-network organogel composed of a hydrophilic and hydrophobic polymer network and a polyamide acid network was successfully prepared. In diverse liquid environments (including isopropyl alcohol, glycerol, epichlorohydrin, n-propanol, dichloromethane, triethanolamine, ethanol absolute, hydrogen peroxide, and ethyl acetate), the organogel adhesive demonstrated remarkable properties. It exhibits a strong tensile strength of 200 kPa, a high fracture strain reaching 560%, and an impressive adhesion strength of 38 kPa. In addition, the organogel demonstrates exceptional adhesive properties toward polytetrafluoroethylene, plastics, metals, rubber, and glass. Note that the organogel could also regulate adhesive and tough performance by thermally triggering a cyclization reaction even after the organogel has been formed. The strategy provides a new idea for designing soft materials with post-tunability.
Collapse
Affiliation(s)
- Yaxuan Cao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, No. 2055, Yan'an Street, Changchun 130012, China
| | - Xin Liu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, No. 2055, Yan'an Street, Changchun 130012, China
| | - Xuan Du
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, No. 2055, Yan'an Street, Changchun 130012, China
| | - Xiuyan Ren
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, No. 2055, Yan'an Street, Changchun 130012, China
| | - Fei Jia
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, No. 2055, Yan'an Street, Changchun 130012, China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, No. 2055, Yan'an Street, Changchun 130012, China
| |
Collapse
|
25
|
Wan L, Lu L, Zhu H, Liang X, Liu Z, Huang X, Luo Q, Xu Q, Zhang Q, Jia X. Tough and Water-Resistant Bioelastomers with Active-Controllable Degradation Rates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6356-6366. [PMID: 38262045 DOI: 10.1021/acsami.3c16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Biodegradable electronic devices have gained significant traction in modern medical applications. These devices are generally desired to have a long enough working lifetime for stable operation and allow for active control over their degradation rates after usage. However, current biodegradable materials used as encapsulations or substrates for these devices are challenging to meet the two requirements due to the constraints of inadequate water resistance, poor mechanical properties, and passive degradation characteristics. Herein, we develop a novel biodegradable elastomer named POC-SS-Res by introducing disulfide linkage and resveratrol (Res) into poly(1,8-octanediol-co-citrate) (POC). Compared to POC, POC-SS-Res exhibits good water resistance and excellent mechanical properties in PBS, providing effective protection for devices. At the same time, POC-SS-Res offers the unique advantage of an active-controllable degradation rate, and its degradation products express low biotoxicity. Good biocompatibility of POC-SS-Res is also demonstrated. Bioelectronic components encapsulated with POC-SS-Res have an obvious prolongation of working lifetime in PBS compared to that encapsulated with POC, and its degradation rate can be actively controlled by the addition of glutathione (GSH).
Collapse
Affiliation(s)
- Lu Wan
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Liangliang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing210023, P R. China
| | - Hongsen Zhu
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xuejiao Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing210023, P R. China
| | - Zhichang Liu
- Kuang Yaming Honors School, Nanjing University, Nanjing210023, P. R. China
| | - Xinxin Huang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing210023, P R. China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing210023, P R. China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
26
|
An H, Zhang M, Huang Z, Xu Y, Ji S, Gu Z, Zhang P, Wen Y. Hydrophobic Cross-Linked Chains Regulate High Wet Tissue Adhesion Hydrogel with Toughness, Anti-hydration for Dynamic Tissue Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310164. [PMID: 37925614 DOI: 10.1002/adma.202310164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Indexed: 11/06/2023]
Abstract
Hydrogel adhesion materials are widely reported for tissue engineering repair applications, however, wet tissue surface moisture can reduce the wet-adhesion properties and mechanical strength of hydrogels limiting their application. Here, anti-hydration gelatin-acrylic acid-ethylene dimethacrylate (GAE) hydrogels with hydrophobic cross-linked chains are constructed. The prepared GAE hydrogel is soaked in PBS (3 days) with a volume change of 0.6 times of the original and the adhesive strength, Young's modulus, toughness, and burst pressure are maintained by ≈70% of the original. A simple and universal method is used to introduce hydrophobic chains as cross-linking points to prepare hydrogels with anti-hydration, toughness, and high wet state adhesion. The hydrophobic cross-linked chains not only restrict the movement of molecular chains but also hinder the intrusion of water molecules. Antihydration GAE hydrogels exhibit good biocompatibility, slow drug release, and dynamic oral wet-state tissue repair properties. Therefore, the anti-hydration hydrogel has excellent toughness, wet tissue adhesion properties, and good prospects for biological applications.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Qingdao Hospital, Peking University People's Hospital, Beijing, 100044, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center ofStomatology & National Clinical Research Center for Oral Diseases & NationalEngineering Laboratory for Digital and Material Technology of Stomatology & BeijingKey Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratoryfor Dental Materials, Beijing, 100081, China
| | - Shen Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Qingdao Hospital, Peking University People's Hospital, Beijing, 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
27
|
Wang Q, Li Y, Lin Y, Sun Y, Bai C, Guo H, Fang T, Hu G, Lu Y, Kong D. A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics. NANO-MICRO LETTERS 2024; 16:87. [PMID: 38214840 PMCID: PMC10786775 DOI: 10.1007/s40820-023-01314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/02/2023] [Indexed: 01/13/2024]
Abstract
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body. As the primary compliant conductors used in these devices, metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin. Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces. However, chemical modifications are typically needed for reliable bonding, which can alter their original properties. To overcome this limitation, this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes. In this physical process, soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface, which forms an interpenetrating network with the hydrogel. The microfoam-enabled bonding strategy is generally compatible with various polymers. The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids. These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels. They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing muscle contractions. Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.
Collapse
Affiliation(s)
- Qian Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yanyan Li
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Chong Bai
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Haorun Guo
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Ting Fang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Gaohua Hu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China.
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, 210093, People's Republic of China.
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China.
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
28
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Chen J, Tian G, Liang C, Yang D, Zhao Q, Liu Y, Qi D. Liquid metal-hydrogel composites for flexible electronics. Chem Commun (Camb) 2023; 59:14353-14369. [PMID: 37916888 DOI: 10.1039/d3cc04198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
As an emerging functional material, liquid metal-hydrogel composites exhibit excellent biosafety, high electrical conductivity, tunable mechanical properties and good adhesion, thus providing a unique platform for a wide range of flexible electronics applications such as wearable devices, medical devices, actuators, and energy conversion devices. Through different composite methods, liquid metals can be integrated into hydrogel matrices to form multifunctional composite material systems, which further expands the application range of hydrogels. In this paper, we provide a brief overview of the two materials: hydrogels and liquid metals, and discuss the synthesis method of liquid metal-hydrogel composites, focusing on the improvement of the performance of hydrogel materials by liquid metals. In addition, we summarize the research progress of liquid metal-hydrogel composites in the field of flexible electronics, pointing out the current challenges and future prospects of this material.
Collapse
Affiliation(s)
- Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Dan Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Yan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| |
Collapse
|
30
|
Liang L, Li X, Tan Z, Liu M, Qiu Y, Yu Q, Yu C, Yao M, Guo B, Yao F, Che P, Zhang H, Li J. Injectable spontaneously formed asymmetric adhesive hydrogel with controllable removal for wound healing. J Mater Chem B 2023; 11:10845-10858. [PMID: 37937417 DOI: 10.1039/d3tb02014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Healing large-scale wounds has been a long-standing challenge in the field of biomedicine. Herein, we propose an injectable oxidated sodium alginate/gelatin/3,3'-dithiobis(propionic hydrazide)-aurum (Alg-CHO/gelatin/DTPH-Au) hydrogel filler with asymmetric adhesion ability and removability, which is formed by the Schiff-base reaction between aldehyde-based sodium alginate and multi-amino crosslinkers (gelatin and DTPH), combined with the coordination interaction between Au nanoparticles and disulfide bond of DTPH. Consequently, the prepared Alg-CHO/gelatin/DTPH-Au hydrogel exhibits high mechanical properties and injectable behaviors owing to its multiple-crosslinked interactions. Moreover, because various types of interaction bonding form on the contact side with the tissue, denser crosslinking of the upper layer relative to the lower layer occurs. Combined with the temperature difference between the upper and lower surfaces, this results in asymmetric adhesive properties. Owing to the photothermal effect, the reversible coordination interaction between Au nanoparticles and DTPH and the change in the triple helix structure of gelatin to a coil structure impart the filler-phased removability and antibacterial ability. The choice of all natural polymers also allows for favorable degradability of the wound filler and outstanding biocompatibility. Based on these features, this versatile wound filler can achieve a wide range of applications in the field of all-skin wound repair.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhouying Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Min Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qingyu Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Pengcheng Che
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063210, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
31
|
Sun Z, Dong C, Chen B, Li W, Hu H, Zhou J, Li C, Huang Z. Strong, Tough, and Anti-Swelling Supramolecular Conductive Hydrogels for Amphibious Motion Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303612. [PMID: 37394709 DOI: 10.1002/smll.202303612] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Conductive polymer hydrogels (CPHs) are widely employed in emerging flexible electronic devices because they possess both the electrical conductivity of conductors and the mechanical properties of hydrogels. However, the poor compatibility between conductive polymers and the hydrogel matrix, as well as the swelling behavior in humid environments, greatly compromises the mechanical and electrical properties of CPHs, limiting their applications in wearable electronic devices. Herein, a supramolecular strategy to develop a strong and tough CPH with excellent anti-swelling properties by incorporating hydrogen, coordination bonds, and cation-π interactions between a rigid conducting polymer and a soft hydrogel matrix is reported. Benefiting from the effective interactions between the polymer networks, the obtained supramolecular hydrogel has homogeneous structural integrity, exhibiting remarkable tensile strength (1.63 MPa), superior elongation at break (453%), and remarkable toughness (5.5 MJ m-3 ). As a strain sensor, the hydrogel possesses high electrical conductivity (2.16 S m-1 ), a wide strain linear detection range (0-400%), and excellent sensitivity (gauge factor = 4.1), sufficient to monitor human activities with different strain windows. Furthermore, this hydrogel with high swelling resistance has been successfully applied to underwater sensors for monitoring frog swimming and underwater communication. These results reveal new possibilities for amphibious applications of wearable sensors.
Collapse
Affiliation(s)
- Zhiyuan Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chao Dong
- Chemistry and Physics Department, College of Art and Science, The University of Texas of Permian Basin, Odessa, TX, 79762, USA
| | - Bingda Chen
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| | - Wenbo Li
- AECC Beijing Institute of Aeronautical Materials, Beijing, 100095, P. R. China
| | - Huiyuan Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
- Guangdong Polytechnic of Science and Technology, Zhuhai, 519090, P. R. China
| | - Jinsheng Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, P. R. China
| | - Chong Li
- Guangdong Polytechnic of Science and Technology, Zhuhai, 519090, P. R. China
| | - Zhandong Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
32
|
Liu C, Peng K, Wu Y, Fu F. Functional adhesive hydrogels for biological interfaces. SMART MEDICINE 2023; 2:e20230024. [PMID: 39188302 PMCID: PMC11235964 DOI: 10.1002/smmd.20230024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/09/2023] [Indexed: 08/28/2024]
Abstract
Hydrogel adhesives are extensively employed in biological interfaces such as epidermal flexible electronics, tissue engineering, and implanted device. The development of functional hydrogel adhesives is a critical, yet challenging task since combining two or more attributes that seem incompatible into one adhesive hydrogel without sacrificing the hydrogel's pristine capabilities. In this Review, we highlight current developments in the fabrication of functional adhesive hydrogels, which are suitable for a variety of application scenarios, particularly those that occur underwater or on tissue/organ surface conditions. The design strategies for a multifunctional adhesive hydrogel with desirable properties including underwater adhesion, self-healing, good biocompatibility, electrical conductivity, and anti-swelling are discussed comprehensively. We then discuss the challenges faced by adhesive hydrogels, as well as their potential applications in biological interfaces. Adhesive hydrogels are the star building blocks of bio-interface materials for individualized healthcare and other bioengineering areas.
Collapse
Affiliation(s)
- Changyi Liu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Kexin Peng
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
33
|
Liu X, Song X, Zhang Z, Yang S, Li L, Lin C, Chen M, Liu C, Li X, Zhang Y, Hu G. Multifunctional Oxidized Dextran-Metformin as a Tissue-Adhesive Hydrogel to Prevent Postoperative Peritoneal Adhesions in Patients with Metabolic Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303767. [PMID: 37845002 PMCID: PMC10667813 DOI: 10.1002/advs.202303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Patients with metabolic syndrome (MetS) undergoing surgery are at high risk of developing peritoneal adhesions and other severe postoperative complications. However, the single shielding function and absence of physiological activity render conventional methods less useful in preventing adhesions in patients with MetS. To address this challenge, a convenient method is introduced for developing a novel tissue-adhesive hydrogel called oxidized dextran-metformin (ODE-ME) via Schiff base linkages. This injectable ODE-ME hydrogel exhibits excellent tissue-adhesive properties and various physiological functions, particularly enhanced antibacterial effects. Furthermore, in vivo experiments demonstrate that the hydrogel can effectively alleviate hyperglycemia, reduce excessive inflammation, and improve fibrinolytic activity in MetS mice, thereby preventing adhesions and promoting incisional healing. The hydrogel concurrently isolates injured tissues and lowers the blood glucose levels immediately after surgery in mice. Therefore, the ODE-ME hydrogel functions as a multifunctional barrier material and has potential for preventing postoperative peritoneal adhesions in patients with MetS in clinical settings.
Collapse
Affiliation(s)
- Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Shutong Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Miao Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
34
|
Guo Y, Zhang L, Wang Y, Liang J, Liu X, Jiang Y, Jiang L, Chen H. Nanofiber embedded bioinspired strong wet friction surface. SCIENCE ADVANCES 2023; 9:eadi4843. [PMID: 37824620 PMCID: PMC10569708 DOI: 10.1126/sciadv.adi4843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Robust and reversible wet attachments are important for medical engineering and wearable electronics. Although ultrastrong capillarity from interfacial nano-thick liquid bridges creates tree frog's strong wet friction, its unstable nano-liquid characteristic challenges further wet friction enhancement. Here, unique hierarchical micro-nano fibrous pillars have been discovered on Chinese bush crickets exhibiting a robust wet friction ~3.8 times higher than tree frog's bulk pillar. By introducing a nano-fibrous pillar array covered with thin films (NFPF), the pillar's separation position switches from the rear to front side compared with bulk pillars, indicating the interfacial contact stress shifting from compressing to stretching. This largely decreases the interfacial separation stress to form more stable and larger nano-liquid bridges. The NFPF array with self-splitting of interfacial liquid and contact stress further guards such interfacial stress shifting to ensure a ~1.9 times friction enhancement. Last, the theories are established, and the applications on wearable electronics are validated.
Collapse
Affiliation(s)
- Yurun Guo
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Liwen Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yan Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Jing Liang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Xiaolin Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yonggang Jiang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Lei Jiang
- Laboratory of Bioinspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
35
|
Zhao Q, Zhu M, Tian G, Liang C, Liu Z, Huang J, Yu QY, Tang S, Chen J, Zhao X, Zeng Q, Guo C, Qi D. Highly Sensitive and Omnidirectionally Stretchable Bioelectrode Arrays for In Vivo Neural Interfacing. Adv Healthc Mater 2023; 12:e2203344. [PMID: 36974567 DOI: 10.1002/adhm.202203344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Flexible electrode array, a new-generation neural microelectrode, is a crucial tool for information exchange between living tissues and external electronics. Till date, advances in flexible neural microelectrodes are limited because of their high impedance and poor mechanical consistency at tissue interfaces. Herein, a highly sensitive and omnidirectionally stretchable polymeric electrode array (PEA) is introduced. Micropyramid-nanowire composite structures are constructed to increase the effective surface area of PEA, achieving an exponential reduction in impedance compared with gold (Au) and flat polypyrrole electrodes. Moreover, for the first time, a suspended umbrella structure to enable PEA with omnidirectional stretchability of up to ≈20% is designed. The PEA can withstand 1000 cycles of mechanical loads without decrease in performance. As a proof of concept, PEA is conformally attached to a rat heart and tibialis anterior muscle, and electrophysiological signals (electrocardiogram and electromyogram) of the rat are successfully recorded. This strategy provides a new perspective toward highly sensitive and omnidirectionally stretchable PEA that can facilitate the practical application of neural electrodes.
Collapse
Affiliation(s)
- Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Ming Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Zhiyuan Liu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jianping Huang
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qianheng Yuan Yu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shuanglong Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xizheng Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Qi Zeng
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Chongshen Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
- State Key Laboratory of Urban Water Resource and Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
36
|
Liang C, Sun J, Liu Z, Tian G, Liu Y, Zhao Q, Yang D, Chen J, Zhong B, Zhu M, Xu H, Qi D. Wide Range Strain Distributions on the Electrode for Highly Sensitive Flexible Tactile Sensor with Low Hysteresis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15096-15107. [PMID: 36942778 DOI: 10.1021/acsami.2c21241] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible piezoresistive tactile sensors are widely used in wearable electronic devices because of their ability to detect mechanical stimuli. However, achieving high sensitivity and low hysteresis over a broad detection range remains a challenge with current piezoresistive tactile sensors. To address these obstacles, we designed elastomeric micropyramid arrays with different heights to redistribute the strain on the electrode. Furthermore, we mixed single-walled carbon nanotubes in the elastomeric micropyramids to compensate for the conductivity loss caused by random cracks in the gold film and increase the adhesion strength between the gold film (deposited on the pyramid surface) and the elastomer. Thus, the energy loss of the sensor during deformation and hysteresis (∼2.52%) was effectively reduced. Therefore, under the synactic effects of the percolation effect, tunnel effect, and multistage strain distribution, the as-prepared sensor exhibited a high sensitivity (1.28 × 106 kPa-1) and a broad detection range (4.51-54837.06 Pa). The sensitivity was considerably higher than those of most flexible pressure sensors with a microstructure design. As a proof of concept, the sensors were successfully applied in the fields of health monitoring and human-machine interaction.
Collapse
Affiliation(s)
- Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Jingqi Sun
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Zhihua Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634 Singapore
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Yan Liu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Qinyi Zhao
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Dan Yang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Jianhui Chen
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Bowen Zhong
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Ming Zhu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Hongbo Xu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients and MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic China
| |
Collapse
|