1
|
Cheng Z, Wang Y, Lin H, Chen Z, Qin R, Wang T, Xu H, Du Y, Yuan H, Pan Y, Jiang H, Jiang X, Jiang J, Wu F, Wang Y. Engineering Dual Active Sites and Defect Structure in Nanozymes to Reprogram Jawbone Microenvironment for Osteoradionecrosis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2413215. [PMID: 39686746 DOI: 10.1002/advs.202413215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Four to eight percent of patients with head and neck cancer will develop osteoradionecrosis of the jaw (ORNJ) after radiotherapy. Various radiation-induced tissue injuries are associated with reactive oxygen and nitrogen species (RONS) overproduction. Herein, Fe doping is used in VOx (Fe-VOx) nanozymes with multienzyme activities for ORNJ treatment via RONS scavenging. Fe doping can induce structure reconstruction of nanozymes with abundant defect production, including Fe substitution and oxygen vacancies (OVs), which markedly increased multiple enzyme-mimicking activity. Catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) enzyme-like performance of Fe-VOx can effectively reprogram jawbone microenvironment to restore mitochondrial dysfunction and enhance mitophagy. Moreover, the surface plasmon resonance (SPR) effect of Fe-VOx made it a good photothermal nanoagents for inhibiting jaw infection. Thus, this work demonstrated that Fe-VOx nanozymes can efficiently scavenge RONS, activate mitophagy, and inhibit bacteria, which is potential for ORNJ treatment.
Collapse
Affiliation(s)
- Zheng Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuchen Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Haobo Lin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ziyu Chen
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ran Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hang Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Huijun Jiang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiandong Jiang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fan Wu
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| |
Collapse
|
2
|
Zhang H, Wang Y, Qiang H, Leng D, Yang L, Hu X, Chen F, Zhang T, Gao J, Yu Z. Exploring the frontiers: The potential and challenges of bioactive scaffolds in osteosarcoma treatment and bone regeneration. Mater Today Bio 2024; 29:101276. [PMID: 39444939 PMCID: PMC11497376 DOI: 10.1016/j.mtbio.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The standard treatment for osteosarcoma combines surgery with chemotherapy, yet it is fraught with challenges such as postoperative tumor recurrence and chemotherapy-induced side effects. Additionally, bone defects after surgery often surpass the body's regenerative ability, affecting patient recovery. Bioengineering offers a novel approach through the use of bioactive scaffolds crafted from metals, ceramics, and hydrogels for bone defect repair. However, these scaffolds are typically devoid of antitumor properties, necessitating the integration of therapeutic agents. The development of a multifunctional therapeutic platform incorporating chemotherapeutic drugs, photothermal agents (PTAs), photosensitizers (PIs), sound sensitizers (SSs), magnetic thermotherapeutic agents (MTAs), and naturally occurring antitumor compounds addresses this limitation. This platform is engineered to target osteosarcoma cells while also facilitating bone tissue repair and regeneration. This review synthesizes recent advancements in integrated bioactive scaffolds (IBSs), underscoring their dual role in combating osteosarcoma and enhancing bone regeneration. We also examine the current limitations of IBSs and propose future research trajectories to overcome these hurdles.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Huifen Qiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Dewen Leng
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Luling Yang
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xueneng Hu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Feiyan Chen
- Department of Orthopedics, Huashan Hospital, Fudan University Shanghai, 201508, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200336, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200336, China
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| |
Collapse
|
3
|
Liu X, Luo D, Dai S, Cai Y, Chen T, Bao X, Hu M, Liu Z. Artificial Bacteriophages for Treating Oral Infectious Disease via Localized Bacterial Capture and Enhanced Catalytic Sterilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400394. [PMID: 39159066 PMCID: PMC11538703 DOI: 10.1002/advs.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/30/2024] [Indexed: 08/21/2024]
Abstract
With the rapid emergence of antibiotic-resistant pathogens, nanomaterial-assisted catalytic sterilization has been well developed to combat pathogenic bacteria by elevating the level of reactive oxygen species including hydroxyl radical (·OH). Although promising, the ultra-short lifetime and limited diffusion distance of ·OH severely limit their practical antibacterial usage. Herein, the rational design and preparation of novel virus-like copper silicate hollow spheres (CSHSs) are reported, as well as their applications as robust artificial bacteriophages for localized bacterial capture and enhanced catalytic sterilization in the treatment of oral infectious diseases. During the whole process of capture and killing, CSHSs can efficiently capture bacteria via shortening the distance between bacteria and CSHSs, produce massive ·OH around bacteria, and further iinducing the admirable effect of bacterial inhibition. By using mucosal infection and periodontitis as typical oral infectious diseases, it is easily found that the bacterial populations around lesions in animals after antibacterial treatment fall sharply, as well as the well-developed nanosystem can decrease the inflammatory reaction and promote the hard or soft tissue repair. Together, the high Fenton-like catalytic activity, strong bacterial affinity, excellent antibacterial activity, and overall safety of the nanoplatform promise its great therapeutic potential for further catalytic bacterial disinfection.
Collapse
Affiliation(s)
- Xiaocan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Danfeng Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Shuang Dai
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yanting Cai
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Tianyan Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
- Key Laboratory of PathobiologyMinistry of EducationJilin UniversityChangchun130021China
| | - Zhen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
4
|
Hou X, Li Y, Zhang H, Lund PD, Kwan J, Tsang SCE. Black titanium oxide: synthesis, modification, characterization, physiochemical properties, and emerging applications for energy conversion and storage, and environmental sustainability. Chem Soc Rev 2024; 53:10660-10708. [PMID: 39269216 DOI: 10.1039/d4cs00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Since its advent in 2011, black titanium oxide (B-TiOx) has garnered significant attention due to its exceptional optical characteristics, notably its enhanced absorption spectrum ranging from 200 to 2000 nm, in stark contrast to its unmodified counterpart. The escalating urgency to address global climate change has spurred intensified research into this material for sustainable hydrogen production through thermal, photocatalytic, electrocatalytic, or hybrid water-splitting techniques. The rapid advancements in this dynamic field necessitate a comprehensive update. In this review, we endeavor to provide a detailed examination and forward-looking insights into the captivating attributes, synthesis methods, modifications, and characterizations of B-TiOx, as well as a nuanced understanding of its physicochemical properties. We place particular emphasis on the potential integration of B-TiOx into solar and electrochemical energy systems, highlighting its applications in green hydrogen generation, CO2 reduction, and supercapacitor technology, among others. Recent breakthroughs in the structure-property relationship of B-TiOx and its applications, grounded in both theoretical and empirical studies, are underscored. Additionally, we will address the challenges of scaling up B-TiOx production, its long-term stability, and economic viability to align with ambitious future objectives.
Collapse
Affiliation(s)
- Xuelan Hou
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Yiyang Li
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Hang Zhang
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - Peter D Lund
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - James Kwan
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| |
Collapse
|
5
|
Chang S, Li Z, Liu L, Wang C, Wang J, Nie A, Wen F, Mu C, Zhai K, Xiang J, Wang B, Fan Q, Xue T, Liu Z. Atomic-Level Defect Engineering in GeP Nanoflake Biosensors for Gastric Cancer Diagnosis. ACS NANO 2024; 18:27547-27556. [PMID: 39326008 DOI: 10.1021/acsnano.4c08473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Defect engineering offers a promising approach to enhance the sensitivity of biosensing materials by creating abundant chemically active sites. Despite its potential, achieving precise control and modification of these defects remains a significant challenge. Herein, we propose atomic-level defect engineering in GeP two-dimensional (2D) layered materials, following precise in situ growing Au nanoparticles on the single defect active sites for the design of ultrasensitive biosensors. The GeP-based biosensor exhibits notable capabilities for miRNA detection with excellent chemical stability, sensitivity, selectivity, and an extremely low detection limit of 28.6 aM. When applied to clinical tissue samples from gastric cancer patients, the biosensor effectively quantified the miR378c biomarker, enabling accurate stage-specific monitoring. This research not only represents a crucial advancement in the field of biosensing materials through defect engineering but also provides a promising avenue for early cancer diagnosis, staging, and monitoring.
Collapse
Affiliation(s)
- Shaopeng Chang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Zhehong Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lixuan Liu
- Institute of Quantum Materials and Devices, School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China
| | - Chong Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jing Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Fusheng Wen
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Kun Zhai
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jianyong Xiang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Bochong Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Qing Fan
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Tianyu Xue
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Zaed MA, Abdullah N, Tan KH, Hossain MH, Saidur R. Empowering Green Energy Storage Systems with MXene for a Sustainable Future. CHEM REC 2024; 24:e202400062. [PMID: 39318085 DOI: 10.1002/tcr.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Green energy storage systems play a vital role in enabling a sustainable future by facilitating the efficient integration and utilization of renewable energy sources. The main problems related to two-dimensional (2D) materials are their difficult synthesis process, high cost, and bulk production, which hamper their performance. In recent years, MXenes have emerged as highly promising materials for enhancing the performance of energy storage devices due to their unique properties, including their high surface area, excellent electrical and thermal conductivity, and exceptional chemical stability. This paper presents a comprehensive scientific approach that explores the potential of MXenes for empowering green energy storage systems. Which indicates the novelty of the article. The paper reviews the latest advances in MXene synthesis techniques. Furthermore, investigates the application of MXenes in various energy storage technologies, such as lithium-ion batteries, supercapacitors, and emerging energy storage devices. The utilization of MXenes as electrodes in flexible and transparent energy storage devices is also discussed. Moreover, the paper highlights the potential of MXenes in addressing key challenges in energy storage, including enhancing energy storage capacity, improving cycling stability, and promoting fast charging and discharging rates. Additionally, industrial application and cost estimation of MXenes are explored. As the output of the work, we analyzed that HF and modified acid (LiF and HCl) are the established methods for synthesis. Due to high electrical conductivity, MXene materials are showing extraordinary results in energy storage and related applications. Making a composite hydrothermal method is one of the established methods. This scientific paper underscores the significant contributions of MXenes in advancing green energy storage systems, paving the way for a sustainable future driven by renewable energy sources. To facilitate the research, this article includes technical challenges and future recommendations for further research gaps in the topic.
Collapse
Affiliation(s)
- M A Zaed
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Norulsamani Abdullah
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - K H Tan
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - M H Hossain
- Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R Saidur
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| |
Collapse
|
7
|
Zang P, Yu C, Zhang R, Yang D, Gai S, Yang P, Lin J. Revealing the Optimization Route of Piezoelectric Sonosensitizers: From Mechanism to Engineering Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401650. [PMID: 38712474 DOI: 10.1002/smll.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Indexed: 05/08/2024]
Abstract
Piezoelectric catalysis is a novel catalytic technology that has developed rapidly in recent years and has attracted extensive interest among researchers in the field of tumor therapy for its acoustic-sensitizing properties. Nevertheless, researchers are still controversial about the key technical difficulties in the modulation of piezoelectric sonosensitizers for tumor therapy applications, which is undoubtedly a major obstacle to the performance modulation of piezoelectric sonosensitizers. Clarification of this challenge will be beneficial to the design and optimization of piezoelectric sonosensitizers in the future. Here, the authors start from the mechanism of piezoelectric catalysis and elaborate the mechanism and methods of defect engineering and phase engineering for the performance modulation of piezoelectric sonosensitizers based on the energy band theory. The combined therapeutic strategy of piezoelectric sonosensitizers with enzyme catalysis and immunotherapy is introduced. Finally, the challenges and prospects of piezoelectric sonosensitizers are highlighted. Hopefully, the explorations can guide researchers toward the optimization of piezoelectric sonosensitizers and can be applied in their own research.
Collapse
Affiliation(s)
- Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
8
|
Wang H, Su P, Wei W, Song J, Yang Y. Hollow Cu/CoS 2 Nanozyme with Defect-Induced Enzymatic Catalytic Sites and Binding Pockets for Highly Sensitive Fluorescence Detection of Alkaline Phosphatase. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401416. [PMID: 38699924 DOI: 10.1002/smll.202401416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Along with an ever-deepening understanding of the catalytic principle of natural enzymes, the rational design of high-activity biomimetic nanozymes has become a hot topic in current research. Inspired by the active centers of natural enzymes consisting of catalytic sites and binding pockets, a Cu-doped CoS2 hollow nanocube (Cu/CoS2 HNCs) nanozyme integrating substitution defects and vacancies is developed through a defect engineering strategy. It is shown that the vacancies and substitution defects in the developed Cu/CoS2 HNC nanozymes serve as binding pockets and catalytic sites, respectively. The construction of this key active center and the accelerated electron transfer from the Co/Cu redox cycle significantly improve the substrate affinity and catalytic efficiency of the Cu/CoS2 HNCs nanozymes, which results in the excellent catalytic performance of the Cu/CoS2 HNC nanozymes. Using the superior enzymatic activity of Cu/CoS2 HNCs, a fluorescence detection platform for alkaline phosphatase (ALP) is established, which is a wider detection range and lower limit of detection (LOD) than previous work. This work broadens the family of nanozymes and provide a new idea for the development of novel nanozymes with high enzyme activity, as well as a guideline for the construction of highly sensitive fluorescent sensors.
Collapse
Affiliation(s)
- Han Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wenyu Wei
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
9
|
Li Z, Ding B, Li J, Chen H, Zhang J, Tan J, Ma X, Han D, Ma P, Lin J. Multi-Enzyme Mimetic MoCu Dual-Atom Nanozyme Triggering Oxidative Stress Cascade Amplification for High-Efficiency Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2024:e202413661. [PMID: 39166420 DOI: 10.1002/anie.202413661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/22/2024]
Abstract
Single-atom nanozymes (SAzymes) with ultrahigh atom utilization efficiency have been extensively applied in reactive oxygen species (ROS)-mediated cancer therapy. However, the high energy barriers of reaction intermediates on single-atom sites and the overexpressed antioxidants in the tumor microenvironment restrict the amplification of tumor oxidative stress, resulting in unsatisfactory therapeutic efficacy. Herein, we report a multi-enzyme mimetic MoCu dual-atom nanozyme (MoCu DAzyme) with various catalytic active sites, which exhibits peroxidase, oxidase, glutathione (GSH) oxidase, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mimicking activities. Compared with Mo SAzyme, the introduction of Cu atoms, formation of dual-atom sites, and synergetic catalytic effects among various active sites enhance substrate adsorption and reduce the energy barrier, thereby endowing MoCu DAzyme with stronger catalytic activities. Benefiting from the above enzyme-like activities, MoCu DAzyme can not only generate multiple ROS, but also deplete GSH and block its regeneration to trigger the cascade amplification of oxidative stress. Additionally, the strong optical absorption in the near-infrared II bio-window endows MoCu DAzyme with remarkable photothermal conversion performance. Consequently, MoCu DAzyme achieves high-efficiency synergistic cancer treatment incorporating collaborative catalytic therapy and photothermal therapy. This work will advance the therapeutic applications of DAzymes and provide valuable insights for nanocatalytic cancer therapy.
Collapse
Affiliation(s)
- Ziyao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
Yang J, Xiao S, Deng J, Li Y, Hu H, Wang J, Lu C, Li G, Zheng L, Wei Q, Zhong J. Oxygen vacancy-engineered cerium oxide mediated by copper-platinum exhibit enhanced SOD/CAT-mimicking activities to regulate the microenvironment for osteoarthritis therapy. J Nanobiotechnology 2024; 22:491. [PMID: 39155382 PMCID: PMC11330606 DOI: 10.1186/s12951-024-02678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/30/2024] [Indexed: 08/20/2024] Open
Abstract
Cerium oxide (CeO2) nanospheres have limited enzymatic activity that hinders further application in catalytic therapy, but they have an "oxidation switch" to enhance their catalytic activity by increasing oxygen vacancies. In this study, according to the defect-engineering strategy, we developed PtCuOX/CeO2-X nanozymes as highly efficient SOD/CAT mimics by introducing bimetallic copper (Cu) and platinum (Pt) into CeO2 nanospheres to enhance the oxygen vacancies, in an attempt to combine near-infrared (NIR) irradiation to regulate microenvironment for osteoarthritis (OA) therapy. As expected, the Cu and Pt increased the Ce3+/Ce4+ ratio of CeO2 to significantly enhance the oxygen vacancies, and simultaneously CeO2 (111) facilitated the uniform dispersion of Cu and Pt. The strong metal-carrier interaction synergy endowed the PtCuOX/CeO2-X nanozymes with highly efficient SOD/CAT-like activity by the decreased formation energy of oxygen vacancy, promoted electron transfer, the increased adsorption energy of intermediates, and the decreased reaction activation energy. Besides, the nanozymes have excellent photothermal conversion efficiency (55.41%). Further, the PtCuOX/CeO2-X antioxidant system effectively scavenged intracellular ROS and RNS, protected mitochondrial function, and inhibited the inflammatory factors, thus reducing chondrocyte apoptosis. In vivo, experiments demonstrated the biosafety of PtCuOX/CeO2-X and its potent effect on OA suppression. In particular, NIR radiation further enhanced the effects. Mechanistically, PtCuOX/CeO2-X nanozymes reduced ras-related C3 botulinum toxin substrate 1 (Rac-1) and p-p65 protein expression, as well as ROS levels to remodel the inflammatory microenvironment by inhibiting the ROS/Rac-1/nuclear factor kappa-B (NF-κB) signaling pathway. This study introduces new clinical concepts and perspectives that can be applied to inflammatory diseases.
Collapse
Affiliation(s)
- Junxu Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shihui Xiao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiejia Deng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuquan Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiawei Wang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 53000, People's Republic of China
| | - Guanhua Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Qingjun Wei
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China.
| | - Jingping Zhong
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
11
|
Rizvi NB, Sarwar A, Waheed S, Iqbal ZF, Imran M, Javaid A, Kim TH, Khan MS. Nano-based remediation strategies for micro and nanoplastic pollution. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104380. [PMID: 38875891 DOI: 10.1016/j.jconhyd.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Due to rapid urbanization, there have been continuous environmental threats from different pollutants, especially from microplastics. Plastic products rapidly proliferate significantly contributing to the occurrence of micro-plastics, which poses a significant environmental risk. These microplastics originated from diverse sources and are characterized by their persistent and widespread occurrence; human health and the entire ecosystem are adversely affected by them. The removal of microplastics not only requires innovative technologies but also efficient materials capable of effectively eliminating them from our environment. The progress made so far has highlighted the advantages of utilizing the dimensional and structural properties of nanomaterials to increase the effectiveness of existing methods for micro-plastic treatment, aiming for a more sustainable approach to their removal. In the current review, we demonstrate a thorough overview of the sources, occurrences, and potential harmful effects of microplastics, followed by a further discussion of promising technologies used for their removal. An in-depth examination of both advantages and a few limitations of all these given technologies, including physical, chemical, and biological approaches, has been discussed. Additionally, the review explores the use of nanomaterials as an effective means to overcome obstacles and improve the efficiency of microplastic elimination methods. n conclusion, this review addresses, current challenges in this field and outlines the future perspectives for further research in this domain.
Collapse
Affiliation(s)
- Nayab Batool Rizvi
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Adnan Sarwar
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Saba Waheed
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Zeenat Fatima Iqbal
- Department of Chemistry, University of Engineering and Technology, Lahore-54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Muhammad Shahzeb Khan
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
12
|
Su Y, Liu B, Wang B, Chan L, Xiong C, Lu L, Zhang X, Zhan M, He W. Progress and Challenges in Tumor Ferroptosis Treatment Strategies: A Comprehensive Review of Metal Complexes and Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310342. [PMID: 38221682 DOI: 10.1002/smll.202310342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ferroptosis is a new form of regulated cell death featuring iron-dependent lipid peroxides accumulation to kill tumor cells. A growing body of evidence has shown the potential of ferroptosis-based cancer therapy in eradicating refractory malignancies that are resistant to apoptosis-based conventional therapies. In recent years, studies have reported a number of ferroptosis inducers that can increase the vulnerability of tumor cells to ferroptosis by regulating ferroptosis-related signaling pathways. Encouraged by the rapid development of ferroptosis-driven cancer therapies, interdisciplinary fields that combine ferroptosis, pharmaceutical chemistry, and nanotechnology are focused. First, the prerequisites and metabolic pathways for ferroptosis are briefly introduced. Then, in detail emerging ferroptosis inducers designed to boost ferroptosis-induced tumor therapy, including metal complexes, metal-based nanoparticles, and metal-free nanoparticles are summarized. Subsequently, the application of synergistic strategies that combine ferroptosis with apoptosis and other regulated cell death for cancer therapy, with emphasis on the use of both cuproptosis and ferroptosis to induce redox dysregulation in tumor and intracellular bimetallic copper/iron metabolism disorders during tumor treatment is discussed. Finally, challenges associated with clinical translation and potential future directions for potentiating cancer ferroptosis therapies are highlighted.
Collapse
Affiliation(s)
- Yanhong Su
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Binghan Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Chan Xiong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|
13
|
Sheikh A, Kesharwani P, Almalki WH, Almujri SS, Dai L, Chen ZS, Sahebkar A, Gao F. Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy. NANO-MICRO LETTERS 2024; 16:188. [PMID: 38698113 PMCID: PMC11065855 DOI: 10.1007/s40820-024-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
As a new form of regulated cell death, ferroptosis has unraveled the unsolicited theory of intrinsic apoptosis resistance by cancer cells. The molecular mechanism of ferroptosis depends on the induction of oxidative stress through excessive reactive oxygen species accumulation and glutathione depletion to damage the structural integrity of cells. Due to their high loading and structural tunability, nanocarriers can escort the delivery of ferro-therapeutics to the desired site through enhanced permeation or retention effect or by active targeting. This review shed light on the necessity of iron in cancer cell growth and the fascinating features of ferroptosis in regulating the cell cycle and metastasis. Additionally, we discussed the effect of ferroptosis-mediated therapy using nanoplatforms and their chemical basis in overcoming the barriers to cancer therapy.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | - Linxin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
14
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
15
|
Yang Z, Yuan M, Cheng Z, Liu B, Ma Z, Ma J, Zhang J, Ma X, Ma P, Lin J. Defect-Repaired g-C 3N 4 Nanosheets: Elevating the Efficacy of Sonodynamic Cancer Therapy Through Enhanced Charge Carrier Migration. Angew Chem Int Ed Engl 2024; 63:e202401758. [PMID: 38320968 DOI: 10.1002/anie.202401758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Sonodynamic therapy (SDT) has garnered growing interest owing to its high tissue penetration depth and minimal side effects. However, the lack of efficient sonosensitizers remains the primary limiting factor for the clinical application of this treatment method. Here, defect-repaired graphene phase carbon nitride (g-C3N4) nanosheets are prepared and utilized for enhanced SDT in anti-tumor treatment. After defect engineering optimization, the bulk defects of g-C3N4 are significantly reduced, resulting in higher crystallinity and exhibiting a polyheptazine imide (PHI) structure. Due to the more extended conjugated structure of PHI, facilitating faster charge transfer on the surface, it exhibits superior SDT performance for inducing apoptosis in tumor cells. This work focuses on introducing a novel carbon nitride nanomaterial as a sonosensitizer and a strategy for optimizing sonosensitizer performance by reducing bulk defects.
Collapse
Affiliation(s)
- Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Zhizi Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jie Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| |
Collapse
|
16
|
Yuan M, Yang L, Yang Z, Ma Z, Ma J, Liu Z, Ma P, Cheng Z, Maleki A, Lin J. Fabrication of Interface Engineered S-Scheme Heterojunction Nanocatalyst for Ultrasound-Triggered Sustainable Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308546. [PMID: 38342609 PMCID: PMC11022741 DOI: 10.1002/advs.202308546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
In order to establish a set of perfect heterojunction designs and characterization schemes, step-scheme (S-scheme) BiOBr@Bi2S3 nanoheterojunctions that enable the charge separation and expand the scope of catalytic reactions, aiming to promote the development and improvement of heterojunction engineering is developed. In this kind of heterojunction system, the Fermi levels mediate the formation of the internal electric field at the interface and guide the recombination of the weak redox carriers, while the strong redox carriers are retained. Thus, these high-energy electrons and holes are able to catalyze a variety of substrates in the tumor microenvironment, such as the reduction of oxygen and carbon dioxide to superoxide radicals and carbon monoxide (CO), and the oxidation of H2O to hydroxyl radicals, thus achieving sonodynamic therapy and CO combined therapy. Mechanistically, the generated reactive oxygen species and CO damage DNA and inhibit cancer cell energy levels, respectively, to synergistically induce tumor cell apoptosis. This study provides new insights into the realization of high efficiency and low toxicity in catalytic therapy from a unique perspective of materials design. It is anticipated that this catalytic therapeutic method will garner significant interest in the sonocatalytic nanomedicine field.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Ling Yang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhizi Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Jie Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)and Department of Pharmaceutical Nanotechnology (School of pharmacy)Zanjan University of Medical SciencesZanjan4513956184Iran
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
17
|
Su Y, Lv M, Huang Z, An N, Chen Y, Wang H, Li Z, Wu S, Ye F, Shen J, Li A. Defect engineering to tailor structure-activity relationship in biodegradable nanozymes for tumor therapy by dual-channel death strategies. J Control Release 2024; 367:557-571. [PMID: 38301929 DOI: 10.1016/j.jconrel.2024.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Pursuing biodegradable nanozymes capable of equipping structure-activity relationship provides new perspectives for tumor-specific therapy. A rapidly degradable nanozymes can address biosecurity concerns. However, it may also reduce the functional stability required for sustaining therapeutic activity. Herein, the defect engineering strategy is employed to fabricate Pt-doping MoOx (PMO) redox nanozymes with rapidly degradable characteristics, and then the PLGA-assembled PMO (PLGA@PMO) by microfluidics chip can settle the conflict between sustaining therapeutic activity and rapid degradability. Density functional theory describes that Pt-doping enables PMO nanozymes to exhibit an excellent multienzyme-mimicking catalytic activity originating from synergistic catalysis center construction with the interaction of Pt substitution and oxygen vacancy defects. The peroxidase- (POD), oxidase- (OXD), glutathione peroxidase- (GSH-Px), and catalase- (CAT) mimicking activities can induce robust ROS output and endogenous glutathione depletion under tumor microenvironment (TME) response, thereby causing ferroptosis in tumor cells by the accumulation of lipid peroxide and inactivation of glutathione peroxidase 4. Due to the activated surface plasmon resonance effect, the PMO nanozymes can cause hyperthermia-induced apoptosis through 1064 nm laser irradiation, and augment multienzyme-mimicking catalytic activity. This work represents a potential biological application for the development of therapeutic strategy for dual-channel death via hyperthermia-augmented enzyme-mimicking nanocatalytic therapy.
Collapse
Affiliation(s)
- Yutian Su
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Mengdi Lv
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| | - Zheng Huang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Nannan An
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yi Chen
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Haoru Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Shishan Wu
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China.
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou 510120, China
| | - Jian Shen
- School of Chemistry and Chemical Engineering, MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China; National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| | - Ao Li
- Department of Ultrasound, Jiangsu Province People's Hospital, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| |
Collapse
|
18
|
Silina EV, Ivanova OS, Manturova NE, Medvedeva OA, Shevchenko AV, Vorsina ES, Achar RR, Parfenov VA, Stupin VA. Antimicrobial Activity of Citrate-Coated Cerium Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:354. [PMID: 38392727 PMCID: PMC10893433 DOI: 10.3390/nano14040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
The purpose of this study was to investigate the antimicrobial activity of citrate-stabilized sols of cerium oxide nanoparticles at different concentrations via different microbiological methods and to compare the effect with the peroxidase activity of nanoceria for the subsequent development of a regeneration-stimulating medical and/or veterinary wound-healing product providing new types of antimicrobial action. The object of this study was cerium oxide nanoparticles synthesized from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid (the size of the nanoparticles was 3-5 nm, and their aggregates were 60-130 nm). Nanoceria oxide sols with a wide range of concentrations (10-1-10-6 M) as well as powder (the dry substance) were used. Both bacterial and fungal strains (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, Candida albicans, Aspergillus brasielensis) were used for the microbiological studies. The antimicrobial activity of nanoceria was investigated across a wide range of concentrations using three methods sequentially; the antimicrobial activity was studied by examining diffusion into agar, the serial dilution method was used to detect the minimum inhibitory and bactericidal concentrations, and, finally, gas chromatography with mass-selective detection was performed to study the inhibition of E. coli's growth. To study the redox activity of different concentrations of nanocerium, we studied the intensity of chemiluminescence in the oxidation reaction of luminol in the presence of hydrogen peroxide. As a result of this study's use of the agar diffusion and serial dilution methods followed by sowing, no significant evidence of antimicrobial activity was found. At the same time, in the current study of antimicrobial activity against E. coli strains using gas chromatography with mass spectrometry, the ability of nanoceria to significantly inhibit the growth and reproduction of microorganisms after 24 h and, in particular, after 48 h of incubation at a wide range of concentrations, 10-2-10-5 M (48-95% reduction in the number of microbes with a significant dose-dependent effect) was determined as the optimum concentration. A reliable redox activity of nanoceria coated with citrate was established, increasing in proportion to the concentration, confirming the oxidative mechanism of the action of nanoceria. Thus, nanoceria have a dose-dependent bacteriostatic effect, which is most pronounced at concentrations of 10-2-10-3 M. Unlike the effects of classical antiseptics, the effect was manifested from 2 days and increased during the observation. To study the antimicrobial activity of nanomaterials, it is advisable not to use classical qualitative and semi-quantitative methods; rather, the employment of more accurate quantitative methods is advised, in particular, gas chromatography-mass spectrometry, during several days of incubation.
Collapse
Affiliation(s)
- Ekaterina Vladimirovna Silina
- Department of Pathological Physiology, Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Olga Sergeevna Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy Pr., 31, Bldg. 4, 119071 Moscow, Russia;
| | - Natalia Evgenevna Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Olga Anatolyevna Medvedeva
- Department of Microbiology, Virology, Immunology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (O.A.M.); (A.V.S.); (E.S.V.)
| | - Alina Vladimirovna Shevchenko
- Department of Microbiology, Virology, Immunology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (O.A.M.); (A.V.S.); (E.S.V.)
| | - Ekaterina Sergeevna Vorsina
- Department of Microbiology, Virology, Immunology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (O.A.M.); (A.V.S.); (E.S.V.)
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Vladimir Anatolevich Parfenov
- Department of Pathological Physiology, Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Victor Aleksandrovich Stupin
- Department of Hospital Surgery No.1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| |
Collapse
|