1
|
Zheng W, Liu Y, Liu J, Zhao Y, Wang P, Wang Y, Wang Y, Lu Z, Liu X, Shi Y, Zhou N, González FE, Sun H, Zhou D, Xu X. Copper/calcium co-doped carbon dots for targeted cancer therapy with dual-mode imaging and synergistic induction of cuproptosis and calcium-mediated apoptosis. J Colloid Interface Sci 2025; 690:137337. [PMID: 40117884 DOI: 10.1016/j.jcis.2025.137337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Squamous cell carcinoma remains a highly aggressive malignancy with persistently high global incidence and mortality rates, posing significant challenges for effective treatment. Traditional chemotherapies lack specificity, leading to damage in normal tissues and severe side effects, highlighting the urgent need for targeted therapeutic strategies. In this study, copper and calcium co-doped carbon dots (Cu/Ca-CDs) were synthesized using a vacuum-confined heating method. These Cu/Ca-CDs demonstrated excellent tumor-targeting ability through specific binding to folate receptors on murine squamous cell carcinoma cell line (SCC7), facilitated by their pterin ring structure. Mechanistic studies revealed that Cu/Ca-CDs induced SCC7 tumor cell death through copper-induced cuproptosis and calcium overload-mediated apoptosis, as confirmed by Western blot, immunofluorescence staining, and Rhod-2 calcium probe analyses. The dual-mode imaging capability of Cu/Ca-CDs, enabled by fluorescence and computed tomography properties, allowed for real-time tracking of their distribution and accumulation within tumors. This imaging-guided approach ensured precise delivery to tumor tissues while minimizing damage to normal tissues. In vivo experiments demonstrated significant tumor volume reduction and increased survival rates in tumor-bearing mice treated with Cu/Ca-CDs, without any observed toxicity to normal tissues or changes in body weight, underscoring the efficacy and biosafety of Cu/Ca-CDs. These findings highlight Cu/Ca-CDs as a promising strategy for precision oncology, offering effective tumor targeting, dual-mode imaging, and synergistic anti-tumor efficacy with reduced side effects.
Collapse
Affiliation(s)
- Wenqian Zheng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yang Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Jinru Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yuping Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Peiyu Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL 60208, USA
| | - Yuxuan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Zeyu Lu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Xiaofan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yaru Shi
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Na Zhou
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines and Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Macau 999078, PR China
| | - Fermín Eduardo González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Ding Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China.
| | - Xiaowei Xu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Zhang R, Li W, Guo Z, Chen Z, Wang T, Peng Y, Yu A, Li DS, Zhou Q, Niu L, Tu J, Sun C, Wu Q. Valence Electron Fluctuation in a High-Entropy Oxide Heterojunction Enables Collaborative Photodynamic and Mild-Thermal Therapy for Cutaneous Biofilm Infections. ACS NANO 2025; 19:21348-21364. [PMID: 40480959 DOI: 10.1021/acsnano.4c18444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Mild photothermal therapy combined with photodynamic therapy has emerged as an effective treatment for antibiotic-resistant infection. However, controlling operation temperature within a safe range during reactive oxygen species (ROS) production remains a challenge. Herein, we present a functional heterojunction consisting of Ti3C2Tx-MXene and (CoCrFeMnNi)3O4 high-entropy oxide (HEO) featuring a valence electron fluctuation effect, achieving a highly efficient treatment of biofilm-associated infections in wounds and abscesses under mild conditions where skin temperature remains below 42.3 °C. We found that under near-infrared light irradiation, photogenerated hot electrons from MXene are efficiently transferred to the HEO surface, serving as abundant electron sources. The electron fluctuation effect of the HEO enables the rapid enrichment and activation of oxygen molecules in microenvironments, significantly enhancing ROS generation. Simultaneously, the built-in electric field at the MXene-HEO interface suppresses electron-hole recombination, minimizing excessive heat generation and ensuring efficient photothermal-photodynamic synergy. The accelerated generation of ROS inhibits the synthesis of adenosine triphosphate (ATP) by disrupting the bacterial respiratory chain complex (RCC), which significantly inhibits the expression of ATP-dependent molecular chaperone genes groEL and ClpP, compromising bacterial heat resistance and virulence to achieve mild thermal therapy. Moreover, it also shows superior benefits in tissue regeneration, collagen deposition, and angiogenesis while alleviating the inflammation, exhibiting a robust solution for drug-resistant bacterial biofilms in cutaneous tissues. Our work highlights the potential of HEO functional heterojunctions for safe and effective mild-temperature biomedical therapies and paves the way for advanced strategies in combating biofilm-associated infections through rational material design and engineering.
Collapse
Affiliation(s)
- Rui Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, P. R. China
| | - Weiwei Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Zhengcai Guo
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Zhiling Chen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, P. R. China
| | - Tao Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, P. R. China
| | - Yanan Peng
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, P. R. China
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Qionglin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, P. R. China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, P. R. China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, P. R. China
| |
Collapse
|
3
|
Duan W, Xu K, Gao Y, Huang S, Xia X, Liu X, Pan S, Jiao C, Cheng W, Guo Y, Zhao J, Shen JW. Bimetallic Plasmonic Nanozyme-Based Microneedle for Synergistic Ferroptosis Therapy of Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e04203. [PMID: 40387609 DOI: 10.1002/advs.202504203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/03/2025] [Indexed: 05/20/2025]
Abstract
Melanoma is the most common malignant skin tumor, characterized by complexity, invasiveness, and heterogeneity. Conventional therapies often yield poor outcomes, posing significant clinical challenges. Here, a microneedle (MN) patch that integrates nanozyme and traditional Chinese medicine (TCM) for ferroptosis pathway-dependent combined therapy of melanoma is designed. To amplify therapeutic activity, a novel Au@MoS2 bimetallic plasmonic nanozyme (BPNzyme) is prepared through a simple aqueous synthesis strategy involving a two-step process. Owing to the synergy between heterostructures, this rationally designed BPNzyme exhibits significantly enhanced therapeutic characteristics, including near-infrared (NIR) photothermal effect, peroxidase-like activity, and glutathione peroxidase-like property, which can effectively reshape the tumor microenvironment and disrupt the redox homeostasis. Under the combined action of the TCM β-elemene (β-ELE) and NIR light, further enhancement of oxidative damage, lipid peroxidation, and glutathione peroxidase 4 expression downregulation are observed for skin tumor cells, validating the synergistic amplification of ferroptosis. Moreover, the transdermal delivery of BPNzyme and β-ELE using the soluble hyaluronic acid MN patch effectively achieves 99.8% tumor growth suppression without significant systemic toxicity in vivo. These findings highlight the potential of the rationally designed BPNzyme-based MN system as a promising innovative strategy for non-invasive, efficient, and safe combination therapy of melanoma.
Collapse
Affiliation(s)
- Wei Duan
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, 200438, P. R. China
| | - Keying Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yue Gao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Sheng Huang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Xueqian Xia
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Xiang Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Shuangxue Pan
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Chunpeng Jiao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Weijian Cheng
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yong Guo
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jingwen Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jia-Wei Shen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
4
|
Wu S, Li S, Xia X, Zhang G, Wang T. Biosynthesized Calcium Peroxide Nanoparticles as a Multifunctional Platform for Liver Cancer Therapy. Int J Mol Sci 2025; 26:4696. [PMID: 40429837 PMCID: PMC12112688 DOI: 10.3390/ijms26104696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
To overcome the limitations associated with chemically synthesized nanoparticles in cancer therapy, researchers have increasingly focused on developing nanoparticles with superior biocompatibility and prolonged tumor retention using biosynthetic methods. In this study, we first identified the presence of calcium peroxide nanoparticles (CaO2 NPs) in the blood of individuals who had ingested calcium gluconate. Furthermore, the dropwise addition of calcium gluconate to human serum resulted in the spontaneous self-assembly of CaO2 NPs. Next, following tail vein injection of fluorescently labeled CaO2 NPs into subcutaneous tumor-bearing nude mice, we observed that the nanoparticles exhibited prolonged accumulation at the tumor sites compared to other organs through visible-light imaging. Immunofluorescence staining demonstrated that CaO2 NPs co-localized with vesicular transport-associated proteins, such as PV-1 and Caveolin-1, as well as the albumin-binding-associated protein SPARC, suggesting that their transport from tumor blood vessels to the tumor site is mediated by Caveolin-1- and SPARC-dependent active transport pathways. Additionally, the analysis of various organs in normal mice injected with CaO2 NPs at concentrations significantly higher than the experimental dose showed no apparent organ damage. Hemolysis assays indicated that hemolysis occurred only at calcium concentrations of 300 µg/mL, whereas the experimental concentration remained well below this threshold with no detectable hemolytic activity. In a subcutaneous tumor-bearing nude mouse model, treatment with docetaxel-loaded CaO2 NPs showed a 68.5% reduction in tumor volume compared to free docetaxel (DTX) alone. These novel biosynthetic CaO2 NPs demonstrated excellent biocompatibility, prolonged retention at the tumor site, safety, and drug-loading capability.
Collapse
Affiliation(s)
- Sen Wu
- Department of Cell Biology, School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China; (S.W.); (S.L.)
| | - Siqi Li
- Department of Cell Biology, School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China; (S.W.); (S.L.)
| | - Xin Xia
- Department of Human Anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China;
| | - Gen Zhang
- Department of Cell Biology, School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China; (S.W.); (S.L.)
| | - Ting Wang
- Department of Cell Biology, School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China; (S.W.); (S.L.)
| |
Collapse
|
5
|
Liang JL, Cao Y, Lv K, Xiao B, Sun J. Amplifying Ca 2+ overload by engineered biomaterials for synergistic cancer therapy. Biomaterials 2025; 316:123027. [PMID: 39700532 DOI: 10.1016/j.biomaterials.2024.123027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Ca2+ overload is one of the most widely causes of inducing apoptosis, pyroptosis, immunogenic cell death, autophagy, paraptosis, necroptosis, and calcification of tumor cells, and has become the most valuable therapeutic strategy in the field of cancer treatment. Nevertheless, several challenges remain in translating Ca2+ overload-mediated therapeutic strategies into clinical applications, such as the precise control of Ca2+ dynamics, specificity of Ca2+ homeostasis dysregulation, as well as comprehensive mechanisms of Ca2+ regulation. Given this, we comprehensively reviewed the Ca2+-driven intracellular signaling pathways and the application of Ca2+-based biomaterials (such as CaCO3-, CaP-, CaO2-, CaSi-, CaF2-, and CaH2-) in mediating cancer diagnosis, treatment, and immunotherapy. Meanwhile, the latest researches on Ca2+ overload-mediated therapeutic strategies, as well as those combined with multiple-model therapies in mediating cancer immunotherapy are further highlighted. More importantly, the critical challenges and the future prospects of the Ca2+ overload-mediated therapeutic strategies are also discussed. By consolidating recent findings and identifying future research directions, this review aimed to advance the field of oncology therapy and contribute to the development of more effective and targeted treatment modalities.
Collapse
Affiliation(s)
- Jun-Long Liang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yangyang Cao
- Hangzhou Ultra-theranostics Biopharmaceuticals Technology Co., Ltd., Hangzhou, 311231, China
| | - Kaiwei Lv
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Xiao
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
6
|
Wang T, Xing Z, Wang M, He C, Ma T, Wang Y, Wang X, Wu H, Li S, Cheng C, Zhao C. Bioinspired O 2-Evolution Catalysts with Proton-Coupled Electron Transfer Pathway for Portable Oxygen Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502102. [PMID: 40237195 DOI: 10.1002/adma.202502102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Producing high-purity oxygen (O2) has a wide range of applications across diverse sectors, such as medicine, tunnel construction, the chemical industry, and fermentation. However, current O2 production methods are burdened by complexity, heavy equipment, high energy consumption, and limited adaptability to harsh environments. Here, to address this grand challenge, the de novo design of Ru-doped metal hydroxide is proposed to serve as bioinspired O2-evolution catalysts with proton-coupled electron transfer (PCET) pathway for low-energy, environmentally friendly, cost-effective, and portable O2 generation. The comprehensive studies confirm that the lattice H species in Ru-Co(OH)x-based O2-evolution catalyst can trigger a PCET pathway to optimize Ru-oxygen intermediates interactions, thus ultimately reducing reaction energy barriers and improving the activities and durabilities. Consequently, the prepared Ru-Co(OH)x-loaded membrane catalysts exhibit rapid and long-term stable O2 production capabilities. Furthermore, the proposed material design strategy of lattice H-species shows remarkable universality and adaptability to broad Ru-doped metal hydroxides. This efficient, portable, and cost-effective O2 generation technique is suggested to ensure an uninterrupted O2 supply during emergencies and in regions with limited O2 availability or air pollution, thus offering significant societal benefits in broad applications.
Collapse
Affiliation(s)
- Ting Wang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Yi Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xiaolin Wang
- Macau Institute of Materials Science and Engineering, Faculty of Innovation Engineering, School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Hao Wu
- Macau Institute of Materials Science and Engineering, Faculty of Innovation Engineering, School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Shuang Li
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
He L, Ren W, Cheng W, Chen J, Lai J, Wu Y, Wu Z, Bao D, Wei Y, Piao JG. Arsenene-Vanadene nanodots co-activate Apoptosis/Ferroptosis for enhanced chemo-immunotherapy. Acta Biomater 2025; 196:453-470. [PMID: 40032219 DOI: 10.1016/j.actbio.2025.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Triple-Negative Breast Cancer (TNBC) represents a highly aggressive subtype of breast cancer with an unfavorable prognosis, characterized by minimal immune infiltration and pronounced immune suppression, resulting in a limited response to immunotherapy. In this study, a multifunctional Arsenene-Vanadene nanodot (AsV) drug delivery system is introduced, which responds to the tumor microenvironment by releasing arsenic and vanadium. Arsenic undergoes oxidation to generate highly toxic trivalent arsenic, which induces apoptosis in tumor cells while utilizing apoptotic cell debris to transiently activate the immune system. Additionally, arsenic binds to cysteine, indirectly facilitating ferroptosis. Concurrently, vanadium's redox cycling properties are harnessed to trigger a Fenton-like reaction, promoting lipid peroxidation. Furthermore, ferroptosis is enhanced through the depletion of glutathione and inactivation of glutathione peroxidase 4 (GPX4), leading to the release of damage-associated molecular patterns and thereby amplifying the anti-tumor immune response. This study represents the first instance of integrating arsenene's apoptosis-inducing properties with vanadium's ferroptosis-enhancing effects, providing a synergistic approach to improving the immunotherapeutic response and offering a potential strategy for enhancing TNBC prognosis. STATEMENT OF SIGNIFICANCE: Triple-negative breast cancer (TNBC) exhibits resistance to immunotherapy due to its highly immunosuppressive tumor microenvironment. In this study, tumour-responsive Arsenene-Vanadene nanodots (AsV) were developed to induce a synergistic effect by triggering apoptosis and ferroptosis through microenvironment-specific mechanisms. The arsenic component generates cytotoxic trivalent arsenic, promoting apoptosis while binding to cysteine, thereby reducing GSH synthesis. Simultaneously, vanadium initiates lipid peroxidation through Fenton-like reactions and disruption of the glutathione/GPX4 axis, further amplifying ferroptotic cell death. This dual-action system transforms tumor cell debris into immune-stimulating signals while circumventing conventional immunotherapy limitations. As the first strategy integrating arsenic-induced apoptosis with vanadium-enhanced ferroptosis, this approach provides a mechanistic framework to overcome TNBC immunosuppression through coordinated cell death pathways, demonstrating potential for precision nanomedicine applications.
Collapse
Affiliation(s)
- Li He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - WeiYe Ren
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - WeiYi Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - JingQuan Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Jianjun Lai
- Department of Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China
| | - Yajun Wu
- Department of Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China
| | - Zhibing Wu
- Department of Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China; Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China.
| | - Dandan Bao
- Department of Dermatology & Cosmetology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, PR China.
| | - Yinghui Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China; Jinhua Academy of Zhejiang Chinese Medical University.
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| |
Collapse
|
8
|
Jia X, Wang E, Wang J. Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy. Chem Rev 2025; 125:2908-2952. [PMID: 39869790 DOI: 10.1021/acs.chemrev.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) in situ, thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects. This area has shown remarkable progress. This Perspective provides a comprehensive overview of nanozymes, covering their classification and fundamentals. The regulation of nanozyme activity and efficient strategies of rational design are discussed in detail. Furthermore, representative paradigms for the successful construction of cascade catalytic systems for cancer treatment are summarized with a focus on revealing the underlying catalytic mechanisms. Finally, we address the current challenges and future prospects for the development of nanozyme-based cascade catalytic systems in biomedical applications.
Collapse
Affiliation(s)
- Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
9
|
He Y, Lin Y, Song J, Song M, Nie X, Sun H, Xu C, Han Z, Cai J. From mechanisms to medicine: Ferroptosis as a Therapeutic target in liver disorders. Cell Commun Signal 2025; 23:125. [PMID: 40055721 PMCID: PMC11889974 DOI: 10.1186/s12964-025-02121-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/22/2025] [Indexed: 05/13/2025] Open
Abstract
In recent 10 years, ferroptosis has become a hot research direction in the scientific research community as a new way of cell death. Iron toxicity accumulation and lipotoxicity are unique features. Several studies have found that ferroptosis is involved in the regulation of the hepatic microenvironment and various hepatic metabolisms, thereby mediating the progression of related liver diseases. For example, NRF2 and FSP1, as important regulatory proteins of ferroptosis, are involved in the development of liver tumors and liver failure. In this manuscript, we present the mechanisms involved in ferroptosis, the concern of ferroptosis with the liver microenvironment and the progression of ferroptosis in various liver diseases. In addition, we summarize recent clinical advances in targeted ferroptosis therapy for related diseases. We expect that this manuscript can provide a new perspective for clinical treatment of related diseases.
Collapse
Affiliation(s)
- Yuqi He
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jinfeng Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Mingzhu Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Xiaoxia Nie
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Hong Sun
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Changyun Xu
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Zhongyu Han
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China.
| | - Juan Cai
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China.
| |
Collapse
|
10
|
Yang H, Li X, Wang Q, Yang F, Zhong X, Gu L, Miao Y, Liu B, Li Y. Multienzyme-like polyoxometalate for oxygen-independent sonocatalytic enhanced cancer therapy. J Colloid Interface Sci 2025; 681:319-330. [PMID: 39612664 DOI: 10.1016/j.jcis.2024.11.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Artificially synthesized nanozymes exhibit enzymatic activity similar to that of natural enzymes. However, in the complex tumor microenvironment, their diversity and catalytic activity show significant variations, limiting their effectiveness in catalytic therapy. Developing artificial enzymes with multiple enzymatic activities and spatiotemporal controllable catalytic abilities is of great clinical significance. Herein, we propose a novel strategy for synergistic enzyme catalysis and sonocatalytic therapy of tumors using polyoxometalates-based nanozymes. Copper-doped molybdenum-based polyoxometalates (denoted as CP) were rapidly synthesized at room temperature through a one-step method. CP contains mixed-valence states of Cu+/Cu2+ and Mo5+/Mo6+ ions, endowing it with enzyme-like activities of peroxidase, catalase, and glutathione peroxidase. Additionally, the incorporation of copper ions introduces oxygen vacancies into the nano-polyoxometalate, which not only reduces the bandgap but also enhances carrier separation efficiency, thereby improving the sonocatalytic performance of CP as a semiconductor. The combined effects of enzyme-like catalysis and sonocatalysis generate multiple reactive oxygen species (ROS), synergistically depleting glutathione (GSH) and disrupting the redox homeostasis of the tumor, inducing ferroptosis in tumor cells and thereby inhibiting tumor proliferation. This study provides new insights into the design of artificial nanozymes with multiple enzymatic activities and ultrasound activation functions for combined tumor therapy.
Collapse
Affiliation(s)
- Han Yang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiaoyuan Zhong
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liping Gu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China
| | - Baolin Liu
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China.
| |
Collapse
|
11
|
Li Y, Fu B, Jiang W. Emerging Roles of Nanozyme in Tumor Metabolism Regulation: Mechanisms, Applications, and Future Directions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11552-11577. [PMID: 39936939 DOI: 10.1021/acsami.4c20417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Nanozymes, nanomaterials with intrinsic enzyme activity, have garnered significant attention in recent years due to their catalytic abilities comparable to natural enzymes, cost-effectiveness, high catalytic activities, and stability against environmental fluctuations. As functional analogs of natural enzymes, nanozymes participate in various critical metabolic processes, including glucose metabolism, lactate metabolism, and the maintenance of redox homeostasis, all of which are essential for normal cellular functions. However, disruptions in these metabolic pathways frequently promote tumorigenesis and progression, making them potential therapeutic targets. While several therapies targeting tumor metabolism are currently in clinical or preclinical stages, their efficacy requires further enhancement. Consequently, nanozymes that target tumor metabolism are regarded as a promising therapeutic strategy. Despite extensive studies investigating the application of nanozymes in tumor metabolism, relevant reviews are relatively scarce. This article first introduces the physicochemical properties and biological behaviors of nanozymes. Subsequently, we analyze the role of nanozymes in tumor metabolism and explore their potential applications in tumor therapy. In conclusion, this review aims to foster innovative research in related fields and advance the development of nanozyme-based strategies for cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yikai Li
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Bowen Fu
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450002, China
| |
Collapse
|
12
|
Yu Z, Xu Z, Zeng R, Xu M, Zou M, Huang D, Weng Z, Tang D. Tailored Metal-Organic Framework-Based Nanozymes for Enhanced Enzyme-Like Catalysis. Angew Chem Int Ed Engl 2025; 64:e202420200. [PMID: 39557613 DOI: 10.1002/anie.202420200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
The global crisis of bacterial infections is exacerbated by the escalating threat of microbial antibiotic resistance. Nanozymes promise to provide ingenious solutions. Here, we reported a homogeneous catalytic structure of Pt nanoclusters with finely tuned metal-organic framework (ZIF-8) channel structures for the treatment of infected wounds. Catalytic site normalization showed that the active site of the Pt aggregates structure with fine-tuned pore modifications structure had a catalytic capacity of 14.903×105 min-1, which was 18.7 times higher than that of the Pt particles in monodisperse state in ZIF-8 (0.793×105 min-1). In situ tests revealed that the change from homocleavage to heterocleavage of hydrogen peroxide at the interface of the nanozyme was one of the key reasons for the improvement of nanozyme activity. Density-functional theory and kinetic simulations of the reaction interface jointly determine the role of the catalytic center and the substrate channel together. Metabolomics analysis showed that the developed nanozyme, working in conjunction with reactive oxygen species, could effectively block energy metabolic pathways within bacteria, leading to spontaneous apoptosis and bacterial rupture. This pioneering study elucidates new ideas for the regulation of artificial enzyme activity and provides new perspectives for the development of efficient antibiotic substitutes.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhenjin Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Man Xu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Minglang Zou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350108, China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
13
|
Zhou M, Feng J, Mei Q, Li T, Zhang Y, Liu W, Wei H. A Powerful Tumor Catalytic Therapy by an Enzyme-Nanozyme Cascade Catalysis (ENCAT) System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409363. [PMID: 39828616 DOI: 10.1002/smll.202409363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Complexity of tumor and its microenvironment as obstacles often restrict traditional tumor therapies. Enzyme/nanozyme-mediated catalytic therapy has been emerged, but the efficacy of single catalytic therapy is still moderate. Inspired by the concepts of catalytic and synergetic therapy, an enzyme-nanozyme cascade catalysis (ENCAT)-enhanced tumor therapy is developed. First, metal-organic framework (MOF) PCN222-Mn (PM) and glucose oxidase (GOx) are chosen as nanozyme and natural enzyme, respectively. Then two assembled together to form enzyme-nanozyme complex PCN222-Mn@GOx (PMG). To achieve tumor targeting and GOx protection, hyaluronic acid (HA) is modified on PMG to obtain PCN222-Mn@GOx/HA (PMGH). Both cellular and animal studies demonstrate a cascade catalysis-enhanced tumor therapy by PMGH. Specifically, a cascade catalysis-enhanced PDT is achieved based on enzyme-nanozyme mediated cascade-catalyzed O2 generation; an enhanced synergistic therapy is demonstrated by combining PM-mediated PDT, GOx-mediated starvation therapy, and activated/promoted immunotherapy together. Additionally, the designed tumor catalytic therapy is explored in a tumor bearing mouse model, where it exhibits powerful anti-tumor effects against both primary and metastatic tumors. This strategy has the potential to broaden tumor therapeutic approaches.
Collapse
Affiliation(s)
- Min Zhou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Jiayuan Feng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Qi Mei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Tong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Wanling Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Centre at Nanjing University, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| |
Collapse
|
14
|
Li T, Cao B, Su T, Lin L, Wang D, Liu X, Wan H, Ji H, He Z, Chen Y, Feng L, Zhang TY. Machine Learning-Engineered Nanozyme System for Synergistic Anti-Tumor Ferroptosis/Apoptosis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408750. [PMID: 39679771 DOI: 10.1002/smll.202408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Nanozymes with multienzyme-like activity have sparked significant interest in anti-tumor therapy via responding to the tumor microenvironment (TME). However, the consequent induction of protective autophagy substantially compromises the therapeutic efficacy. Here, a targeted nanozyme system (Fe-Arg-CDs@ZIF-8/HAD, FZH) is shown, which enhances synergistic anti-tumor ferroptosis/apoptosis therapy by leveraging machine learning (ML). A novel ML model, termed the sequential backward Tree-Classifier for Gaussian Process Regression (TCGPR), is proposed to improve data pattern recognition following the divide-and-conquer principle. Based on this, a Bayesian optimization algorithm is employed to select candidates from the extensive search space. Leveraging this fresh material discovery framework, a novel strategy for enhancing nanozyme-based tumor therapy, has been developed. The results reveal that FZH effectively exerts anti-tumor effects by sequentially responding to the TME, having a cascade reaction to induce ferroptosis. Moreover, the endogenous elevation of high concentration nitric oxide (NO) serves as a direct mechanism for killing tumor cells while concurrently suppressing the protective autophagy induced by oxidative stress (OS), enhancing synergistic ferroptosis/apoptosis therapy. Overall, a novel strategy for improving nanozyme-based tumor therapy has been proposed, underlying the integration of ML, experiments, and biological applications.
Collapse
Affiliation(s)
- Tianliang Li
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Bin Cao
- Guangzhou Municipal Key Laboratory of Materials Informatics, Sustainable Energy and Environment Thrust, Advanced Materials Thrust, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
| | - Tianhao Su
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Lixing Lin
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Xinting Liu
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Haoyu Wan
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Haiwei Ji
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Zixuan He
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yingying Chen
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai, 200444, China
| | - Tong-Yi Zhang
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, Sustainable Energy and Environment Thrust, Advanced Materials Thrust, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
| |
Collapse
|
15
|
Lin H, Liu H, Xi H, Li D, Jiang P, Wang Y, Cheng S, Jiang H, Deng H, Zhou X, Yu L. Oxygen-Independent Photodynamic Therapy-Mediated Selective Consumption of M1 Macrophage Against Ventricular Arrhythmias via Sympathetic Neuromodulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409244. [PMID: 39711260 DOI: 10.1002/smll.202409244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Indexed: 12/24/2024]
Abstract
The occurrence of myocardial infarction (MI)-induced malignant ventricular arrhythmias (VAs) is closely associated with the hyperactivation of left stellate ganglion (LSG). Proinflammatory M1 macrophage is reported to aggravate sympathetic overactivation and cause VAs. Therefore, the depletion of M1 macrophage is anticipated to inhibit LSG overactivation and alleviate MI-induced VAs. Herein, oxygen-independent photodynamic therapy (Oi-PDT) combined with M1 macrophage targeting is applied to selectively deplete M1 macrophage in LSG and further treat MI-induced VAs. Oi-PDT, which overcomes the limitation of extremely dependence on oxygen content in traditional PDT, is constructed through the generation of oxidizing photogenerated holes (h+) under the irradiation of near-infrared (NIR) light on the prepared Oi-PDT agent (PPSCD). Meanwhile, PPSCD targets M1 macrophage through conjunction with SR-A receptor. The selective consumption of M1 macrophage is attributed to both apoptosis and ferroptosis induced by h+, 1O2, and O2 •- generated in Oi-PDT. In vivo tests indicated neural activity experienced a notable reduction from 104.5 ± 2.9 to 51.5 ± 6.7 after MI with Oi-PDT treatment, thereby significantly inhibited VAs. The implementation of this study provides a promising strategy for selective consumption of M1 macrophages and treatment of VAs induced by MI.
Collapse
Affiliation(s)
- Heng Lin
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Hengyang Liu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Haosong Xi
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Dangwei Li
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, P. R. China
| | - Pengcheng Jiang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Yijun Wang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Siyi Cheng
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Hong Jiang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, P. R. China
| | - Xue Zhou
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Lilei Yu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| |
Collapse
|
16
|
Hou J, Bao H, Wang Y, Zhou Q, Chen J, Pan G, Xu G, Zhang J, Tang G, Bai H. A Hybrid Alloying Nanozyme-Glutathione Inhibitor Co-Delivery System Initiates a Dual-Disruption on Cancer Redox Homeostasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407555. [PMID: 39468865 DOI: 10.1002/smll.202407555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Indexed: 10/30/2024]
Abstract
Altered redox homeostasis has long been observed in cancer cells, which can be exploited for therapeutic benefits. However, reactive oxygen species (ROS) pleiotropy coupling with reductive adaptation in cancer cells poses a formidable challenge for redox dyshomeostasis-based cancer therapy. Herein, a AuPd alloying nanozyme-glutathione (GSH) biosynthesis inhibitor co-delivery system (B-BMES) is developed using dendritic SiO2 as a matrix to target cancer redox homeostasis. By optimizing element composition, the alloying nanozyme in B-BMES exhibits a potent peroxidase (POD)-like activity to trigger ROS insults-mediated redox dyshomeostasis. Such a POD functionality is attributed to the optimized electronic structure and catalytic activity. Simultaneously, the B-BMES abrogates the reductive adaptation by exerting its molecule-targeted GSH suppression, thereby achieving a dual-disruption on cancer redox homeostasis. Camouflaging B-BMES with tumor-homologous cytomembrane, a hybrid nanosystem with biological stability and tumor-targeting ability is further fabricated, which initiates a safe, precise redox disruption-based cancer therapy and sensibilizes standard chemotherapy.
Collapse
Affiliation(s)
- Jue Hou
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hanxiao Bao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yu Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qiaomei Zhou
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jiayi Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Guohua Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Guoqiao Xu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jinguo Zhang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
17
|
Zhang X, Zhang Y, Lv X, Zhang P, Xiao C, Chen X. DNA-Free Guanosine-Based Polymer Nanoreactors with Multienzyme Activities for Ferroptosis-Apoptosis Combined Antitumor Therapy. ACS NANO 2024; 18:33531-33544. [PMID: 39610058 DOI: 10.1021/acsnano.4c11275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Concurrent induction of ferroptosis and apoptosis by enzyme catalysis represents a promising modality for cancer therapy. Inspired by the structures of DNA and G-quadruplex/hemin DNAzyme, a DNA-free guanosine-based polymer nanoreactor (HPG@hemin-GOx) is prepared as a ferroptosis-apoptosis inducer by a one-step assembly of phenylboronic acid-modified hyaluronic acid (HA-PBA), guanosine (G), hemin, and glucose oxidase (GOx). HPG@hemin-GOx shows GOx, peroxidase (POD)-like, catalase (CAT)-like, and glutathione peroxidase (GPX)-like activities. The GOx activity of the nanoreactor can increase intracellular hydrogen peroxide (H2O2) levels by oxidizing glucose in the presence of oxygen. The POD-like activity of HPG@hemin-GOx can then induce the generation of hydroxyl radicals utilizing generated H2O2. Meanwhile, the production of oxygen by the CAT-like activity can facilitate the oxygen-consuming glucose oxidation process of GOx, thus promoting the generation of intracellular reactive oxygen species (ROS). Moreover, the GPX-like activity of HPG@hemin-GOx can deplete intracellular glutathione and thus downregulate GPX4 expression. Consequently, HPG@hemin-GOx induces apoptosis and ferroptosis by ROS-mediated damages of nuclear DNA and mitochondria, and GPX4 depletion-induced lipid peroxidation accumulation, resulting in a strong anticancer effect as demonstrated both in vitro and in vivo. This work provides a method for the construction of polymeric nanoreactors with multienzyme activities for ferroptosis-apoptosis synergistic anticancer therapy.
Collapse
Affiliation(s)
- Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yingqi Zhang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xueli Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
18
|
Li X, Hu J, Zhao Q, Yao W, Jing Z, Jin Z. Towards precision medicine: design considerations for nanozymes in tumor treatment. J Transl Med 2024; 22:1033. [PMID: 39550581 PMCID: PMC11568558 DOI: 10.1186/s12967-024-05845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024] Open
Abstract
Since the discovery of Fe3O4 nanoparticles with enzyme-like activity in 2007, nanozymes have emerged as a promising class of catalysts, offering advantages such as high catalytic efficiency, low cost, mild reaction conditions, and excellent stability. These properties make nanozymes highly suitable for large-scale production. In recent years, the convergence of nanomedicine and nanocatalysis has highlighted the potential of nanozymes in diagnostic and therapeutic applications, particularly in tumor therapy. Despite these advancements, the clinical translation of nanozymes remains hindered by the lack of designs tailored to specific tumor characteristics, limiting their effectiveness in targeted therapy. This review addresses the mechanisms by which nanozymes induce cell death in various tumor types and emphasizes the key design considerations needed to enhance their therapeutic potential. By identifying the challenges and opportunities in the field, this study aims to provide a foundation for future nanozyme development, ultimately contributing to more precise and effective cancer treatments.
Collapse
Affiliation(s)
- Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China
| | - Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China
| | - Qi Zhao
- Department of Chemistry and the Institute for Sustainability and Energy, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China.
- Shanghai Engineering Research Center of Heat-Exchange System and Energy Saving, Shanghai University of Electric Power, Shanghai, People's Republic of China.
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China.
| | - Zhizhong Jin
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
19
|
Qi F, Zheng X, Wu Y, Li S, Yao S, He W, Chen Y, Guo Z. A Ru(II) complex-based COX-2 targeting type I photosensitizer evokes ferroptosis and apoptosis. Chem Commun (Camb) 2024; 60:13091-13094. [PMID: 39440456 DOI: 10.1039/d4cc04217d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Photodynamic therapy (PDT) often faces challenges such as oxygen dependence and limited tumour specificity. We report a tumour-targeting photosensitizer (PS), RuCXB, which enhances uptake by cancer cells by targeting overexpressed cyclooxygenase-2 enzyme in tumours. RuCXB also reduces oxygen dependence via a type I PDT mechanism and achieves a strong therapeutic effect through the synergistic induction of ferroptosis and apoptosis. This work presents a reliable strategy for developing potent PSs with enhanced PDT efficacy, tumour selectivity, and diminished oxygen dependence.
Collapse
Affiliation(s)
- Fen Qi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P. R. China.
- Kai Yuan School of Innovation and Entrepreneurship, Wuxi Institute of Technology, Wuxi 214121, China
| | - Xiaoxue Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P. R. China.
| | - Yanping Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P. R. China.
| | - Shumeng Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P. R. China.
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P. R. China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P. R. China.
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P. R. China.
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, Jiangsu, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
20
|
Zhu X, Zhang X, Guo J, He L, Wang F, Qiu Z, Li A, Zhang J, Gao F, Li W. Surface Engineering Enhances Vanadium Carbide MXene-Based Nanoplatform Triggered by NIR-II for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401655. [PMID: 38966887 DOI: 10.1002/smll.202401655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Despite the advantages of high tissue penetration depth, selectivity, and non-invasiveness of photothermal therapy for cancer treatment, developing NIR-II photothermal agents with desirable photothermal performance and advanced theranostics ability remains a key challenge. Herein, a universal surface modification strategy is proposed to effectively improve the photothermal performance of vanadium carbide MXene nanosheets (L-V2C) with the removal of surface impurity ions and generation of mesopores. Subsequently, MnOx coating capable of T1-weighted magnetic resonance imaging can be in situ formed through surface redox reaction on L-V2C, and then, stable nanoplatforms (LVM-PEG) under physiological conditions can be obtained after further PEGylation. In the tumor microenvironment irradiated by NIR-II laser, multivalent Mn ions released from LVM-PEG, as a reversible electronic station, can consume the overexpression of glutathione and catalyze a Fenton-like reaction to produce ·OH, resulting in synchronous cellular oxidative damage. Efficient synergistic therapy promotes immunogenic cell death, improving tumor-related immune microenvironment and immunomodulation, and thus, LVM-PEG can demonstrate high accuracy and excellent anticancer efficiency guided by multimodal imaging. As a result, this study provides a new approach for the customization of 2D surface strategies and the study of synergistic therapy mechanisms, highlighting the application of MXene-based materials in the biomedical field.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, P. R. China
| | - Xide Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, P. R. China
| | - Jiahao Guo
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, P. R. China
| | - Lei He
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, P. R. China
| | - Fuming Wang
- Department of Interventional Radiology, Changhai Hospital, Naval Medical University, Shanghai, P. R. China
| | - Zhiwen Qiu
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, P. R. China
| | - Ang Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, P. R. China
| | - Jing Zhang
- Department of Pathology, Changzheng Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, P. R. China
| |
Collapse
|
21
|
Zhu Y, Wang X, Feng L, Zhao R, Yu C, Liu Y, Xie Y, Liu B, Zhou Y, Yang P. Intermetallics triggering pyroptosis and disulfidptosis in cancer cells promote anti-tumor immunity. Nat Commun 2024; 15:8696. [PMID: 39379392 PMCID: PMC11461493 DOI: 10.1038/s41467-024-53135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
Pyroptosis, an immunogenic programmed cell death, could efficiently activate tumor immunogenicity and reprogram immunosuppressive microenvironment for boosting cancer immunotherapy. However, the overexpression of SLC7A11 promotes glutathione biosynthesis for maintaining redox balance and countering pyroptosis. Herein, we develop intermetallics modified with glucose oxidase (GOx) and soybean phospholipid (SP) as pyroptosis promoters (Pd2Sn@GOx-SP), that not only induce pyroptosis by cascade biocatalysis for remodeling tumor microenvironment and facilitating tumor cell immunogenicity, but also trigger disulfidptosis mediated by cystine accumulation to further promote tumor pyroptosis in female mice. Experiments and density functional theory calculations show that Pd2Sn nanorods with an intermediate size exhibit stronger photothermal and enzyme catalytic activity compared with the other three morphologies investigated. The peroxidase-mimic and oxidase-mimic activities of Pd2Sn cause potent reactive oxygen species (ROS) storms for triggering pyroptosis, which could be self-reinforced by photothermal effect, hydrogen peroxide supply accompanied by glycometabolism, and oxygen production from catalase-mimic activity of Pd2Sn. Moreover, the increase of NADP+/NADPH ratio induced by glucose starvation could pose excessive cystine accumulation and inhibit glutathione synthesis, which could cause disulfidptosis and further augment ROS-mediated pyroptosis, respectively. This two-pronged treatment strategy could represent an alternative therapeutic approach to expand anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Xinxin Wang
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China.
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Can Yu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, PR China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China.
| |
Collapse
|