1
|
Han D, Li A, Zhu L, Zhuang C, Zhao Q, Zou Y. Peptide inhibitors targeting Ras and Ras-associated protein-protein interactions. Eur J Med Chem 2024; 279:116878. [PMID: 39326269 DOI: 10.1016/j.ejmech.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Peptides represent attractive molecules for targeting protein-protein interactions, and peptide drug development has made great progress during the last decades. Ras protein, the most promising target in cancer therapy, is one of the major growth drivers in various cancers. Although many small molecule inhibitors have been reported to effectively target Ras protein and some inhibitors (such as MRTX849 and AMG 510) have been translated into clinical application, just a few peptide inhibitors have been reported. Here we summarize different types of peptide inhibitors, including monocyclic peptides, bicyclic peptides, stapled peptides, and proteomimetic inhibitors, developed in recent years; emphasize the limits and achievements; and discuss the outlook and challenges associated with future research in peptide inhibitors. This review aims to provide a reference for the discovery of Ras peptide inhibitors.
Collapse
Affiliation(s)
- Dan Han
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China; School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Anpeng Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China; 92805 Military Hospital, Qingdao, PR China
| | - Lie Zhu
- Department of Burn Plastic Surgery, The Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, PR China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| |
Collapse
|
2
|
Ding Y, Pedersen SS, Wang H, Xiang B, Wang Y, Yang Z, Gao Y, Morosan E, Jones MR, Xiao H, Ball ZT. Selective Macrocyclization of Unprotected Peptides with an Ex Situ Gaseous Linchpin Reagent. Angew Chem Int Ed Engl 2024; 63:e202405344. [PMID: 38753429 DOI: 10.1002/anie.202405344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 07/16/2024]
Abstract
Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride derived reagent that achieves amine-amine, amine-phenol, and amine-aniline crosslinking through a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal-mediated and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting-group strategies.
Collapse
Affiliation(s)
- Yuxuan Ding
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Simon S Pedersen
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Haofan Wang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Baorui Xiang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Yixian Wang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Zhi Yang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Yuxiang Gao
- Department of Physics and Astronomy, Rice University, Houston, Texas, 77005, United States
| | - Emilia Morosan
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas, 77005, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Han Xiao
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| |
Collapse
|
3
|
Wayment AX, Johnson NC, Moreno MR, Stewart C, Felix BM, Lambert I, Traynor SA, Nielson PM, Lofgreen GQ, Smith SL, Newton MP, Tretbar JW, Nygaard JM, Harrell KG, Kinghorn MJ, Michaelis DJ. Squaric esters as peptide stapling reagents. Tetrahedron Lett 2024; 140:155010. [PMID: 38736688 PMCID: PMC11087058 DOI: 10.1016/j.tetlet.2024.155010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
We report that squaric esters can serve as bifunctional reagents for selective peptide stapling reactions. Formation of the squaric amide staple occurs under mild conditions with amine-containing side chains. We show that short resin-bound peptides are readily stapled on solid phase and that stapling can occur at various relative positions along the peptide and with various amine tether lengths (e.g. Lysine, ornithine, etc). The squaric amide staples are stable to strong acid conditions used to cleave the stapled peptide from the resin and the stapled peptides show an increase in helicity as analyzed through circular dichroism.
Collapse
Affiliation(s)
- Adam X. Wayment
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Nye C. Johnson
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Christopher Stewart
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Braxton M. Felix
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Isaac Lambert
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Sarah A. Traynor
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - P. Michael Nielson
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Grant Q. Lofgreen
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Shannon L. Smith
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Madison P. Newton
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Jordan W. Tretbar
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joseph M.L. Nygaard
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Kylie G. Harrell
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Michael J. Kinghorn
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - David J. Michaelis
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
4
|
Li J, Ni H, Zhang W, Lai Z, Jin H, Zeng L, Cui S. A multicomponent reaction for modular assembly of indole-fused heterocycles. Chem Sci 2024; 15:5211-5217. [PMID: 38577354 PMCID: PMC10988590 DOI: 10.1039/d4sc00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
Indoles are privileged chemical entities in natural products and drug discovery. Indole-fused heterocycles, particularly seven-membered ones, have received increasing attention due to their distinctive chemical characteristics and wide spectrum of bioactivities. However, the synthetic access to these compounds is highly limited. Herein, we report a unique multicomponent reaction (MCR) for modular assembly of indole-fused seven-membered heterocycles. In this process, indole, formaldehyde and amino hydrochloride could assemble rapidly to yield indole-fused oxadiazepines, and another addition of sodium thiosulphate would furnish indole-fused thiadiazepines. The biological evaluation disclosed the promising anticancer activity of these compounds. Furthermore, this MCR could be applicable in the late-stage and selective modifications of peptides. Therefore, this work provides a powerful strategy for indole functionalization and valuable tool for construction of seven-membered heterocycles.
Collapse
Affiliation(s)
- Jiaming Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Hao Ni
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Weiwei Zhang
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Huimin Jin
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Linwei Zeng
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
- Jinhua Institute of Zhejiang University Jinhua Zhejiang Province 321299 China
| |
Collapse
|
5
|
Manicardi A, Theppawong A, Van Troys M, Madder A. Proximity-Induced Ligation and One-Pot Macrocyclization of 1,4-Diketone-Tagged Peptides Derived from 2,5-Disubstituted Furans upon Release from the Solid Support. Org Lett 2023; 25:6618-6622. [PMID: 37656900 PMCID: PMC10510716 DOI: 10.1021/acs.orglett.3c02289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 09/03/2023]
Abstract
1,4-Dione-containing peptides are generated during the cleavage of 2,5-disubstituted furan-containing systems. The generated electrophilic systems then react with α-effect nucleophiles, following a Paal-Knorr-like mechanism, for the generation of macrocyclic peptides, occurring after simple resuspension of the crude peptide in water. Conveniently, the in situ generation of the electrophile from a stable furan ring avoids the complications associated with the synthesis of carbonyl-containing peptides. Detailed investigation of the reaction characteristics was first performed on supramolecular coiled-coil systems.
Collapse
Affiliation(s)
- Alex Manicardi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Atiruj Theppawong
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Marleen Van Troys
- Department
of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Annemieke Madder
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Krajcovicova S, Spring DR. Tryptophan in Multicomponent Petasis Reactions for Peptide Stapling and Late-Stage Functionalisation. Angew Chem Int Ed Engl 2023; 62:e202307782. [PMID: 37389988 DOI: 10.1002/anie.202307782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/02/2023]
Abstract
Peptide stapling is a robust strategy for generating enzymatically stable, macrocyclic peptides. The incorporation of biologically relevant tags (such as cell-penetrating motifs or fluorescent dyes) into peptides, while preserving their binding interactions and enhancing their stability, is highly sought after. Despite the unique opportunities offered by tryptophan's indole scaffold for targeted functionalisation, its utilisation in peptide stapling has been limited as compared to other amino acids. Herein, we present an approach for peptide stapling using the tryptophan-mediated Petasis reaction. This method enables the synthesis of both stapled and labelled peptides and is applicable to both solution and solid-phase synthesis. Importantly, the use of the Petasis reaction in combination with tryptophan facilitates the formation of stapled peptides in a straightforward, multicomponent fashion, while circumventing the formation of undesired by-products. Furthermore, this approach allows for efficient and diverse late-stage peptide modifications, thereby enabling rapid production of numerous conjugates for biological and medicinal applications.
Collapse
Affiliation(s)
- Sona Krajcovicova
- Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
- Department of Organic Chemistry, Palacky University Olomouc, Tr. 17. Listopadu 12, 77900, Olomouc, Czech Republic
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
| |
Collapse
|
7
|
Lāce I, Bazzi S, Uranga J, Schirmacher A, Diederichsen U, Mata RA, Simeth NA. Modulating Secondary Structure Motifs Through Photo-Labile Peptide Staples. Chembiochem 2023; 24:e202300270. [PMID: 37216330 DOI: 10.1002/cbic.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Peptide-protein interactions (PPIs) are facilitated by the well-defined three-dimensional structure of bioactive peptides, interesting compounds for the development of new therapeutic agents. Their secondary structure and thus their propensity to engage in PPIs can be influenced by the introduction of peptide staples on the side chains. In particular, light-controlled staples based on azobenzene photoswitches and their structural influence on helical peptides have been studied extensively. In contrast, photolabile staples bearing photocages as a structural key motif, have mainly been used to block supramolecular interactions. Their influence on the secondary structure of the target peptide is under-investigated. Thus, in this study we use a combination of spectroscopic techniques and in silico simulations to systematically study a series of helical peptides with varying length of the photo-labile staple to obtain a detailed insight into the structure-property relationship in such photoresponsive biomolecules.
Collapse
Affiliation(s)
- Ilze Lāce
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Sophia Bazzi
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Jon Uranga
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Anastasiya Schirmacher
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
8
|
Walther R, Westermann LM, Carmali S, Jackson SE, Brötz-Oesterhelt H, Spring DR. Identification of macrocyclic peptides which activate bacterial cylindrical proteases. RSC Med Chem 2023; 14:1186-1191. [PMID: 37360394 PMCID: PMC10285738 DOI: 10.1039/d3md00136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
The caseinolytic protease complex ClpXP is an important house-keeping enzyme in prokaryotes charged with the removal and degradation of misfolded and aggregated proteins and performing regulatory proteolysis. Dysregulation of its function, particularly by inhibition or allosteric activation of the proteolytic core ClpP, has proven to be a promising strategy to reduce virulence and eradicate persistent bacterial infections. Here, we report a rational drug-design approach to identify macrocyclic peptides which increase proteolysis by ClpP. This work expands the understanding of ClpP dynamics and sheds light on the conformational control exerted by its binding partner, the chaperone ClpX, by means of a chemical approach. The identified macrocyclic peptide ligands may, in the future, serve as a starting point for the development of ClpP activators for antibacterial applications.
Collapse
Affiliation(s)
- Raoul Walther
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Linda M Westermann
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Bioactive Compounds, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Sheiliza Carmali
- School of Pharmacy, Queen's University Belfast BT9 7BL Belfast UK
| | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Bioactive Compounds, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
- Cluster of Excellence Controlling Microbes to Fight Infections Germany
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
9
|
Wang H, Chi L, Yu F, Dai H, Gao C, Si X, Wang Z, Liu L, Zheng J, Shan L, Liu H, Zhang Q. Annual review of KRAS inhibitors in 2022. Eur J Med Chem 2023; 249:115124. [PMID: 36680986 DOI: 10.1016/j.ejmech.2023.115124] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023]
Abstract
Kirsten rat sarcoma viral (KRAS) oncogene is the most commonly mutated isoform of RAS, accounting for 85% of RAS-driven human cancers. KRAS functioning as a signaling hub participates in multiple cellular signaling pathways and regulates a variety of critical processes such as cell proliferation, differentiation, growth, metabolism and migration. Over the past decades, KRAS oncoprotein has been considered as an "undruggable" target due to its smooth surface and high GTP/GDP affinity. The breakthrough in directly targeting G12C mutated-KRAS and recently approved covalent KRASG12C inhibitors sotorasib and adagrasib broke the myth of KRAS undruggable and confirmed the directly targeting KRAS as one of the most promising strategies for the treatment of cancers. Targeting KRASG12C successfully enriched the understanding of KRAS and brought opportunities for the development of inhibitors to directly target other KRAS mutations. With the stage now set for a new era in the treatment of KRAS-driven cancers, the development of KRAS inhibitors also enters a booming epoch. In this review, we overviewed the research progress of KRAS inhibitors with the potential to treat cancers covering articles published in 2022. The design strategies, discovery processes, structure-activity relationship (SAR) studies, cocrystal structure analysis as well as in vitro and in vivo activity were highlighted with the aim of providing updated sight to accelerate the further development of more potent inhibitors targeting various mutated-KRAS with favorable drug-like properties.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Honglin Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Lihong Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Zhang P, Walko M, Wilson A. Maleimide constrained BAD BH3 domain peptides as BCL-xL Inhibitors: A Versatile Approach to Rapidly Identify Sites Compatible with Peptide Constraining. Bioorg Med Chem Lett 2023; 87:129260. [PMID: 36997005 DOI: 10.1016/j.bmcl.2023.129260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Development of protein-protein interaction (PPI) inhibitors remains a major challenge. A significant number of PPIs are mediated by helical recognition epitopes; although peptides derived from such epitopes are attractive templates for inhibitor design, they may not readily adopt a bioactive conformation, are susceptible to proteolysis and rarely elicit optimal cell uptake properties. Constraining peptides has therefore emerged as a useful method to mitigate against these liabilities in the development of PPI inhibitors. Building on our recently reported method for constraining peptides by reaction of dibromomaleimide derivatives with two cysteines positioned in an i and i + 4 relationship, in this study, we showcase the power of the method for rapid identification of ideal constraining positions using a maleimide-staple scan based on a 19-mer sequence derived from the BAD BH3 domain. We found that the maleimide constraint had little or a detrimental impact on helicity and potency in most sequences, but successfully identified i, i + 4 positions where the maleimide constraint was tolerated. Analyses using modelling and molecular dynamics (MD) simulations revealed that the inactive constrained peptides likely lose interactions with the protein as a result of introducing the constraint.
Collapse
|
11
|
Chu X, Li B, Liu HY, Sun X, Yang X, He G, Zhou C, Xuan W, Liu SL, Chen G. Bioconjugation via Hetero-Selective Clamping of Two Different Amines with ortho-Phthalaldehyde. Angew Chem Int Ed Engl 2023; 62:e202212199. [PMID: 36398699 DOI: 10.1002/anie.202212199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Amino groups are common in both natural and synthetic compounds and offer a very attractive class of endogenous handles for bioconjugation. However, the ability to differentiate two types of amino groups and join them with high hetero-selectivity and efficiency in a complex setting remains elusive. Herein, we report a new method for bioconjugation via one-pot chemoselective clamping of two different amine nucleophiles using a simple ortho-phthalaldehyde (OPA) reagent. Various α-amino acids, aryl amines, and secondary amines can be crosslinked to the ϵ-amino side chain of lysine on peptides or proteins with high efficiency and hetero-selectivity. This method offers a simple and powerful means to crosslink small molecule drugs, imaging probes, peptides, proteins, carbohydrates, and even virus particles without any pre-functionalization.
Collapse
Affiliation(s)
- Xin Chu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaowei Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaochen Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gang He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Weimin Xuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China.,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
12
|
Fischer NH, Fumi E, Oliveira MT, Thulstrup PW, Diness F. Tuning peptide structure and function through fluorobenzene stapling. Chemistry 2021; 28:e202103788. [PMID: 34897848 DOI: 10.1002/chem.202103788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Cyclic peptides are promising next-generation therapeutics with improved biological stability and activity. A catalyst-free stapling method for cysteine-containing peptides was developed. This enables fine-tuning of the macrocycle by using the appropriate regioisomers of fluorobenzene linkers. Stapling was performed on the unprotected linear peptide or, more conveniently, directly on-resin after peptide synthesis. NMR spectroscopy and circular dichroism studies demonstrate that the type of stapling can tune the secondary structures of the peptides. The method was applied to a set of potential agonists for melanocortin receptors, generating a library of macrocyclic potent ligands with ortho , meta or para relationships between the thioethers. Their small but significant difference in potency and efficacy demonstrates how the method allows facile fine-tuning of macrocyclic peptides towards biological targets from the same linear precursor.
Collapse
Affiliation(s)
| | - Erik Fumi
- University of Copenhagen: Kobenhavns Universitet, Department of Chemistry, DENMARK
| | | | - Peter W Thulstrup
- University of Copenhagen: Kobenhavns Universitet, Department of Chemistry, DENMARK
| | - Frederik Diness
- University of Copenhagen, Department of Chemistry, Universitetsparken 5, DK2100, Copenhagen, DENMARK
| |
Collapse
|
13
|
Fumagalli G, Carbajo RJ, Nissink JWM, Tart J, Dou R, Thomas AP, Spring DR. Targeting a Novel KRAS Binding Site: Application of One-Component Stapling of Small (5-6-mer) Peptides. J Med Chem 2021; 64:17287-17303. [PMID: 34787423 DOI: 10.1021/acs.jmedchem.1c01334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS proteins are central in the proliferation of many types of cancer, but a general approach toward the identification of pan-mutant RAS inhibitors has remained unresolved. In this work, we describe the application of a binding pharmacophore identified from analysis of known RAS binding peptides to the design of novel peptides. Using a chemically divergent approach, we generated a library of small stapled peptides from which we identified compounds with weak binding activity. Exploration of structure-activity relationships (SARs) and optimization of these early compounds led to low-micromolar binders of KRAS that block nucleotide exchange.
Collapse
Affiliation(s)
- Gabriele Fumagalli
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K.,Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Jonathan Tart
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Rongxuan Dou
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Andrew P Thomas
- Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - David R Spring
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
14
|
Chu X, Shen L, Li B, Yang P, Du C, Wang X, He G, Messaoudi S, Chen G. Construction of Peptide Macrocycles via Palladium-Catalyzed Multiple S-Arylation: An Effective Strategy to Expand the Structural Diversity of Cross-Linkers. Org Lett 2021; 23:8001-8006. [PMID: 34582221 DOI: 10.1021/acs.orglett.1c03003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A simple and versatile method for macrocyclizing unprotected native peptides with a wide range of easily accessible diiodo and triiodoarene reagents via the palladium-catalyzed multiple S-arylation of cysteine residues is developed. Iodoarenes with different arene and heteroarene cores can be incorporated into peptide macrocycles of varied ring sizes and amino acid compositions with high efficiency and selectivity under mild conditions.
Collapse
Affiliation(s)
- Xin Chu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linhua Shen
- University Paris-Saclay, CNRS, BioCIS, 92296 Chat̂enay-Malabry, France
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chengzhuo Du
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoye Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Samir Messaoudi
- University Paris-Saclay, CNRS, BioCIS, 92296 Chat̂enay-Malabry, France
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid-Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021; 60:20301-20307. [PMID: 34272794 PMCID: PMC8457249 DOI: 10.1002/anie.202108885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Indexed: 11/11/2022]
Abstract
We introduce a new and highly efficient synthetic protocol towards multifunctional fluorescent cyclopeptides by solid-phase peptide macrocyclization via dipyrrin construction, with full scope of proteinogenic amino acids and different ring sizes. Various bicyclic peptides can be created by dipyrrin-based crosslinking and double dipyrrin-ring formation. The embedded dipyrrin can be either transformed to fluorescent BODIPY and then utilized as cancer-selective targeted protein imaging probe in vitro, or directly employed as a selective metal sensor in aqueous media. This work provides a valuable addition to the peptide macrocyclization toolbox, and a blueprint for the development of multifunctional dipyrrin linkers in cyclopeptides for a wide range of potential bioapplications.
Collapse
Affiliation(s)
- Yue Wu
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Ho‐Fai Chau
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Waygen Thor
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Kaitlin Hao Yi Chan
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
- Department of Applied Biology and Chemical TechnologyHong Kong Polytechnic UniversityHung HomHong Kong SARChina
| | - Xia Ma
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical TechnologyHong Kong Polytechnic UniversityHung HomHong Kong SARChina
| | - Nicholas J. Long
- Department of ChemistryImperial College London, Molecular Sciences Research HubLondonUK
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| |
Collapse
|
16
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid‐Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Wu
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Ho‐Fai Chau
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Waygen Thor
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Kaitlin Hao Yi Chan
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Xia Ma
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Nicholas J. Long
- Department of Chemistry Imperial College London, Molecular Sciences Research Hub London UK
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| |
Collapse
|
17
|
Wendt M, Bellavita R, Gerber A, Efrém NL, van Ramshorst T, Pearce NM, Davey PRJ, Everard I, Vazquez-Chantada M, Chiarparin E, Grieco P, Hennig S, Grossmann TN. Bicyclic β-Sheet Mimetics that Target the Transcriptional Coactivator β-Catenin and Inhibit Wnt Signaling. Angew Chem Int Ed Engl 2021; 60:13937-13944. [PMID: 33783110 PMCID: PMC8252567 DOI: 10.1002/anie.202102082] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Protein complexes are defined by the three-dimensional structure of participating binding partners. Knowledge about these structures can facilitate the design of peptidomimetics which have been applied for example, as inhibitors of protein-protein interactions (PPIs). Even though β-sheets participate widely in PPIs, they have only rarely served as the basis for peptidomimetic PPI inhibitors, in particular when addressing intracellular targets. Here, we present the structure-based design of β-sheet mimetics targeting the intracellular protein β-catenin, a central component of the Wnt signaling pathway. Based on a protein binding partner of β-catenin, a macrocyclic peptide was designed and its crystal structure in complex with β-catenin obtained. Using this structure, we designed a library of bicyclic β-sheet mimetics employing a late-stage diversification strategy. Several mimetics were identified that compete with transcription factor binding to β-catenin and inhibit Wnt signaling in cells. The presented design strategy can support the development of inhibitors for other β-sheet-mediated PPIs.
Collapse
Affiliation(s)
- Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rosa Bellavita
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alan Gerber
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nina-Louisa Efrém
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Thirza van Ramshorst
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nicholas M Pearce
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Paul R J Davey
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Isabel Everard
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Wendt M, Bellavita R, Gerber A, Efrém N, Ramshorst T, Pearce NM, Davey PRJ, Everard I, Vazquez‐Chantada M, Chiarparin E, Grieco P, Hennig S, Grossmann TN. Bicyclic β‐Sheet Mimetics that Target the Transcriptional Coactivator β‐Catenin and Inhibit Wnt Signaling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Rosa Bellavita
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Alan Gerber
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Nina‐Louisa Efrém
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Thirza Ramshorst
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Nicholas M. Pearce
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | | | - Isabel Everard
- Mechanistic Biology and Profiling Discovery Sciences, R&D AstraZeneca Cambridge UK
| | | | | | - Paolo Grieco
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical Sciences VU University Amsterdam Amsterdam The Netherlands
| |
Collapse
|
19
|
Arsenyan P, Lapcinska S. Straightforward Functionalization of Sulfur-Containing Peptides via 5- and 6-endo-dig Cyclization Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1343-5607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractWe present a simple and convenient method for the generation of sulfenyl electrophiles from peptides containing S–S or S–H bonds by employing N-chlorosuccinimide. The corresponding sulfenyl electrophiles are further utilized in 5- and 6-endo-dig cyclization reactions yielding indolizinium salts, indoles, benzo[b]furans, polyaromatic hydrocarbons (PAHs) and isocoumarins, as well as quinolinones bearing a glutathione moiety. PAH derivatives can be used as selective fluorescent dyes for the visualization of lipid droplets in living cells.
Collapse
|
20
|
Li B, Tang H, Turlik A, Wan Z, Xue X, Li L, Yang X, Li J, He G, Houk KN, Chen G. Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde. Angew Chem Int Ed Engl 2021; 60:6646-6652. [DOI: 10.1002/anie.202016267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Hong Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Aneta Turlik
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Zhao Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Song Xue
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation Institute of Materia Medica Chinese Academy of Medical Sciences Peking Union Medical College Beijing 100050 China
| | - Xiaoxiao Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation Institute of Materia Medica Chinese Academy of Medical Sciences Peking Union Medical College Beijing 100050 China
| | - Jiuyuan Li
- Asymchem Life Science Co., Ltd. TEDA Tianjin 300457 China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
21
|
Li B, Tang H, Turlik A, Wan Z, Xue X, Li L, Yang X, Li J, He G, Houk KN, Chen G. Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Hong Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Aneta Turlik
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Zhao Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Song Xue
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation Institute of Materia Medica Chinese Academy of Medical Sciences Peking Union Medical College Beijing 100050 China
| | - Xiaoxiao Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation Institute of Materia Medica Chinese Academy of Medical Sciences Peking Union Medical College Beijing 100050 China
| | - Jiuyuan Li
- Asymchem Life Science Co., Ltd. TEDA Tianjin 300457 China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
22
|
Rivera DG, Ojeda-Carralero GM, Reguera L, Van der Eycken EV. Peptide macrocyclization by transition metal catalysis. Chem Soc Rev 2020; 49:2039-2059. [PMID: 32142086 DOI: 10.1039/c9cs00366e] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptide macrocyclization has traditionally relied on lactam, lactone and disulfide bond-forming reactions that aim at introducing conformational constraints into small peptide sequences. With the advent of ruthenium-catalyzed ring-closing metathesis and copper-catalyzed alkyne-azide cycloaddition, peptide chemists embraced transition metal catalysis as a powerful macrocyclization tool with relevant applications in chemical biological and peptide drug discovery. This article provides a comprehensive overview of the reactivity and methodological diversification of metal-catalyzed peptide macrocyclization as a special class of late-stage peptide derivatization method. We report the evolution from classic palladium-catalyzed cross-coupling approaches to more modern oxidative versions based on C-H activation, heteroatom alkylation/arylation and annulation processes, in which aspects such as chemoselectivity and diversity generation at the ring-closing moiety became dominant over the last years. The transit from early cycloadditions and alkyne couplings as ring-closing steps to very recent 3d metal-catalyzed macrocyclization methods is highlighted. Similarly, the new trends in decarboxylative radical macrocyclizations and the interplay between photoredox and transition metal catalysis are included. This review charts future perspectives in the field hoping to encourage further progress and applications, while bringing attention to the countless possibilities available by diversifying not only the metal, but also the reactivity modes and tactics to bring peptide functional groups together and produce structurally diverse macrocycles.
Collapse
Affiliation(s)
- Daniel G Rivera
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Gerardo M Ojeda-Carralero
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Leslie Reguera
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
23
|
Morewood R, Nitsche C. A biocompatible stapling reaction for in situ generation of constrained peptides. Chem Sci 2020; 12:669-674. [PMID: 34163798 PMCID: PMC8178976 DOI: 10.1039/d0sc05125j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Constrained peptides are promising next-generation therapeutics. Peptide stapling is a particularly attractive technique to generate constrained macrocycles with improved biological activity and metabolic stability. We introduce a biocompatible two-component stapling approach based on the reagent 2,6-dicyanopyridine and a pseudo-cysteine amino acid. Stapling can proceed either directly on-resin during solid-phase synthesis or following isolation of the linear peptide. The stapling reaction is orthogonal to natural amino acid side chains and completes in aqueous solution at physiological pH, enabling its direct use in biochemical assays. We performed a small screening campaign of short peptides targeting the Zika virus protease NS2B-NS3, allowing the direct comparison of linear with in situ stapled peptides. A stapled screening hit showed over 28-fold stronger inhibition than its linear analogue, demonstrating the successful identification of constrained peptide inhibitors. A synthetically straightforward and biocompatible peptide-stapling strategy that can be used directly in biochemical assays to identify constrained enzyme inhibitors.![]()
Collapse
Affiliation(s)
- Richard Morewood
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
24
|
Bluntzer MTJ, O'Connell J, Baker TS, Michel J, Hulme AN. Designing stapled peptides to inhibit
protein‐protein
interactions: An analysis of successes in a rapidly changing field. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Julien Michel
- EaStChem School of Chemistry The University of Edinburgh Edinburgh UK
| | - Alison N. Hulme
- EaStChem School of Chemistry The University of Edinburgh Edinburgh UK
| |
Collapse
|
25
|
Walsh SJ, Iegre J, Seki H, Bargh JD, Sore HF, Parker JS, Carroll JS, Spring DR. General dual functionalisation of biomacromolecules via a cysteine bridging strategy. Org Biomol Chem 2020; 18:4224-4230. [PMID: 32432632 DOI: 10.1039/d0ob00907e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Site-selective modification of peptides and proteins has resulted in the development of a host of novel tools for the study of cellular systems or the synthesis of enhanced biotherapeutics. There is a need for useful methodologies that enable site-selective modification of native peptides or proteins, which is even more prevalent when modification of the biomolecule with multiple payloads is desired. Herein, we report the development of a novel dual functional divinylpyrimidine (dfDVP) platform that enables robust and modular modification of peptides, antibody fragments and antibodies. These biomacromolecules could be easily functionalised with a range of functional payloads (e.g. fluorescent dyes, cytotoxic warheads or cell-penetrating tags). Importantly, the dual functionalised peptides and antibodies demonstrated exquisite bioactivity in a range of in vitro cellular assays, showcasing the enhanced utility of these bioactive conjugates.
Collapse
Affiliation(s)
- Stephen J Walsh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Jessica Iegre
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Hikaru Seki
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jonathan D Bargh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Hannah F Sore
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jeremy S Parker
- Early Chemical Development, Pharmaceutical Development, R&D, AstraZeneca, Macclesfield, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
26
|
Ricardo MG, Ali AM, Plewka J, Surmiak E, Labuzek B, Neochoritis CG, Atmaj J, Skalniak L, Zhang R, Holak TA, Groves M, Rivera DG, Dömling A. Multicomponent Peptide Stapling as a Diversity‐Driven Tool for the Development of Inhibitors of Protein–Protein Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel G. Ricardo
- Faculty of Chemistry, Center for Natural Product ResearchUniversity of Havana Cuba
| | - Ameena M. Ali
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| | - Jacek Plewka
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Ewa Surmiak
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Beata Labuzek
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Constantinos G. Neochoritis
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
- Department of ChemistryUniversity of Crete Greece
| | - Jack Atmaj
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
- Faculty of ChemistryJagiellonian University Krakow Poland
| | | | - Ran Zhang
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| | - Tad A. Holak
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Matthew Groves
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| | - Daniel G. Rivera
- Faculty of Chemistry, Center for Natural Product ResearchUniversity of Havana Cuba
| | - Alexander Dömling
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| |
Collapse
|
27
|
Ricardo MG, Ali AM, Plewka J, Surmiak E, Labuzek B, Neochoritis CG, Atmaj J, Skalniak L, Zhang R, Holak TA, Groves M, Rivera DG, Dömling A. Multicomponent Peptide Stapling as a Diversity-Driven Tool for the Development of Inhibitors of Protein-Protein Interactions. Angew Chem Int Ed Engl 2020; 59:5235-5241. [PMID: 31944488 DOI: 10.1002/anie.201916257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Stapled peptides are chemical entities in-between biologics and small molecules, which have proven to be the solution to high affinity protein-protein interaction antagonism, while keeping control over pharmacological performance such as stability and membrane penetration. We demonstrate that the multicomponent reaction-based stapling is an effective strategy for the development of α-helical peptides with highly potent dual antagonistic action of MDM2 and MDMX binding p53. Such a potent inhibitory activity of p53-MDM2/X interactions was assessed by fluorescence polarization, microscale thermophoresis, and 2D NMR, while several cocrystal structures with MDM2 were obtained. This MCR stapling protocol proved efficient and versatile in terms of diversity generation at the staple, as evidenced by the incorporation of both exo- and endo-cyclic hydrophobic moieties at the side chain cross-linkers. The interaction of the Ugi-staple fragments with the target protein was demonstrated by crystallography.
Collapse
Affiliation(s)
- Manuel G Ricardo
- Faculty of Chemistry, Center for Natural Product Research, University of Havana, Cuba
| | - Ameena M Ali
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| | - Jacek Plewka
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Ewa Surmiak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Beata Labuzek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Constantinos G Neochoritis
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands.,Department of Chemistry, University of, Crete, Greece
| | - Jack Atmaj
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands.,Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Lukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Ran Zhang
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Matthew Groves
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| | - Daniel G Rivera
- Faculty of Chemistry, Center for Natural Product Research, University of Havana, Cuba
| | - Alexander Dömling
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| |
Collapse
|
28
|
Jeganathan S, Wendt M, Kiehstaller S, Brancaccio D, Kuepper A, Pospiech N, Carotenuto A, Novellino E, Hennig S, Grossmann TN. Constrained Peptides with Fine-Tuned Flexibility Inhibit NF-Y Transcription Factor Assembly. Angew Chem Int Ed Engl 2019; 58:17351-17358. [PMID: 31539186 PMCID: PMC6900064 DOI: 10.1002/anie.201907901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/19/2019] [Indexed: 12/17/2022]
Abstract
Protein complex formation depends on the interplay between preorganization and flexibility of the binding epitopes involved. The design of epitope mimetics typically focuses on stabilizing a particular bioactive conformation, often without considering conformational dynamics, which limits the potential of peptidomimetics against challenging targets such as transcription factors. We developed a peptide-derived inhibitor of the NF-Y transcription factor by first constraining the conformation of an epitope through hydrocarbon stapling and then fine-tuning its flexibility. In the initial set of constrained peptides, a single non-interacting α-methyl group was observed to have a detrimental effect on complex stability. Biophysical characterization revealed how this methyl group affects the conformation of the peptide in its bound state. Adaption of the methylation pattern resulted in a peptide that inhibits transcription factor assembly and subsequent recruitment to the target DNA.
Collapse
Affiliation(s)
- Sadasivam Jeganathan
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 1544227DortmundGermany
| | - Mathias Wendt
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 10831081HZAmsterdamThe Netherlands
| | - Sebastian Kiehstaller
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 10831081HZAmsterdamThe Netherlands
| | - Diego Brancaccio
- Department of PharmacyUniversity of Naples “Federico II”Via D. Montesano49, 80131NaplesItaly
| | - Arne Kuepper
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 1544227DortmundGermany
| | - Nicole Pospiech
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 1544227DortmundGermany
| | - Alfonso Carotenuto
- Department of PharmacyUniversity of Naples “Federico II”Via D. Montesano49, 80131NaplesItaly
| | - Ettore Novellino
- Department of PharmacyUniversity of Naples “Federico II”Via D. Montesano49, 80131NaplesItaly
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 1544227DortmundGermany
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 10831081HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 1544227DortmundGermany
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 10831081HZAmsterdamThe Netherlands
| |
Collapse
|
29
|
Jeganathan S, Wendt M, Kiehstaller S, Brancaccio D, Kuepper A, Pospiech N, Carotenuto A, Novellino E, Hennig S, Grossmann TN. Constrained Peptides with Fine‐Tuned Flexibility Inhibit NF‐Y Transcription Factor Assembly. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sadasivam Jeganathan
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Mathias Wendt
- Department of Chemistry and Pharmaceutical SciencesVU University Amsterdam De Boelelaan 1083 1081 HZ Amsterdam The Netherlands
| | - Sebastian Kiehstaller
- Department of Chemistry and Pharmaceutical SciencesVU University Amsterdam De Boelelaan 1083 1081 HZ Amsterdam The Netherlands
| | - Diego Brancaccio
- Department of PharmacyUniversity of Naples “Federico II” Via D. Montesano 49, 80131 Naples Italy
| | - Arne Kuepper
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Nicole Pospiech
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Alfonso Carotenuto
- Department of PharmacyUniversity of Naples “Federico II” Via D. Montesano 49, 80131 Naples Italy
| | - Ettore Novellino
- Department of PharmacyUniversity of Naples “Federico II” Via D. Montesano 49, 80131 Naples Italy
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15 44227 Dortmund Germany
- Department of Chemistry and Pharmaceutical SciencesVU University Amsterdam De Boelelaan 1083 1081 HZ Amsterdam The Netherlands
| | - Tom N. Grossmann
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15 44227 Dortmund Germany
- Department of Chemistry and Pharmaceutical SciencesVU University Amsterdam De Boelelaan 1083 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
30
|
Charoenpattarapreeda J, Tan YS, Iegre J, Walsh SJ, Fowler E, Eapen RS, Wu Y, Sore HF, Verma CS, Itzhaki L, Spring DR. Targeted covalent inhibitors of MDM2 using electrophile-bearing stapled peptides. Chem Commun (Camb) 2019; 55:7914-7917. [PMID: 31225847 DOI: 10.1039/c9cc04022f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we describe the development of a novel staple with an electrophilic warhead to enable the generation of stapled peptide covalent inhibitors of the p53-MDM2 protein-protein interaction (PPI). The peptide developed showed complete and selective covalent binding resulting in potent inhibition of p53-MDM2 PPI.
Collapse
Affiliation(s)
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Jessica Iegre
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Stephen J Walsh
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Elaine Fowler
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Rohan S Eapen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Yuteng Wu
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Hannah F Sore
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore and Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 673551, Singapore
| | - Laura Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| |
Collapse
|
31
|
Iegre J, Brear P, Baker DJ, Tan YS, Atkinson EL, Sore HF, O' Donovan DH, Verma CS, Hyvönen M, Spring DR. Efficient development of stable and highly functionalised peptides targeting the CK2α/CK2β protein-protein interaction. Chem Sci 2019; 10:5056-5063. [PMID: 31183056 PMCID: PMC6530537 DOI: 10.1039/c9sc00798a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
The discovery of new Protein-Protein Interaction (PPI) modulators is currently limited by the difficulties associated with the design and synthesis of selective small molecule inhibitors. Peptides are a potential solution for disrupting PPIs; however, they typically suffer from poor stability in vivo and limited tissue penetration hampering their wide spread use as new chemical biology tools and potential therapeutics. In this work, a combination of CuAAC chemistry, molecular modelling, X-ray crystallography, and biological validation allowed us to develop highly functionalised peptide PPI inhibitors of the protein CK2. The lead peptide, CAM7117, prevents the formation of the holoenzyme assembly in vitro, slows down proliferation, induces apoptosis in cancer cells and is stable in human serum. CAM7117 could aid the development of novel CK2 inhibitors acting at the interface and help to fully understand the intracellular pathways involving CK2. Importantly, the approach adopted herein could be applied to many PPI targets and has the potential to ease the study of PPIs by efficiently providing access to functionalised peptides.
Collapse
Affiliation(s)
- Jessica Iegre
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK .
| | - Paul Brear
- Department of Biochemistry , University of Cambridge , Tennis Court Road , CB2 1GA , Cambridge , UK .
| | - David J Baker
- Discovery Sciences , IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Yaw Sing Tan
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671
| | - Eleanor L Atkinson
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK .
| | - Hannah F Sore
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK .
| | | | - Chandra S Verma
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671
- Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | - Marko Hyvönen
- Department of Biochemistry , University of Cambridge , Tennis Court Road , CB2 1GA , Cambridge , UK .
| | - David R Spring
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK .
| |
Collapse
|
32
|
Reguera L, Rivera DG. Multicomponent Reaction Toolbox for Peptide Macrocyclization and Stapling. Chem Rev 2019; 119:9836-9860. [PMID: 30990310 DOI: 10.1021/acs.chemrev.8b00744] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, multicomponent reactions have experienced a renaissance as powerful peptide macrocyclization tools enabling the rapid creation of skeletal complexity and diversity with low synthetic cost. This review provides both a historical and modern overview of the development of the peptide multicomponent macrocyclization as a strategy capable to compete with the classic peptide cyclization methods in terms of chemical efficiency and synthetic scope. We prove that the utilization of multicomponent reactions for cyclizing peptides by either their termini or side chains provides a key advantage over those more established methods; that is, the possibility to explore the cyclic peptide chemotype space not only at the amino acid sequence but also at the ring-forming moiety. Owing to its multicomponent nature, this type of peptide cyclization process is well-suited to generate diversity at both the endo- and exo-cyclic fragments formed during the ring-closing step, which stands as a distinctive and useful characteristic for the creation and screening of cyclic peptide libraries. Examples of the novel multicomponent peptide stapling approach and heterocycle ring-forming macrocyclizations are included, along with multicomponent methods incorporating macrocyclization handles and the one-pot syntheses of macromulticyclic peptide cages. Interesting applications of this strategy in the field of drug discovery and chemical biology are provided.
Collapse
Affiliation(s)
- Leslie Reguera
- Center for Natural Product Research, Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba
| | - Daniel G Rivera
- Center for Natural Product Research, Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba
| |
Collapse
|