1
|
Sztandera K, Rodríguez-García JL, Ceña V. In Vivo Applications of Dendrimers: A Step toward the Future of Nanoparticle-Mediated Therapeutics. Pharmaceutics 2024; 16:439. [PMID: 38675101 PMCID: PMC11053723 DOI: 10.3390/pharmaceutics16040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Over the last few years, the development of nanotechnology has allowed for the synthesis of many different nanostructures with controlled sizes, shapes, and chemical properties, with dendrimers being the best-characterized of them. In this review, we present a succinct view of the structure and the synthetic procedures used for dendrimer synthesis, as well as the cellular uptake mechanisms used by these nanoparticles to gain access to the cell. In addition, the manuscript reviews the reported in vivo applications of dendrimers as drug carriers for drugs used in the treatment of cancer, neurodegenerative diseases, infections, and ocular diseases. The dendrimer-based formulations that have reached different phases of clinical trials, including safety and pharmacokinetic studies, or as delivery agents for therapeutic compounds are also presented. The continuous development of nanotechnology which makes it possible to produce increasingly sophisticated and complex dendrimers indicates that this fascinating family of nanoparticles has a wide potential in the pharmaceutical industry, especially for applications in drug delivery systems, and that the number of dendrimer-based compounds entering clinical trials will markedly increase during the coming years.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Valentín Ceña
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Vakili-Azghandi M, Mollazadeh S, Ghaemi A, Ramezani M, Alibolandi M. Dendrimer-based nanomedicines for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:317-347. [DOI: 10.1016/b978-0-443-18770-4.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Zhang P, Ye G, Xie G, Lv J, Zeng X, Jiang W. Research progress of nanomaterial drug delivery in tumor targeted therapy. Front Bioeng Biotechnol 2023; 11:1240529. [PMID: 37555076 PMCID: PMC10405625 DOI: 10.3389/fbioe.2023.1240529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Cancer is one of the most lethal diseases in human society, and its incidence is gradually increasing. However, the current tumor treatment often meets the problem of poor efficacy and big side effects. The unique physical and chemical properties of nanomaterials can target the delivery of drugs to tumors, which can improve the therapeutic effect while reducing the damage of drugs to normal cells. This makes nanomaterials become a hot topic in the field of biomedicine. This review summarizes the recent progress of nanomaterials in tumor targeted therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, China
| | - Guihua Ye
- Shanghai Ninth People’s Hospital Hainan Branch, Hainan Western Central Hospital, Danzhou, China
| | - Guofeng Xie
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin, China
| | - Xianhai Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, China
| | - Wei Jiang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Cao Y, Si J, Zheng M, Zhou Q, Ge Z. X-ray-responsive prodrugs and polymeric nanocarriers for multimodal cancer therapy. Chem Commun (Camb) 2023. [PMID: 37318285 DOI: 10.1039/d3cc01398g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Radiotherapy as one of the most important cancer treatment modalities has been widely used in the therapy of various cancers. The clinically used radiation (e.g. X-ray) for radiotherapy has the advantages of precise spatiotemporal controllability and deep tissue penetration. However, traditional radiotherapy is frequently limited by the high side effects and tumor hypoxia. The combination of radiotherapy and other cancer treatment modalities may overcome the disadvantages of radiotherapy and improve the final therapeutic efficacy. In recent years, X-ray-activable prodrugs and polymeric nanocarriers have been extensively explored to introduce other treatment modalities in the precise position during radiotherapy, which can reduce the side toxicity of the drugs and improve the combination therapeutic efficacy. In this review, we focus on recent advances in X-ray-activable prodrugs and polymeric nanocarriers to boost X-ray-based multimodal synergistic therapy with reduced toxicity. The design strategies of prodrugs and polymeric nanocarriers are highlighted. Finally, challenges and outlooks of X-ray-activable prodrugs and polymeric nanocarriers are discussed.
Collapse
Affiliation(s)
- Yufei Cao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Jiale Si
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Moujiang Zheng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
5
|
Han X, Zhao M, Xu R, Zou Y, Wang Y, Liang J, Jiang Q, Sun Y, Fan Y, Zhang X. Electrospun Hyaluronan Nanofiber Membrane Immobilizing Aromatic Doxorubicin as Therapeutic and Regenerative Biomaterial. Int J Mol Sci 2023; 24:ijms24087023. [PMID: 37108186 PMCID: PMC10138354 DOI: 10.3390/ijms24087023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Lesioned tissue requires synchronous control of disease and regeneration progression after surgery. It is necessary to develop therapeutic and regenerative scaffolds. Here, hyaluronic acid (HA) was esterified with benzyl groups to prepare hyaluronic acid derivative (HA-Bn) nanofibers via electrospinning. Electrospun membranes with average fiber diameters of 407.64 ± 124.8 nm (H400), 642.3 ± 228.76 nm (H600), and 841.09 ± 236.86 nm (H800) were obtained by adjusting the spinning parameters. These fibrous membranes had good biocompatibility, among which the H400 group could promote the proliferation and spread of L929 cells. Using the postoperative treatment of malignant skin melanoma as an example, the anticancer drug doxorubicin (DOX) was encapsulated in nanofibers via hybrid electrospinning. The UV spectroscopy of DOX-loaded nanofibers (HA-DOX) revealed that DOX was successfully encapsulated, and there was a π-π interaction between aromatic DOX and HA-Bn. The drug release profile confirmed the sustained release of about 90%, achieved within 7 days. In vitro cell experiments proved that the HA-DOX nanofiber had a considerable inhibitory effect on B16F10 cells. Therefore, the HA-Bn electrospun membrane could facilitate the potential regeneration of injured skin tissues and be incorporated with drugs to achieve therapeutic effects, offering a powerful approach to developing therapeutic and regenerative biomaterial.
Collapse
Affiliation(s)
- Xiaowen Han
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ruiling Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:953. [PMID: 36903831 PMCID: PMC10005089 DOI: 10.3390/nano13050953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ha L. Nguyen
- Department of Chemistry University of California—Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amr Amin
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
7
|
Mejlsøe SL, Christensen JB. Dendrimers in drug delivery. ADVANCED AND MODERN APPROACHES FOR DRUG DELIVERY 2023:357-387. [DOI: 10.1016/b978-0-323-91668-4.00005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Fabrication of amino acid conjugated polymeric micelles for controlled anticancer drug delivery using radiation and pH-stimuli-triggering systems. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Bargathulla I, Babu AA, Shanavas A, Vellaichamy E, Nasar AS. PEGylated bis-indolyl polyurethane dendrimers with anti-cancer activity as carriers for doxorubicin to treat lung cancer cells. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Ehudin MA, Golla U, Trivedi D, Potlakayala SD, Rudrabhatla SV, Desai D, Dovat S, Claxton D, Sharma A. Therapeutic Benefits of Selenium in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23147972. [PMID: 35887320 PMCID: PMC9323677 DOI: 10.3390/ijms23147972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Supplementing chemotherapy and radiotherapy with selenium has been shown to have benefits against various cancers. This approach has also been shown to alleviate the side effects associated with standard cancer therapies and improve the quality of life in patients. In addition, selenium levels in patients have been correlated with various cancers and have served as a diagnostic marker to track the efficiency of treatments or to determine whether these selenium levels cause or are a result of the disease. This concise review presents a survey of the selenium-based literature, with a focus on hematological malignancies, to demonstrate the significant impact of selenium in different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which impart its efficacious properties, are discussed. An outlook into the relationship between selenium and cancer is highlighted to guide future cancer therapy development.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Devnah Trivedi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Shobha D. Potlakayala
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Sairam V. Rudrabhatla
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
12
|
Sarkar K, Torregrossa-Allen SE, Elzey BD, Narayanan S, Langer MP, Durm GA, Won YY. Effect of Paclitaxel Stereochemistry on X-ray-Triggered Release of Paclitaxel from CaWO 4/Paclitaxel-Coloaded PEG-PLA Nanoparticles. Mol Pharm 2022; 19:2776-2794. [PMID: 35834797 DOI: 10.1021/acs.molpharmaceut.2c00148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For many locally advanced tumors, the chemotherapy-radiotherapy (CT-RT) combination ("chemoradiation") is currently the standard of care. Intratumoral (IT) CT-based chemoradiation has the potential to overcome the limitations of conventional systemic CT-RT (side effects). For maximizing the benefits of IT CT-RT, our laboratory has previously developed a radiation-controlled drug release formulation, in which anticancer drug paclitaxel (PTX) and radioluminescent CaWO4 (CWO) nanoparticles (NPs) are co-encapsulated with poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) block copolymers ("PEG-PLA/CWO/PTX NPs"). These PEG-PLA/CWO/PTX NPs enable radiation-controlled release of PTX and are capable of producing sustained therapeutic effects lasting for at least one month following a single IT injection. The present article focuses on discussing our recent finding about the effect of the stereochemical structure of PTX on the efficacy of this PEG-PLA/CWO/PTX NP formulation. Stereochemical differences in two different PTX compounds ("PTX-S" from Samyang Biopharmaceuticals and "PTX-B" from Biotang) were characterized by 2D heteronuclear/homonuclear NMR, Raman spectroscopy, and circular dichroism measurements. The difference in PTX stereochemistry was found to significantly influence their water solubility (WS); PTX-S (WS ≈ 4.69 μg/mL) is about 19 times more water soluble than PTX-B (WS ≈ 0.25 μg/mL). The two PTX compounds showed similar cancer cell-killing performances in vitro when used as free drugs. However, the subtle stereochemical difference significantly influenced their X-ray-triggered release kinetics from the PEG-PLA/CWO/PTX NPs; the more water-soluble PTX-S was released faster than the less water-soluble PTX-B. This difference was manifested in the IT pharmacokinetics and eventually in the survival percentages of test animals (mice) treated with PEG-PLA/CWO/PTX NPs + X-rays in an in vivo human tumor xenograft study; at short times (<1 month), concurrent PEG-PLA/CWO/PTX-S NPs produced a greater tumor-suppression effect, whereas PEG-PLA/CWO/PTX-B NPs had a longer-lasting radio-sensitizing effect. This study demonstrates the importance of the stereochemistry of a drug in a therapy based on a controlled release formulation.
Collapse
Affiliation(s)
- Kaustabh Sarkar
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Bennett D Elzey
- Purdue University Center of Cancer Research, West Lafayette, Indiana 47907, United States.,Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sanjeev Narayanan
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mark P Langer
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Gregory A Durm
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue University Center of Cancer Research, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Breaking photoswitch activation depth limit using ionising radiation stimuli adapted to clinical application. Nat Commun 2022; 13:4102. [PMID: 35835744 PMCID: PMC9283480 DOI: 10.1038/s41467-022-30917-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
Electromagnetic radiation-triggered therapeutic effect has attracted a great interest over the last 50 years. However, translation to clinical applications of photoactive molecular systems developed to date is dramatically limited, mainly because their activation requires excitation by low-energy photons from the ultraviolet to near infra-red range, preventing any activation deeper than few millimetres under the skin. Herein we conceive a strategy for photosensitive-system activation potentially adapted to biological tissues without any restriction in depth. High-energy stimuli, such as those employed for radiotherapy, are used to carry energy while molecular activation is provided by local energy conversion. This concept is applied to azobenzene, one of the most established photoswitches, to build a radioswitch. The radiation-responsive molecular system developed is used to trigger cytotoxic effect on cancer cells upon gamma-ray irradiation. This breakthrough activation concept is expected to expand the scope of applications of photosensitive systems and paves the way towards the development of original therapeutic approaches.
Collapse
|
14
|
Preparation and application of pH-responsive drug delivery systems. J Control Release 2022; 348:206-238. [PMID: 35660634 DOI: 10.1016/j.jconrel.2022.05.056] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/08/2023]
Abstract
Microenvironment-responsive drug delivery systems (DDSs) can achieve targeted drug delivery, reduce drug side effects and improve drug efficacies. Among them, pH-responsive DDSs have gained popularity since the pH in the diseased tissues such as cancer, bacterial infection and inflammation differs from a physiological pH of 7.4 and this difference could be harnessed for DDSs to release encapsulated drugs specifically to these diseased tissues. A variety of synthetic approaches have been developed to prepare pH-sensitive DDSs, including introduction of a variety of pH-sensitive chemical bonds or protonated/deprotonated chemical groups. A myriad of nano DDSs have been explored to be pH-responsive, including liposomes, micelles, hydrogels, dendritic macromolecules and organic-inorganic hybrid nanoparticles, and micron level microspheres. The prodrugs from drug-loaded pH-sensitive nano DDSs have been applied in research on anticancer therapy and diagnosis of cancer, inflammation, antibacterial infection, and neurological diseases. We have systematically summarized synthesis strategies of pH-stimulating DDSs, illustrated commonly used and recently developed nanocarriers for these DDSs and covered their potential in different biomedical applications, which may spark new ideas for the development and application of pH-sensitive nano DDSs.
Collapse
|
15
|
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022; 51:4996-5041. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Piantino M, Nakamoto M, Matsusaki M. Development of Highly Sensitive Molecular Blocks at Cancer Microenvironment for Rapid Cancer Cell Death. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5209-5217. [PMID: 34792367 DOI: 10.1021/acs.langmuir.1c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Improving the efficiency and selectivity of drug delivery systems (DDS) is still a major challenge in cancer therapy. Recently, the low transport efficiency of anticancer drugs using a nanocarrier due to the elimination of the carriers from the blood circulation and the blocking by tumor stromal tissues surrounding cancer cells has been reported. Furthermore, multiple steps are required for their intracellular delivery. We recently reported a cancer microenvironment-targeting therapy termed molecular block (MB) which induced cancer cell death by a pH-driven self-aggregation and cell membrane disruption at tumor microenvironment. The MB were designed to disperse as nanoscale assemblies in the bloodstream for efficient circulation and penetration through the stromal tissues. When the MBs reach the tumor site, they self-assembled in microscale aggregates on the cancer cell surfaces in response to the cancer microenvironment and induced cancer cell death. However, in vivo study in mice showed that the MB could not efficiently accumulate at the tumor site because slight hydrophobic aggregations in the bloodstream might potentially be the reason for the off-target accumulation. In this study, we optimize the hydrophilic-hydrophobic balance of MB for avoiding the off-target accumulation and for gaining higher sensitivity to the cancer microenvironment at weak acid condition. Copper-free click reaction with propiolic acid was used to reduce the hydrophobicity of the main chain and obtain higher responsive MB at cancer microenvironment for rapid cell killing. The optimized MB can be considered as a promising approach for an improved cancer cell targeting.
Collapse
Affiliation(s)
- Marie Piantino
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 Japan
| |
Collapse
|
17
|
Drug-dendrimer complexes and conjugates: Detailed furtherance through theory and experiments. Adv Colloid Interface Sci 2022; 303:102639. [PMID: 35339862 DOI: 10.1016/j.cis.2022.102639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
Abstract
Dendritic nanovectors-based drug delivery has gained significant attention in the past couple of decades. Dendrimers play a crucial role in deciding the solubility of sparingly soluble drug molecules and help in improving pharmacokinetics. A few important steps in drug delivery through dendrimers, such as drug encapsulation, formulation, and target-specific delivery, play an important role in deciding the fate of a drug molecule. It is also of prime importance to understand the interactions between a drug molecule and dendrimers at atomistic levels to decode the mechanism of action of drug-dendrimer complexes and their reliability in terms of drug delivery. Colossal progress in current experimental and computational approaches in the field has resulted in a vast amount of data that needs to be curated to be further implemented efficiently. Improved computational power has led to greater accuracy and prompt predictions of properties of drug-dendrimer complexes and their mechanism of action. The current review encapsulates the pioneering work in the field, experimental achievements in terms of drug delivery, and newer computational techniques employed in the advancement of the field.
Collapse
|
18
|
Liang S, Wang M, Wang J, Chen G. Red-Blood-Cell-Membrane-Coated Metal-Drug Nanoparticles for Enhanced Chemotherapy. Chembiochem 2021; 22:3184-3189. [PMID: 34468067 DOI: 10.1002/cbic.202100313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Indexed: 12/11/2022]
Abstract
To overcome high toxicity, low bioavailability and poor water solubility of chemotherapeutics, a variety of drug carriers have been designed. However, most carriers are severely limited by low drug loading capacity and adverse side effects. Here, a new type of metal-drug nanoparticles (MDNs) was designed and synthesized. The MDNs self-assembled with Fe(III) ions and drug molecules through coordination, resulting in nanoparticles with high drug loading. To assist systemic delivery and prolong circulation time, the obtained MDNs were camouflaged with red blood cell (RBCs) membranes (RBCs@Fe-DOX MDNs) to improve their stability and dispersity. The RBCs@Fe-DOX MDNs presented pH-responsive release functionalities, resulting in drug release accelerated in acidic tumor microenvironments. The outstanding in vitro and in vivo antitumor therapeutic outcome was realized by RBCs@Fe-DOX MDNs. This study provides an innovative design guideline for chemotherapy and demonstrates the great capacity of nanomaterials in anticancer treatments.
Collapse
Affiliation(s)
- Shuya Liang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Street, Qingdao, Shandong, 266555, P. R. China
| | - Miaomiao Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Street, Qingdao, Shandong, 266555, P. R. China
| | - Jun Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Street, Qingdao, Shandong, 266555, P. R. China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Street, Qingdao, Shandong, 266555, P. R. China
| |
Collapse
|
19
|
Tuning the phase transition temperature of hybrid Span60-L64 thermoresponsive niosomes: Insights from fluorescence and Raman spectroscopy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
21
|
Li M, Ling L, Xia Q, Li X. A reduction-responsive drug delivery with improved stability: disulfide crosslinked micelles of small amiphiphilic molecules. RSC Adv 2021; 11:12757-12770. [PMID: 35423790 PMCID: PMC8697188 DOI: 10.1039/d1ra00079a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/14/2021] [Indexed: 01/02/2023] Open
Abstract
Micelles self-assembled from small amphiphilic molecules are unstable in biological fluids, and thus are poor drug carriers. In contrast, amphiphilic polymer micelles can encapsulate hydrophobic drugs in their core to greatly enhance their aqueous solubility and extend their retention time in blood circulation owing to their hydrophilic shell. However, the major disadvantages of conventional polymer micelles are the heterogeneity of the amphiphilic polymer structure and premature drug leakage. Thus, herein, to address these shortcomings, disulfide crosslinked micelles composed of a small amphiphilic molecule, di-lipoyl-glycerophosphorylcholine (di-LA-PC), were developed as redox-responsive drug carriers. Specifically, di-LA-PC was synthesized and self-assembled to form crosslinked micelles under catalysis by dithiothreitol. The disulfide crosslinked micelles maintained high stability in a simulated physiological environment, but rapidly disassembled under reductive conditions. Furthermore, paclitaxel (PTX), as a model drug, was encapsulated in the core of the crosslinked micelles with a high loading content of 8.13%. The in vitro release studies indicated that over 80% of PTX was released from the micelles in the reductive environment, whereas less than 20% PTX was released without reduction in the 68 h test. Benefiting from their nanoscale characteristics, the PTX-loaded micelles showed efficient cellular internalization and effectively induced the death of cancer cells, as revealed in the MTT, apoptosis and cell cycle tests. Moreover, pharmacokinetic studies demonstrated that the crosslinked micelles prolonged the circulation of the incorporated PTX in the bloodstream and increased its accumulation in the tumor tissue via the EPR effect. Finally, the PTX-loaded micelles displayed prominent in vivo anti-tumor activity in a 4T1 xenograft tumor model. In summary, the di-LA-PC crosslinked micelle platform possesses excellent stability, high loading capacity and reduction-responsive release profile, which may have applications in the delivery of PTX and other anti-cancer drugs.
Collapse
Affiliation(s)
- Man Li
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 214122 China
| | - Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 214122 China
| | - Qing Xia
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 214122 China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 214122 China
| |
Collapse
|
22
|
Anbazhagan R, Muthusamy G, Krishnamoorthi R, Kumaresan S, Rajendra Prasad N, Lai JY, Yang JM, Tsai HC. PAMAM G4.5 dendrimers for targeted delivery of ferulic acid and paclitaxel to overcome P-glycoprotein-mediated multidrug resistance. Biotechnol Bioeng 2020; 118:1213-1223. [PMID: 33289076 DOI: 10.1002/bit.27645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 12/24/2022]
Abstract
In this study, we prepared ferulic acid (FA) and paclitaxel (PTX) co-loaded polyamidoamine (PAMAM) dendrimers conjugated with arginyl-glycyl-aspartic acid (RGD) to overcome P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). FA was released in greater extent (80%) from the outer layer of the dendrimers compared with PTX (70%) from the interior of the dendrimers. FA improved intracellular availability of PTX via P-gp modulation in drug-resistant cells. In vitro drug uptake data show higher PTX delivery with RGD-PAMAM-FP than with PAMAM-FP in drug resistant KB CH-R 8-5 cell lines. This indicates that RGD facilitates intracellular PTX accumulation through active targeting in multidrug-resistant KB CH-R 8-5 cells. The terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick-end labeling assay data and membrane potential analysis in mitochondria confirm the enhanced anticancer potential of RGD-PAMAM-FP nanoaggregates in drug-resistant cells. We also confirmed by the increased protein levels of proapoptotic factors such as caspase 3, caspase 9, p53, and Bax after treatment with RGD-PAMAM-FP nanoaggregates and also downregulates antiapoptotic factors. Hence, FA-PTX co-loaded, RGD-functionalized PAMAM G4.5 dendrimers may be considered as an effective therapeutic strategy to induce apoptosis in P-gp-overexpressing, multidrug-resistant cells.
Collapse
Affiliation(s)
- Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC
| | - Ganesan Muthusamy
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC.,Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Rajakumari Krishnamoorthi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC
| | - Swedha Kumaresan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC.,Department of Chemistry, Women's Christian College, Chennai, Tamil Nadu, India
| | - Nagarajan Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Tao-Yuan, Taiwan, ROC
| | - Jen-Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Department of General Dentistry, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Tao-Yuan, Taiwan, ROC
| |
Collapse
|
23
|
Sharma A, Liaw K, Sharma R, Spriggs T, Appiani La Rosa S, Kannan S, Kannan RM. Dendrimer-Mediated Targeted Delivery of Rapamycin to Tumor-Associated Macrophages Improves Systemic Treatment of Glioblastoma. Biomacromolecules 2020; 21:5148-5161. [PMID: 33112134 DOI: 10.1021/acs.biomac.0c01270] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma exhibits high mortality rates due to challenges with drug delivery to the brain and into solid tumors. This two-pronged barrier necessitates high doses of systemic therapies, resulting in significant off-target toxicities. Recently, dendrimer-nanomedicines (without ligands) have shown promise for targeting specific cells in brain tumors from systemic circulation, for improved efficacy and amelioration of systemic toxicities. A dendrimer-rapamycin conjugate (D-Rapa) is presented here that specifically targets tumor-associated macrophages (TAMs) in glioblastoma from systemic administration. D-Rapa improves suppression of pro-tumor expression in activated TAMs and antiproliferative properties of rapamycin in glioma cells in vitro. In vivo, D-Rapa localizes specifically within TAMs, acting as depots to release rapamycin into the tumor microenvironment. This targeted delivery strategy yields improved reduction in tumor burden and systemic toxicities in a challenging, clinically relevant orthotopic syngeneic model of glioblastoma, demonstrating the significant potential of dendrimers as targeted immunotherapies for improving glioblastoma treatment, still an unmet need.
Collapse
Affiliation(s)
- Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Talis Spriggs
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Santiago Appiani La Rosa
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
| |
Collapse
|
24
|
Zhang L, Zhang S, Xu J, Li Y, He J, Yang Y, Huynh T, Ni P, Duan G, Yang Z, Zhou R. Low-Dose X-ray-Responsive Diselenide Nanocarriers for Effective Delivery of Anticancer Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43398-43407. [PMID: 33003260 DOI: 10.1021/acsami.0c11627] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
X-ray-responsive nanocarriers for anticancer drug delivery have shown great promise for enhancing the efficacy of chemoradiotherapy. A critical challenge remains for development of such radiation-controlled drug delivery systems (DDSs), which is to minimize the required X-ray dose for triggering the cargo release. Herein, we design and fabricate an effective DDS based on diselenide block copolymers (as nanocarrier), which can be triggered to release their cargo with a reduced radiation dose of 2 Gy due to their sensitivity to both X-ray and the high level of reactive oxygen species (ROS) in the microenvironment of cancer cells. The underlying molecular mechanism is further illustrated by proton nuclear magnetic resonance (1H NMR) experiments and density functional theory (DFT) calculations. In vivo experiments on tumor-bearing mice validated that the loaded drugs are effectively delivered to the tumor site and exert remarkable antitumor effects (minimum tumor volume/weight) along with X-ray. Furthermore, the diselenide nanocarriers exhibit no noticeable cytotoxicity. These findings provide new insights for the de novo design of radiation-controlled DDSs for cancer chemoradiotherapy.
Collapse
Affiliation(s)
- Lianxue Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shitong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Youyun Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China
| | - Ying Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Tien Huynh
- Computational Biology Center, IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Computational Biology Center, IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
25
|
Therapeutic Apheresis, Circulating PLD, and Mucocutaneous Toxicity: Our Clinical Experience through Four Years. Pharmaceutics 2020; 12:pharmaceutics12100940. [PMID: 33008072 PMCID: PMC7600532 DOI: 10.3390/pharmaceutics12100940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer treatment has been greatly improved by the combined use of targeted therapies and novel biotechnological methods. Regarding the former, pegylated liposomal doxorubicin (PLD) has a preferential accumulation within cancer tumors, thus having lower toxicity on healthy cells. PLD has been implemented in the targeted treatment of sarcoma, ovarian, breast, and lung cancer. In comparison with conventional doxorubicin, PLD has lower cardiotoxicity and hematotoxicity; however, PLD can induce mucositis and palmo-plantar erythrodysesthesia (PPE, hand-foot syndrome), which limits its use. Therapeutical apheresis is a clinically proven solution against early PLD toxicity without hindering the efficacy of the treatment. The present review summarizes the pharmacokinetics and pharmacodynamics of PLD and the beneficial effects of extracorporeal apheresis on the incidence of PPE during chemoradiotherapy in cancer patients.
Collapse
|
26
|
Li Q, Liu J, Fan H, Shi L, Deng Y, Zhao L, Xiang M, Xu Y, Jiang X, Wang G, Wang L, Wang Z. IDO-inhibitor potentiated immunogenic chemotherapy abolishes primary tumor growth and eradicates metastatic lesions by targeting distinct compartments within tumor microenvironment. Biomaterials 2020; 269:120388. [PMID: 33172606 DOI: 10.1016/j.biomaterials.2020.120388] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Immunogenic chemotherapy (IC) is a type of chemotherapy where certain chemodrugs induce immunogenic cancer cell death (ICD), which in turn arouses T cell antitumor immunity. However, IC concurrently upregulates a key immune suppressor, indoleamine-2,3-dioxygenase (IDO), in both cancer cells and immune cells. IDO-mediated immunosuppression significantly offsets IC's therapeutic benefits in cancer patients, suggesting a necessity of combination with IDO inhibitors. Here, we report an enzyme-, pH-, and redox-triple-sensitive nanosystem using mesoporous silica nanoparticles (MSNs) as a core encapsulating doxorubicin (DOX, an immunogenic chemodrug); the core is coated with a shell (β-CD-PEI/Ge1MT) for co-delivering 1-methyl-D-tryptophan (1 MT, an IDO inhibitor). By using these responsivenesses sequentially triggering the release of 1 MT into tumor extracellular compartment and DOX into intracellular endo/lysosomal compartment, this nanosystem (DOX@GMTMSNs) precisely delivers the drugs to their target cells residing in different compartments. Released 1 MT uptake by IDO-expressing dendritic cells (DCs) and cancer cells suppresses IDO activity, reducing immunosuppressive Tregs' presence; DOX unloaded within cancer cells induces ICD, promoting effector T-cell infiltration. In two preclinical cancer models, DOX@GMTMSNs potentiate both tumor local and systemic antitumor immunity, suppressing primary tumor growth by 78% with an 83% reduction in metastatic foci, as well as extending animal survival, thus strongly demonstrating DOX@ GMTMSNs' clinical translational potential.
Collapse
Affiliation(s)
- Qilin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiling Fan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Zhao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengxi Xiang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunruo Xu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
27
|
Skwarecki AS, Nowak MG, Milewska MJ. Synthetic strategies in construction of organic macromolecular carrier-drug conjugates. Org Biomol Chem 2020; 18:5764-5783. [PMID: 32677650 DOI: 10.1039/d0ob01101k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many metabolic inhibitors, considered potential antimicrobial or anticancer drug candidates, exhibit very limited ability to cross the biological membranes of target cells. The restricted cellular penetration of those molecules is often due to their highhydrophilicity. One of the possible solutions to this problem is a conjugation of an inhibitor with a molecular organic nanocarrier. The conjugate thus formed should be able to penetrate the membrane(s) by direct translocation, endocytosis or active transport mechanisms and once internalized, the active component could reach its intracellular target, either after release from the conjugate or in an intact form. Several such nanocarriers have been proposed so far, including macromolecular systems, carbon nanotubes and dendrimers. Herein, we present a comprehensive review of the current status of rational design and synthesis of macromolecular organic nanocarrier-drug conjugates, with special attention focused on the mode of coupling of a nanocarrier moiety with a "cargo" molecule through linking fragments of non-cleavable or cleavable type.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Michał G Nowak
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
28
|
Wu SY, Chou HY, Tsai HC, Anbazhagan R, Yuh CH, Yang JM, Chang YH. Amino acid-modified PAMAM dendritic nanocarriers as effective chemotherapeutic drug vehicles in cancer treatment: a study using zebrafish as a cancer model. RSC Adv 2020; 10:20682-20690. [PMID: 35517745 PMCID: PMC9054295 DOI: 10.1039/d0ra01589j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
The use of nanomaterials for drug delivery offers many advantages including the targeted delivery of drugs and their controlled release. Nonetheless, entry into the target cells remains a challenge for many nanomaterials used for drug delivery. Moreover, cellular uptake limits the therapeutic efficiency of many anticancer drugs. An important goal is to increase the specific accumulation of these nanoparticles (NPs) at the desired cancerous tissues. Notably, cancer cells show a high demand for some amino acids and we have used this knowledge to develop novel carrier systems. In this study, drug carriers were produced by the conjugation of multiple amino acids such as l-histidine (H) and l-cysteine (C) or single amino acids such as only H with the G4.5 dendrimers (G) to produce GHC aggregates and GH NP carriers, respectively. Doxorubicin was loaded into the G4.5, GH, and GHC dendrimers (G/DOX, GH/DOX and GHC/DOX, respectively) and the release mechanism was demonstrated at pH 7.4 and pH 5.0. GH/DOX and GHC/DOX showed better stability under physiological conditions than the dendrimer alone (G/DOX). GH/DOX and GHC/DOX exhibited higher inhibition of HeLa cell proliferation in in vitro and in vivo studies in zebrafish, confirming the early release of DOX by disrupting the endosomal membrane and triggering the destabilization of carriers at a lower pH of 5.0.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University Taichung Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, LotungPoh-Ai Hospital Yilan Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, LotungPoh-Ai Hospital Yilan 265 Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University Taichung 41354 Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University Taipei 110 Taiwan
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei Taiwan +886-2-27303625 +886-984252998
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology Taipei Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei Taiwan +886-2-27303625 +886-984252998
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology Taipei Taiwan
| | - Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei Taiwan +886-2-27303625 +886-984252998
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology Taipei Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes Zhunan Miaoli Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University Hsinchu Taiwan
- Department of Biological Science and Technology, National Chiao Tung University Hsinchu Taiwan
| | - Jen Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University Tao-Yuan Taiwan +886-3-2118800-529
- Department of General Dentistry, Chang Gung Memorial Hospital Tao-Yuan, 333 Taiwan
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital Tao-Yuan, 333 Taiwan
| |
Collapse
|
29
|
Lin B, Zheng C, Zhu Q, Xie F. Surface-induced phase transitions in thin films of dendrimer block copolymers. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The phase morphologies and phase transitions of dendrimer block copolymer thin films confined between two homogeneous, planar hard substrates had been investigated by a three-dimensional real space self-consistent field theory (SCFT). From the perspectives of property and strength of the preferential substrate, when the film system confined within neutral substrates, the thinner film was easier to take the undulated and perpendicular cylinder phases. For the attractive preference of the substrate on block segment A, the polymer films tended to take the surface-wetting structures that was composed by block segment A. On the contrary, for the repulsive preference of the substrate on block segment A, a phase transition of cylinder-lamellae could be observed increasing with the relative surface strength of the preferential substrate.
Collapse
Affiliation(s)
- Bo Lin
- School of Chemistry and Materials Engineering, Huizhou University , Guangdong 516007 , China
- Glorious Sun Guangdong School of Fashion, Huizhou University , Guangdong 516007 , China
| | - Chen Zheng
- School of Chemistry and Materials Engineering, Huizhou University , Guangdong 516007 , China
- Glorious Sun Guangdong School of Fashion, Huizhou University , Guangdong 516007 , China
| | - Qingying Zhu
- School of Chemistry and Materials Engineering, Huizhou University , Guangdong 516007 , China
| | - Fang Xie
- School of Chemistry and Materials Engineering, Huizhou University , Guangdong 516007 , China
| |
Collapse
|
30
|
Carvalho MR, Reis RL, Oliveira JM. Dendrimer nanoparticles for colorectal cancer applications. J Mater Chem B 2020; 8:1128-1138. [PMID: 31971528 DOI: 10.1039/c9tb02289a] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer nanotechnology is a prolific field of research, where nanotools are employed to diagnose and treat cancer with unprecedented precision. Targeted drug delivery is fundamental for more efficient cancer treatments. For this, nanoparticles have been extensively used during the past few years in order to improve the specificity, selectivity and controlled release of drug delivery. It holds potential in minimizing systemic toxicity through the development of functionalized particles for targeted treatment. Among all the type of nanoparticles, dendrimers display several advantages, which make them ideal candidates for improved and targeted drug delivery in cancer research. Dendrimers can transport large amounts of drug into specific areas. In addition, they can be employed for monitoring the progress of the treatment process, with an unprecedented theranostic capability. Special emphasis is given to colorectal cancer and to the preferred employed strategies for producing drug-loaded/functionalized NPs for cancer therapy in the past few years.
Collapse
Affiliation(s)
- M R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - J M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
31
|
Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev 2020; 163-164:98-124. [PMID: 32681862 DOI: 10.1016/j.addr.2020.07.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hyperthermia has demonstrated clinical success in improving the efficacy of both chemo- and radio-therapy in solid tumors. Pre-clinical and clinical research studies have demonstrated that targeted hyperthermia can increase tumor blood flow and increase the perfused fraction of the tumor in a temperature and time dependent manner. Changes in tumor blood circulation can produce significant physiological changes including enhanced vascular permeability, increased oxygenation, decreased interstitial fluid pressure, and reestablishment of normal physiological pH conditions. These alterations in tumor physiology can positively impact both small molecule and nanomedicine chemotherapy accumulation and distribution within the tumor, as well as the fraction of the tumor susceptible to radiation therapy. Hyperthermia can trigger drug release from thermosensitive formulations and further improve the accumulation, distribution, and efficacy of chemotherapy.
Collapse
|
32
|
Chen PC, Yii D, Tsai HC, Parasuraman VR, Prasannan A, Kao CY, Lai JY. Fabrication of branched polyethylenimin/alginic acid/poly(cyclohexane-1,4-diyl acetone dimethylene ketal as a nano size carrier for controlled release of 5-fluorouracil. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Wang J, Li D, Fan Y, Shi M, Yang Y, Wang L, Peng Y, Shen M, Shi X. Core-shell tecto dendrimers formed via host-guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery. NANOSCALE 2019; 11:22343-22350. [PMID: 31728477 DOI: 10.1039/c9nr08309j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core-shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host-guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs.
Collapse
Affiliation(s)
- Jianhong Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Darge HF, Andrgie AT, Hanurry EY, Birhan YS, Mekonnen TW, Chou HY, Hsu WH, Lai JY, Lin SY, Tsai HC. Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy. Int J Pharm 2019; 572:118799. [PMID: 31678386 DOI: 10.1016/j.ijpharm.2019.118799] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 02/01/2023]
Abstract
In a malignant tumor, overexpression of pro-angiogenic factors like vascular endothelial growth factor (VEGF) provokes the production of pathologic vascular networks characterized by leaky, chaotically organized, immature, thin-walled, and ill-perfused. As a result, hostile tumor environment would be developed and profoundly hinders anti-cancer drug activities and fuels tumor progression. In this study, we develop a strategy of sequential sustain release of anti-angiogenic drug, Bevacizumab (BVZ), and anti-cancer drug, Doxorubicin (DOX), using poly (d, l-Lactide)- Poly (ethylene glycol) -Poly (d, l-Lactide) (PDLLA-PEG-PDLLA) hydrogel as a local delivery system. The release profiles of the drugs from the hydrogel were investigated in vitro which confirmed that relatively rapid release of BVZ (73.56 ± 1.39%) followed by Dox (61.21 ± 0.62%) at pH 6.5 for prolonged period. The in vitro cytotoxicity test revealed that the copolymer exhibited negligible cytotoxicity up to 2.5 mg ml-1 concentration on HaCaT and HeLa cells. Likeways, the in vitro degradation of the copolymer showed 41.63 ± 2.62% and 73.25 ± 4.36% weight loss within 6 weeks at pH 7.4 and 6.5, respectively. After a single intratumoral injection of the drug-encapsulated hydrogel on Hela xenograft nude, hydrogel co-loaded with BVZ and Dox displayed the highest tumor suppression efficacy for up to 36 days with no noticeable damage on vital organs. Therefore, localized co-delivery of anti-angiogenic drug and anti-cancer drug by hydrogel system may be a promising approach for enhanced chemotherapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Wei-Hsin Hsu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Tao-Yuan 320, Taiwan
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu 310, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
35
|
Chang CL, Yuan KSP, Wu AT, Wu SY. Toxicity Profiles of Fractionated Radiotherapy, Contemporary Stereotactic Radiosurgery, and Transsphenoidal Surgery in Nonfunctioning Pituitary Macroadenomas. Cancers (Basel) 2019; 11:cancers11111658. [PMID: 31717774 PMCID: PMC6896065 DOI: 10.3390/cancers11111658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Here, we compared the toxicity profiles of contemporary stereotactic radiosurgery (SRS), modern fractionated radiotherapy (FRT), and transsphenoidal surgery used to treat nonfunctioning pituitary macroadenomas. Methods: We included the data of patients with nonfunctioning pituitary macroadenomas. To compare treatment outcomes, the patients were categorized groups 1 (those receiving modern FRT), 2 (those receiving contemporary SRS), and 3 (those receiving transsphenoidal surgery). The multivariable Cox proportional hazards regression analysis was performed to yielded adjusted hazard ratios (aHRs) and their 95% CIs for local recurrence in groups 2 and 3 compared with group 1. Results: We included the data of 248 patients with nonfunctioning pituitary macroadenomas. The analytical results revealed no significant differences in second primary brain or head and neck cancer, hypopituitarism, or optic nerve injury between the three cohorts. The multivariable Cox proportional hazards regression analysis revealed that compared with group 1, the aHRs (95% CIs) for stroke risk in groups 2 and 3 were 0.37 (0.14–0.99) and 0.51 (0.31–0.84), respectively. Conclusion: Contemporary SRS and transsphenoidal surgery for nonfunctioning pituitary macroadenoma treatment have equivalent toxicity profiles. However, modern FRT for nonfunctioning pituitary macroadenoma treatment might considerably increase stroke risk.
Collapse
Affiliation(s)
- Chia-Lun Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
- Department of Hemato-Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 106, Taiwan
| | - Kevin Sheng-Po Yuan
- Department of Otorhinolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 106, Taiwan;
| | - Alexander T.H. Wu
- Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan;
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Correspondence:
| |
Collapse
|
36
|
In vitro siRNA delivery via diethylenetriamine- and tetraethylenepentamine-modified carboxyl group-terminated Poly(amido)amine generation 4.5 dendrimers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110245. [PMID: 31753357 DOI: 10.1016/j.msec.2019.110245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022]
Abstract
The recent discovery of small interfering RNAs (siRNAs) has opened new avenues for designing personalized treatment options for various diseases. However, the therapeutic application of siRNAs has been confronted with many challenges because of short half-life in circulation, poor membrane penetration, difficulty in escaping from endosomes, and insufficient release into the cytosol. To overcome these challenges, we designed a diethylenetriamine (DETA)- and tetraethylenepentamine (TEPA)-modified polyamidoamine dendrimer generation 4.5 (PDG4.5), and characterized it using 1H nuclear magnetic resonance (NMR), 13C NMR, correlation spectroscopy (COSY), heteronuclear single-quantum correlation spectroscopy (HSQC), and Fourier transform infrared (FTIR) spectroscopy followed by conjugation with siRNA. The PDG4.5-DETA and PDG4.5-TEPA polyplexes exhibited spherical nanosize, ideal zeta potential, and effective siRNA binding ability, protected the siRNA from nuclease attack, and revealed less cytotoxicity of PDG4.5-DETA and PDG4.5-TEPA in HeLa cells. More importantly, the polyplexes also revealed good cellular internalization and facilitated translocation of the siRNA into the cytosol. Thus, PDG4.5-DETA and PDG4.5-TEPA can act as potential siRNA carriers in future medical and pharmaceutical applications.
Collapse
|
37
|
Addisu KD, Hsu WH, Hailemeskel BZ, Andrgie AT, Chou HY, Yuh CH, Lai JY, Tsai HC. Mixed Lanthanide Oxide Nanoparticles Coated with Alginate-Polydopamine as Multifunctional Nanovehicles for Dual Modality: Targeted Imaging and Chemotherapy. ACS Biomater Sci Eng 2019; 5:5453-5469. [PMID: 33464065 DOI: 10.1021/acsbiomaterials.9b01226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating anticancer drugs and diagnostic agents in a polymer nanosystem is an emerging and promising strategy for improving cancer treatment. However, the development of multifunctional nanoparticles (NPs) for an "all-in-one" platform characterized by specific targeting, therapeutic efficiency, and imaging feedback remains an unmet clinical need. In this study, pH-responsive mixed-lanthanide-based multifunctional NPs were fabricated based on simple metal-ligand interactions for simultaneous cancer cell imaging and drug delivery. We investigated two new systems of alginate-polydopamine complexed with either terbium/europium or dysprosium/erbium oxide NPs (Tb/Eu@AlgPDA or Dy/Er@AlgPDA NPs). Tb/Eu@AlgPDA NPs were then functionalized with the tumor-targeting ligand folic acid (FA) and loaded with the anticancer drug doxorubicin (DOX) to form FA-Tb/Eu@AlgPDA-DOX NPs. Using such systems, the mussel-inspired property of PDA was introduced to improve tumor targetability and penetration, in addition to active targeting (via FA-folate receptor interactions). Determining the photoluminescence efficiency showed that the Tb/Eu@AlgPDA system was superior to the Dy/Er@AlgPDA system, presenting intense and sharp emission peaks on the fluorescence spectra. In addition, compared to Dy/Er@AlgPDA NPs (82.4%), Tb/Eu@AlgPDA NPs exhibited negligible cytotoxicity with >93.3% HeLa cell viability found in MTT assays at NP concentrations of up to 0.50 mg/mL and high biocompatibility when incubated with zebrafish (Danio rerio) embryos and larvae. The FA-Tb/Eu@AlgPDA-DOX system exhibited a pH-responsive and sustained drug-release pattern. In a spheroid model of HeLa cells, the FA-Tb/Eu@AlgPDA-DOX system showed a better penetration efficiency and spheroid growth-inhibitory effect than free DOX. After incubation with zebrafish embryos, the FA-Tb/Eu@AlgPDA-DOX system also showed improved antitumor efficacies versus the other experimental groups in HeLa tumor cell xenografted zebrafish. Therefore, our results suggested that FA-Tb/Eu@AlgPDA-DOX NPs are promising multifunctional nanocarriers with therapeutic capacity for tumor targeting and penetration.
Collapse
Affiliation(s)
- Kefyalew Dagnew Addisu
- Faculty of Chemical and Food Engineering, Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia P. O. Box 26
| | | | | | | | | | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350 Miaoli, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101 Section 2, Guangfu Road, Hsinchu 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, No. 1001 Daxue Road, East District, Hsinchu 30010, Taiwan
| | - Juin-Yih Lai
- R&D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Zhongli District, Taoyuan 320, Taiwan
| | | |
Collapse
|
38
|
Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J Control Release 2019; 311-312:301-318. [PMID: 31446084 DOI: 10.1016/j.jconrel.2019.08.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
With the rapid development of engineered nanomaterials for various applications, in vivo toxicological studies for evaluating the potential hazardous effects of nanomaterials on environmental and human safety are in urgent need. Zebrafish has long been considered as the "gold standard" for biosafety assessments of chemicals and pollutants due to its high fecundity, cost-effectiveness, well-characterized developmental stages, optical transparency, and so forth. Thus, zebrafish holds great potential for high-throughput nanotoxicity screening. In this review, we summarize the in vivo toxicological profiles of different nanomaterials, including Ag nanoparticles (NPs), CuO NPs, silica NPs, polymeric NPs, quantum dots, nanoscale metal-organic frameworks, etc, in zebrafish and focus on how the physicochemical properties (e.g., size, surface charge, and surface chemistry) of these nanomaterials influence their biosafety. In addition, we also report the recent advances of the in vivo delivery of nanopharmaceuticals using zebrafish as the model organism for therapeutic assessment, biodistribution tracking, and the controlled release of loaded drugs. Limitations and special considerations of zebrafish model are also discussed. Overall, zebrafish is expected to serve as a high-throughput screening platform for nanotoxicity and drug delivery assessment, which may instruct the design of safe nanomaterials and more effective nanomedicines.
Collapse
|
39
|
Darge HF, Andrgie AT, Tsai HC, Lai JY. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol 2019; 133:545-563. [DOI: 10.1016/j.ijbiomac.2019.04.131] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/19/2023]
|
40
|
Wang B, Zhang H, An J, Zhang Y, Sun L, Jin Y, Shi J, Li M, Zhang H, Zhang Z. Sequential Intercellular Delivery Nanosystem for Enhancing ROS-Induced Antitumor Therapy. NANO LETTERS 2019; 19:3505-3518. [PMID: 31034238 DOI: 10.1021/acs.nanolett.9b00336] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite recent advances in enhancing photodynamic therapy efficacy, high-efficiency reactive oxygen species (ROS)-based therapy approach, especially in malignancy tumor treatment, remains challenging. Relieving the hypoxia of tumor tissue has been considered to be an attractive strategy for enhancing ROS-based treatment effect. Nevertheless, it is frequently neglected that the hypoxic regions are usually located deep in the tumors and therefore are usually inaccessible. To address these limitations, herein we constructed a sequential intercellular delivery system (MFLs/LAOOH@DOX) that consists of a membrane fusion liposomes (MFLs) doped with linoleic acid hydroperoxide (LAOOH) in the lipid bilayer and antitumor doxorubicin (DOX) encapsulated inside. In this report, LAOOH, one of the primary products of lipid peroxidation in vivo, was selected as ROS-generated agent herein, which depends on Fe2+ rather than oxygen and other external stimuli to produce ROS. Upon the enhanced permeation and retention effect, MFLs/LAOOH@DOX first fused with tumor cell membranes in the perivascular region in synchrony with selective delivery of LAOOH into the plasma membrane and the on-demand intracellular release of DOX. By hitchhiking with extracellular vesicles, LAOOH, as a cell membrane natural ingredient, spread gradually to neighboring cells and throughout the entire tumor eventually. Combined with subsequent administration of nano Fe3O4, ROS was specifically generated on the tumor cell membrane by LAOOH throughout the tumor tissues. This study offers a new method to enhance ROS-based antitumor treatment efficiency.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
| | - Huifang Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Jingyi An
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Yiwen Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Lulu Sun
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Yajie Jin
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Jinjin Shi
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Mengjia Li
- School of Materials Science and Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Hongling Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
| |
Collapse
|
41
|
Diselenide linkage containing triblock copolymer nanoparticles based on Bi(methoxyl poly(ethylene glycol))-poly(ε-carprolactone): Selective intracellular drug delivery in cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109803. [PMID: 31349440 DOI: 10.1016/j.msec.2019.109803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/24/2019] [Accepted: 05/26/2019] [Indexed: 11/22/2022]
Abstract
Redox-responsive diselenide bond containing triblock copolymer Bi(mPEG-SeSe)-PCL,Bi(mPEG-SeSe)-PCL was developed for specific drug release in cancer cells. Initially, ditosylated polycaprolactone was prepared via the reaction between polycaprolactone diol (PCL-diol) and tosyl chloride (TsCl). Next, Bi(mPEG-SeSe)-PCL was synthesized via the reaction between ditosylated polycaprolactone and sodium diselenide initiated poly (ethylene glycol) methyl ether tosylate. The synthesized amphiphilic triblock copolymer could self-assemble into uniform nanoparticles in aqueous medium and disassemble upon redox stimuli. The Bi(mPEG-SeSe)-PCL nanoparticles showed a DOX loading content of 5.1 wt% and a loading efficiency of 49%. In vitro drug release studies showed that about 62.4% and 56% of DOX was released from the nanoparticles during 72 h at 37 °C in PBS containing 2 mg/mL (6 mM) GSH and 0.1% H2O2, respectively, whereas only about 30% of DOX was released in PBS under the same conditions. The cell viability (MTT assays) results showed that the synthesized material was biocompatible with above 90% cell viability, and that the DOX-loaded Bi(mPEG-SeSe)-PCL nanoparticles had a high antitumor activity against HeLa cells and low antitumor activity against HaCaT cells, following a 24-h incubation period. Three-dimensional (3D) spheroids of HeLa cells were established for the evaluation of localization of the DOX-loaded nanoparticles into spheroids cells and the successfully inhibition of 3D tumor spheroid growth. The results indicated that the synthesized material Bi(mPEG-SeSe)-PCL was biocompatible and it could be a potential candidate for anticancer drug delivery system.
Collapse
|
42
|
Hsiao PK, Chang CL, Yuan KSP, Wu ATH, Wu SY. Results of Treatment with Modern Fractionated Radiotherapy, Contemporary Stereotactic Radiosurgery, and Transsphenoidal Surgery in Nonfunctioning Pituitary Macroadenoma. J Clin Med 2019; 8:E518. [PMID: 30995734 PMCID: PMC6517942 DOI: 10.3390/jcm8040518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND To compare the effects of contemporary stereotactic radiosurgery (SRS), modern fractionated radiotherapy (FRT), and transsphenoidal surgery on nonfunctioning pituitary macroadenoma. METHODS We enrolled patients with nonfunctioning pituitary macroadenoma. To compare treatment outcomes, the patients were categorized into three groups according to the treatment modality: group 1, patients receiving modern FRT; group 2, patients receiving contemporary SRS; and group 3, patients receiving transsphenoidal surgery. RESULTS In total, 548 patients with nonfunctioning pituitary macroadenoma were selected for our study. Univariate and multivariate Cox regression analysis results indicated that the treatment modalities were significant independent prognostic factors. In multivariable Cox proportional hazard regression analysis, the adjusted hazard ratios (aHR; 95% confidence interval (CI)) of local recurrence were 0.27 (0.10-0.91) and 1.95 (1.25-2.37) for the SRS and transsphenoidal surgery cohorts, respectively, in comparison with the FRT cohort. The aHR (95% CI) of all-cause mortality was 1.03 (0.68-1.56) for the transsphenoidal surgery cohort in comparison with the FRT cohort, without statistical significance. However, the aHR (95% CI) of all-cause mortality was 0.36 (0.15-0.85) for the SRS cohort in comparison with the FRT cohort. CONCLUSION Contemporary SRS has optimal effects on local recurrence and survival compared with modern FRT and transsphenoidal surgery. Modern FRT is associated with more favorable local control and equal survival compared with transsphenoidal surgery.
Collapse
Affiliation(s)
- Ping-Kun Hsiao
- Department of General Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chia-Lun Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Hemato-Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Kevin Sheng-Po Yuan
- Department of Otorhinolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Alexander T H Wu
- Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Szu-Yuan Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
43
|
DuRoss AN, Neufeld MJ, Rana S, Thomas CR, Sun C. Integrating nanomedicine into clinical radiotherapy regimens. Adv Drug Deliv Rev 2019; 144:35-56. [PMID: 31279729 PMCID: PMC6745263 DOI: 10.1016/j.addr.2019.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023]
Abstract
While the advancement of clinical radiotherapy was driven by technological innovations throughout the 20th century, continued improvement relies on rational combination therapies derived from biological insights. In this review, we highlight the importance of combination radiotherapy in the era of precision medicine. Specifically, we survey and summarize the areas of research where improved understanding in cancer biology will propel the field of radiotherapy forward by allowing integration of novel nanotechnology-based treatments.
Collapse
Affiliation(s)
- Allison N DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Megan J Neufeld
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Shushan Rana
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles R Thomas
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
44
|
Chang WW, Hsiao PK, Qin L, Chang CL, Chow JM, Wu SY. Treatment outcomes for unresectable intrahepatic cholangiocarcinoma: Nationwide, population-based, cohort study based on propensity score matching with the Mahalanobis metric. Radiother Oncol 2018; 129:284-292. [PMID: 30279046 DOI: 10.1016/j.radonc.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE No prospective randomized trials have been conducted to date to evaluate the efficacy of palliation of pain or jaundice without treatment, definitive concurrent chemoradiotherapy (CCRT), sequential chemotherapy and radiotherapy (CTRT), or chemotherapy (CT) alone for treating unresectable intrahepatic cholangiocarcinoma (ICC). We designed a nationwide, population-based, cohort study to determine the effects of different treatments on patients with unresectable ICC using propensity score matching (PSM) with the Mahalanobis metric. PATIENTS AND METHODS We classified patients with unresectable ICC from the Taiwan Cancer Registry database into the following 4 treatment groups: group 1, definitive CCRT; group 2, sequential CTRT; group 3, no treatment (palliative therapy for relief of pain, pruritus, or jaundice); and group 4, CT alone. Confounding factors among the 4 treatment groups were minimized through propensity score matching (PSM). RESULTS After PSM, the final cohort consisted of 844 patients (211 patients in each of the 4 groups). In both univariable and multivariable Cox regression analyses, adjusted hazard ratios (aHRs; 95% confidence interval [CI]) derived for groups 1 and 2 compared with group 4 were 0.65 (0.59-0.71) and 0.95 (0.83-1.48), respectively. Furthermore, an aHR (95% CI) of 2.25 (1.89-2.67) was derived for significant independent prognostic risk factors for poor overall survival for group 3 compared with group 4. CONCLUSIONS Definitive CCRT is the optimal therapy for patients with unresectable ICC without distant metastasis.
Collapse
Affiliation(s)
- Wei-Wen Chang
- Department of General Surgery, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Ping-Kun Hsiao
- Department of General Surgery, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Lei Qin
- School of Statistics, University of International Business and Economics, Beijing, China
| | - Chia-Lun Chang
- Department of Hemato-Oncology, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Jyh-Ming Chow
- Department of Hemato-Oncology, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Szu-Yuan Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biotechnology, Chinese Culture University, YangMingShan, Taipei 11114, Taiwan.
| |
Collapse
|