1
|
Kim G, Yoo D, So H, Park S, Kim S, Choi MJ, Kim S. Precise weight tuning in quantum dot-based resistive-switching memory for neuromorphic systems. MATERIALS HORIZONS 2025; 12:915-925. [PMID: 39540203 DOI: 10.1039/d4mh01182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this study, nonvolatile bipolar resistive switching and synaptic emulation behaviors are performed in an InGaP quantum dots (QDs)/HfO2-based memristor device. First, the physical and chemical properties of InGaP QDs are investigated by high-resolution transmission electron microscopy and spectrophotometric analysis. Through comparative experiments, it is proven that the HfO2 layer improves the variations in resistive switching characteristics. Additionally, the Al/QDs/HfO2/ITO device exhibits reversible switching performances with excellent data retention. Fast switching speeds in the order of nanoseconds were confirmed, which could be explained by trapping/detrapping and quantum tunneling effects by the trap provided by nanoscale InGaP QDs. In addition, the operating voltage is decreased when the device is exposed to ultraviolet light for low-power switching. Biological synapse features such as spike-timing-dependent plasticity are emulated for neuromorphic systems. Finally, the incremental step pulse using proven algorithm method enabled the implementation of four-bit states (16 states), markedly enhancing the inference precision of neuromorphic systems.
Collapse
Affiliation(s)
- Gyeongpyo Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.
| | - Doheon Yoo
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Hyojin So
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.
| | - Seoyoung Park
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.
| | - Sungjoon Kim
- Department of AI Semiconductor Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Min-Jae Choi
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Sungjun Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.
| |
Collapse
|
2
|
Kim G, Park S, Kim S. Quantum Dots for Resistive Switching Memory and Artificial Synapse. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1575. [PMID: 39404302 PMCID: PMC11478683 DOI: 10.3390/nano14191575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Memristor devices for resistive-switching memory and artificial synapses have emerged as promising solutions for overcoming the technological challenges associated with the von Neumann bottleneck. Recently, due to their unique optoelectronic properties, solution processability, fast switching speeds, and low operating voltages, quantum dots (QDs) have drawn substantial research attention as candidate materials for memristors and artificial synapses. This review covers recent advancements in QD-based resistive random-access memory (RRAM) for resistive memory devices and artificial synapses. Following a brief introduction to QDs, the fundamental principles of the switching mechanism in RRAM are introduced. Then, the RRAM materials, synthesis techniques, and device performance are summarized for a relative comparison of RRAM materials. Finally, we introduce QD-based RRAM and discuss the challenges associated with its implementation in memristors and artificial synapses.
Collapse
Affiliation(s)
| | | | - Sungjun Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Lu C, Wang X, Liu XY. Flexible Meso Electronics and Photonics Based on Cocoon Silk and Applications. ACS Biomater Sci Eng 2024; 10:2784-2804. [PMID: 38597279 DOI: 10.1021/acsbiomaterials.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Flexible electronics, applicable to enlarged health, AI big data medications, etc., have been one of the most important technologies of this century. Due to its particular mechanical properties, biocompatibility, and biodegradability, cocoon silk (or SF, silk fibroin) plays a key role in flexible electronics/photonics. The review begins with an examination of the hierarchical meso network structures of SF materials and introduces the concepts of meso reconstruction, meso doping, and meso hybridization based on the correlation between the structure and performance of silk materials. The SF meso functionalization was developed according to intermolecular nuclear templating. By implementation of the techniques of meso reconstruction and functionalization in the refolding of SF materials, extraordinary performance can be achieved. Relying on this strategy, particularly designed flexible electronic and photonic components can be developed. This review covers the latest ideas and technologies of meso flexible electronics and photonics based on SF materials/meso functionalization. As silk materials are biocompatible and human skin-friendly, SF meso flexible electronic/photonic components can be applied to wearable or implanted devices. These devices are applicable in human physiological signals and activities sensing/monitoring. In the case of human-machine interaction, the devices can be applicable in in-body information transmission, computation, and storage, with the potential for the combination of artificial intelligence and human intelligence.
Collapse
Affiliation(s)
- Changsheng Lu
- State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiao Wang
- State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiang Yang Liu
- State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
4
|
Banik H, Sarkar S, Bhattacharjee D, Malhotra A, Chauhan A, Hussain SA. Noncytotoxic WORM Memory Using Lysozyme with Ultrahigh Stability for Transient and Sustainable Electronics Applications. ACS OMEGA 2024; 9:618-627. [PMID: 38222499 PMCID: PMC10785074 DOI: 10.1021/acsomega.3c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Biocompatibility and transient nature of electronic devices have been the matter of attention in recent times due to their immense potential for sustainable solutions toward hazardous e-wastes. In order to fulfill the requirement of high-density data-storage devices due to explosive growth in digital data, a resistive switching (RS)-based memory device could be the promising alternative to the present Si-based electronics. In this research work, we employed a biocompatible enzymatic protein lysozyme (Lyso) as the active layer to design a RS memory device having a device structure Au/Lyso/ITO. Interestingly the device showed transient, WORM memory behavior. It has been observed that the WORM memory performance of the device was very good with high memory window (2.78 × 102), data retention (up to 300 min), device yield (∼73.8%), read cyclability, as well as very high device stability (experimentally >700 days, extrapolated to 3000 days). Bias-induced charge trapping followed by conducting filament formation was the key behind such switching behavior. Transient behavior analysis showed that electronic as well as optical behaviors completely disappeared after 10 s dissolution of the device in luke warm water. Cytotoxicity of the as-prepared device was tested by challenging two environmentally derived bacteria, S. aureus and P. aeruginosa, and was found to have no biocidal effects. Hence, the device would cause no harm to the microbial flora when it is discarded. As a whole, this work suggests that Lyso-based WORM memory device could play a key role for the design of transient WORM memory device for sustainable electronic applications.
Collapse
Affiliation(s)
- Hritinava Banik
- Thin
Film and Nanoscience Laboratory, Department of Physics, Tripura University, Suryamaninagar 799022, Tripura, India
| | - Surajit Sarkar
- Thin
Film and Nanoscience Laboratory, Department of Physics, Tripura University, Suryamaninagar 799022, Tripura, India
| | - Debajyoti Bhattacharjee
- Thin
Film and Nanoscience Laboratory, Department of Physics, Tripura University, Suryamaninagar 799022, Tripura, India
| | - Akshit Malhotra
- Department
of Microbiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Ashwini Chauhan
- Department
of Microbiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Syed Arshad Hussain
- Thin
Film and Nanoscience Laboratory, Department of Physics, Tripura University, Suryamaninagar 799022, Tripura, India
| |
Collapse
|
5
|
Zhang Q, Jiang Q, Fan F, Liu G, Chen Y, Zhang B. MoS 2 Quantum Dot-Optimized Conductive Channels for a Conjugated Polymer-Based Synaptic Memristor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59630-59642. [PMID: 38103041 DOI: 10.1021/acsami.3c12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Donor-acceptor-type conjugated polymers are widely used in memristors due to their unique push-pull electron structures and charge transfer mechanisms. However, the inherently inhomogeneous microstructure of polymer films and their low crystallinity produce randomness that destabilizes formed conductive channels, giving polymer-based memristors unstable switching behavior. In this contribution, we prepared a synaptic device based on PM6-MoS2 QD (molybdenum disulfide quantum dot) nanocomposites. In the composites, MoS2 QDs provided the active centers for forming conductive channels via electron trapping and detrapping. They also controlled the directional formation of conductive channels between PM6 and MoS2 QDs, reducing randomness and giving devices a narrow switching voltage range and cycling longevity. The device exhibited continuous multistage conductance states under a direct current voltage sweep and simulated a variety of synaptic functions, including long-term potentiation, long-term depression, short-term potentiation, short-term depression, paired-pulse facilitation, spiking-rate-dependent plasticity, and "learning experience" behavior. The memristor could also perform arithmetic, including "counting" and "subtraction" operations. This work provides a new approach to improving the performance of memristors for neuromorphic computing.
Collapse
Affiliation(s)
- Qiongshan Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qizhi Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Fan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai i-Reader Biotech Co., Ltd., Shanghai 201114, China
| | - Gang Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Chen X, Zhao X, Huang X, Tang XZ, Sun Z, Ni DL, Hu H, Yue J. Flexible multilevel nonvolatile biocompatible memristor with high durability. J Nanobiotechnology 2023; 21:375. [PMID: 37833677 PMCID: PMC10576337 DOI: 10.1186/s12951-023-02117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Current protein or glucose based biomemristors have low resistance-switching performance and require complex structural designs, significantly hindering the development of implantable memristor devices. It is imperative to discover novel candidate materials for biomemristor with high durability and excellent biosafety for implantable health monitoring. Herein, we initially demonstrate the resistance switching characteristics of a nonvolatile memristor in a configuration of Pt/AlOOH/ITO consisting of biocompatible AlOOH nanosheets sandwiched between a Indium Tin Oxides (ITO) electrode and a platinum (Pt) counter-electrode. The hydrothermally synthesized AlOOH nanosheets have excellent biocompatibility as confirmed through the Cell Counting Kit-8 (CCK-8) tests. Four discrete resistance levels are achieved in this assembled device in responsible to different compliance currents (ICC) for the set process, where the emerging multilevel states show high durability over 103 cycles, outperforming the protein-based biomemristors under similar conditions. The excellent performance of the Pt/AlOOH/ITO memristor is attributed to the significant role of hydrogen proton with pipe effect, as confirmed by both experimental results and density functional theory (DFT) analyses. The present results indicate the nonvolatile memristors with great potential as the next generation implantable multilevel resistive memories for long-term human health monitoring.
Collapse
Affiliation(s)
- Xiaoping Chen
- Powder Metallurgy Research Institute, Central South University, Changsha, 410083, China
| | - Xu Zhao
- Powder Metallurgy Research Institute, Central South University, Changsha, 410083, China
| | - Xiaozhong Huang
- Powder Metallurgy Research Institute, Central South University, Changsha, 410083, China
| | - Xiu-Zhi Tang
- Research Institute of Aerospace Technology, Central South University, Changsha, 410083, China
| | - Ziqi Sun
- School of Chemistry and Physics, QUT Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| | - Da-Long Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hailong Hu
- State Key Laboratory of Powder Metallurgy, Hunan Key Laboratory of Advanced fibers and Composites, State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Research Institute of Aerospace Technology, Central South University, Changsha, 410083, China.
| | - Jianling Yue
- Powder Metallurgy Research Institute, Central South University, Changsha, 410083, China.
| |
Collapse
|
7
|
Chen X, Sun YF, Wu X, Shi S, Wang Z, Zhang J, Fang WH, Huang W. Breaking the Trade-Off Between Polymer Dielectric Constant and Loss via Aluminum Oxo Macrocycle Dopants for High-Performance Neuromorphic Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306260. [PMID: 37660306 DOI: 10.1002/adma.202306260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Indexed: 09/05/2023]
Abstract
The dielectric layer is crucial in regulating the overall performance of field-effect transistors (FETs), the key component in central processing units, sensors, and displays. Despite considerable efforts being devoted to developing high-permittivity (k) dielectrics, limited progress is made due to the inherent trade-off between dielectric constant and loss. Here, a solution is presented by designing a monodispersed disk-shaped Ce-Al-O-macrocycle as a dopant in polymer dielectrics. The molecule features a central Ce(III) core connected with eight Al atoms through sixteen bridging hydroxyls and eight 3-aminophenyl peripheries. The incorporation of this macrocycle in polymer dielectrics results in an up to sevenfold increase in dielectric constants and up to 89% reduction in dielectric loss at low frequencies. Moreover, the leakage-current densities decrease, and the breakdown strengths are improved by 63%. Relying on the above merits, FETs bearing cluster-doped polymer dielectrics give near three-orders source-drain current increments while maintaining low-level leakage/off currents, resulting in much higher charge-carrier mobilities (up to 2.45 cm2 V-1 s-1 ) and on/off ratios. This cluster-doping strategy is generalizable and shows great promise for ultralow-power photoelectric synapses and neuromorphic retinas. This work successfully breaks the trade-off between dielectric constant and loss and offers a unique design for polymer composite dielectrics.
Collapse
Affiliation(s)
- Xiaowei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yi-Fan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuhui Shi
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Zhang C, Chen M, Pan Y, Li Y, Wang K, Yuan J, Sun Y, Zhang Q. Carbon Nanodots Memristor: An Emerging Candidate toward Artificial Biosynapse and Human Sensory Perception System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207229. [PMID: 37072642 PMCID: PMC10238223 DOI: 10.1002/advs.202207229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/09/2023] [Indexed: 05/03/2023]
Abstract
In the era of big data and artificial intelligence (AI), advanced data storage and processing technologies are in urgent demand. The innovative neuromorphic algorithm and hardware based on memristor devices hold a promise to break the von Neumann bottleneck. In recent years, carbon nanodots (CDs) have emerged as a new class of nano-carbon materials, which have attracted widespread attention in the applications of chemical sensors, bioimaging, and memristors. The focus of this review is to summarize the main advances of CDs-based memristors, and their state-of-the-art applications in artificial synapses, neuromorphic computing, and human sensory perception systems. The first step is to systematically introduce the synthetic methods of CDs and their derivatives, providing instructive guidance to prepare high-quality CDs with desired properties. Then, the structure-property relationship and resistive switching mechanism of CDs-based memristors are discussed in depth. The current challenges and prospects of memristor-based artificial synapses and neuromorphic computing are also presented. Moreover, this review outlines some promising application scenarios of CDs-based memristors, including neuromorphic sensors and vision, low-energy quantum computation, and human-machine collaboration.
Collapse
Affiliation(s)
- Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Mohan Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yelong Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide SciencesDepartment of ChemistryCollege of ScienceNanjing Agricultural UniversityNanjing210095China
| | - Junwei Yuan
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yanqiu Sun
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Qichun Zhang
- Department of Materials Science and EngineeringDepartment of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee AvenueHong Kong999077China
| |
Collapse
|
9
|
Zhou PK, Lin XL, Chee MY, Lew WS, Zeng T, Li HH, Chen X, Chen ZR, Zheng HD. Switching the memory behaviour from binary to ternary by triggering S 62- relaxation in polysulfide-bearing zinc-organic complex molecular memories. MATERIALS HORIZONS 2023. [PMID: 37070656 DOI: 10.1039/d3mh00037k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The use of crystalline metal-organic complexes with definite structures as multilevel memories can enable explicit structure-property correlations, which is significant for designing the next generation of memories. Here, four Zn-polysulfide complexes with different degrees of conjugation have been fabricated as memory devices. ZnS6(L)2-based memories (L = pyridine and 3-methylpyridine) can exhibit only bipolar binary memory performances, but ZnS6(L)-based memories (L = 2,2'-bipyridine and 1,10-phenanthroline) illustrate non-volatile ternary memory performances with high ON2/ON1/OFF ratios (104.22/102.27/1 and 104.85/102.58/1) and ternary yields (74% and 78%). Their ON1 states stem from the packing adjustments of organic ligands upon the injection of carriers, and the ON2 states are a result of the ring-to-chain relaxation of S62- anions. The lower conjugated degrees in ZnS6(L)2 result in less compact packing; consequently, the adjacent S62- rings are too long to trigger the S62- relaxation. The deep structure-property correlation in this work provides a new strategy for implementing multilevel memory by triggering polysulfide relaxation based on the conjugated degree regulation of organic ligands.
Collapse
Affiliation(s)
- Pan-Ke Zhou
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Xiao-Li Lin
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Mun Yin Chee
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tao Zeng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hao-Hong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Xiong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Zhi-Rong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Hui-Dong Zheng
- Fujian Engineering Research Centre of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
10
|
Han A, Zhang L, Zhang M, Liu C, Wu R, Wei Y, Dan R, Chen X, Hu E, Zhang Y, Tong Y, Liu L. Amyloid-Gold Nanoparticle Hybrids for Biocompatible Memristive Devices. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1884. [PMID: 36902996 PMCID: PMC10004345 DOI: 10.3390/ma16051884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biomolecular materials offer tremendous potential for the development of memristive devices due to their low cost of production, environmental friendliness, and, most notably, biocompatibility. Herein, biocompatible memristive devices based on amyloid-gold nanoparticle hybrids have been investigated. These memristors demonstrate excellent electrical performance, featuring an ultrahigh Roff/Ron ratio (>107), a low switching voltage (<0.8 V), and reliable reproducibility. Additionally, the reversible transition from threshold switching to resistive switching mode was achieved in this work. The arrangement of peptides in amyloid fibrils endows the surface polarity and phenylalanine packing, which provides channels for the migration of Ag ions in the memristors. By modulating voltage pulse signals, the study successfully imitates the synaptic behavior of excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and the transition from short-term plasticity (STP) to long-term plasticity (LTP). More interestingly, Boolean logic standard cells were designed and simulated using the memristive devices. The fundamental and experimental results of this study thus offer insights into the utilization of biomolecular materials for advanced memristive devices.
Collapse
Affiliation(s)
- Aoze Han
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Liwei Zhang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Miaocheng Zhang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Cheng Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Rongrong Wu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Yixin Wei
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ronghui Dan
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xingyu Chen
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ertao Hu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yerong Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yi Tong
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
11
|
The Impact of Trap-Assisted Tunneling and Poole–Frenkel Emission on Synaptic Potentiation in an α-Fe2O3/p-Si Memristive Device. SCI 2023. [DOI: 10.3390/sci5010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A signature of synaptic potentiation conductance has been observed in an α-Fe2O3/p-Si device fabricated using spin coating. The conductance of the device in dark conditions and illumination with a white light source was characterized as a function of the application of a periodic bias (voltage) with a triangular profile. The conductance of the device increases with the number of voltage cycles applied and plateaus to its maximum value of 0.70 μS under dark conditions and 12.00 μS under illumination, and this mimics the analog synaptic weight change with the action potential of a neuron. In the range of applied voltage from 0 V to 0.7 V, the conduction mechanism corresponds to trap-assisted tunneling (TAT) and in the range of 0.7–5 V it corresponds to the Poole–Frenkel emission (PFE). The conductance as a function of electrical pulses was fitted with a Hill function, which is a measure of cooperation in biological systems. In this case, it allows one to determine the turn-on threshold (K) of the device in terms of the number of voltage pulses, which are found to be 3 and 166 under dark and illumination conditions, respectively. The gradual conductance change and activation after a certain number of pulses perfectly mimics the synaptic potentiation of neurons. In addition, the threshold parameter extracted from the Hill equation fit, acting as the number of pulses for synaptic activation, is found to have programmability with the intensity of the light illumination.
Collapse
|
12
|
Fabrication of polyaspartic acid surface-modified highly fluorescent carbon quantum dot nanoprobe for sensing of reduced glutathione in real sample. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Wang W, Gao S, Wang Y, Li Y, Yue W, Niu H, Yin F, Guo Y, Shen G. Advances in Emerging Photonic Memristive and Memristive-Like Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105577. [PMID: 35945187 PMCID: PMC9534950 DOI: 10.1002/advs.202105577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/06/2022] [Indexed: 05/19/2023]
Abstract
Possessing the merits of high efficiency, low consumption, and versatility, emerging photonic memristive and memristive-like devices exhibit an attractive future in constructing novel neuromorphic computing and miniaturized bionic electronic system. Recently, the potential of various emerging materials and structures for photonic memristive and memristive-like devices has attracted tremendous research efforts, generating various novel theories, mechanisms, and applications. Limited by the ambiguity of the mechanism and the reliability of the material, the development and commercialization of such devices are still rare and in their infancy. Therefore, a detailed and systematic review of photonic memristive and memristive-like devices is needed to further promote its development. In this review, the resistive switching mechanisms of photonic memristive and memristive-like devices are first elaborated. Then, a systematic investigation of the active materials, which induce a pivotal influence in the overall performance of photonic memristive and memristive-like devices, is highlighted and evaluated in various indicators. Finally, the recent advanced applications are summarized and discussed. In a word, it is believed that this review provides an extensive impact on many fields of photonic memristive and memristive-like devices, and lay a foundation for academic research and commercial applications.
Collapse
Affiliation(s)
- Wenxiao Wang
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Song Gao
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Yaqi Wang
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Yang Li
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Wenjing Yue
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Hongsen Niu
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Feifei Yin
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Yunjian Guo
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Guozhen Shen
- School of Integrated Circuits and ElectronicsBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
14
|
Xu J, Zhao X, Zhao X, Wang Z, Tang Q, Xu H, Liu Y. Memristors with Biomaterials for Biorealistic Neuromorphic Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jiaqi Xu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xiaoning Zhao
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xiaoli Zhao
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Zhongqiang Wang
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Qingxin Tang
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Haiyang Xu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Yichun Liu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| |
Collapse
|
15
|
Mao S, Sun B, Zhou G, Guo T, Wang J, Zhao Y. Applications of biomemristors in next generation wearable electronics. NANOSCALE HORIZONS 2022; 7:822-848. [PMID: 35697026 DOI: 10.1039/d2nh00163b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid development of mobile internet and artificial intelligence, wearable electronic devices have a great market prospect. In particular, information storage and processing of real-time collected data are an indispensable part of wearable electronic devices. Biomaterial-based memristive systems are suitable for storage and processing of the obtained information in wearable electronics due to the accompanying merits, i.e. sustainability, lightweight, degradability, low power consumption, flexibility and biocompatibility. So far, many biomaterial-based flexible and wearable memristive devices were prepared by spin coating or other technologies on a flexible substrate at room temperature. However, mechanical deformation caused by mechanical mismatch between devices and soft tissues leads to the instability of device performance. From the current research and practical application, the device will face great challenges when adapting to different working environments. In fact, some interesting studies have been performed to address the above issues while they were not intensively highlighted and overviewed. Herein, the progress in wearable biomemristive devices is reviewed, and the outlook and perspectives are provided in consideration of the existing challenges during the development of wearable biomemristive systems.
Collapse
Affiliation(s)
- Shuangsuo Mao
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Normal University, Fuzhou, Fujian 350117, China.
- College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 351007, China
| | - Bai Sun
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Normal University, Fuzhou, Fujian 350117, China.
- College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 351007, China
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Guangdong Zhou
- Scholl of Artificial Intelligence, Southwest University, Chongqing, 400715, China
| | - Tao Guo
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jiangqiu Wang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yong Zhao
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Normal University, Fuzhou, Fujian 350117, China.
- College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 351007, China
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
16
|
Wei S, Jiang J, Sun L, Li J, Tao TH, Zhou Z. A Hierarchically Encoded Data Storage Device with Controlled Transiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201035. [PMID: 35293037 DOI: 10.1002/adma.202201035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
In the era of information explosion, high-security and high-capacity data storage technology attracts more and more attention. Physically transient electronics, a form of electronics that can physically disappear with precisely controlled degradation behaviors, paves the way for secure data storage. Herein, the authors report a silk-based hierarchically encoded data storage device (HEDSD) with controlled transiency. The HEDSD can store electronic, photonic, and optical information simultaneously by synergistically integrating a resistive switching memory (ReRAM), a terahertz metamaterial device, and a diffractive optical element, respectively. These three data storage units have shared materials and structures but diverse encoding mechanisms, which increases the degree of complexity and capacity of stored information. Silk plays an important role as a building material in the HEDSD thanks to its excellent mechanical, optical, and electrical properties and controlled transiency as a naturally extracted protein. By controlling the degradation rate of storage units of the silk-based HEDSD, different degradation modes of the HEDSD, and multilevel information encryption/decryption have been realized. Compared with the conventional memory devices, as-reported silk-based HEDSD can store multilevel complex information and realize multilevel information encryption and decryption, which is highly desirable to fulfill the future demands of secure memory systems and implantable storage devices.
Collapse
Affiliation(s)
- Shuai Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjuan Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Long Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jianxing Li
- School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
17
|
Guo T, Pan K, Jiao Y, Sun B, Du C, Mills JP, Chen Z, Zhao X, Wei L, Zhou YN, Wu YA. Versatile memristor for memory and neuromorphic computing. NANOSCALE HORIZONS 2022; 7:299-310. [PMID: 35064257 DOI: 10.1039/d1nh00481f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The memristor is a promising candidate to implement high-density memory and neuromorphic computing. Based on the characteristic retention time, memristors are classified into volatile and non-volatile types. However, a single memristor generally provides a specific function based on electronic performances, which poses roadblocks for further developing novel circuits. Versatile memristors exhibiting both volatile and non-volatile properties can provide multiple functions covering non-volatile memory and neuromorphic computing. In this work, a versatile memristor with volatile/non-volatile bifunctional properties was developed. Non-volatile functionality with a storage window of 4.0 × 105 was obtained. Meanwhile, the device can provide threshold volatile functionalities with a storage window of 7.0 × 104 and a rectification ratio of 4.0 × 104. The leaky integrate-and-fire (LIF) neuron model and artificial synapse based on the device have been studied. Such a versatile memristor enables non-volatile memory, selectors, artificial neurons, and artificial synapses, which will provide advantages regarding circuit simplification, fabrication processes, and manufacturing costs.
Collapse
Affiliation(s)
- Tao Guo
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Kangqiang Pan
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yixuan Jiao
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Bai Sun
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Cheng Du
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Joel P Mills
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Zuolong Chen
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Xiaoye Zhao
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Lan Wei
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Y Norman Zhou
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
18
|
Wu R, Ma L, Liu XY. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103981. [PMID: 34802200 PMCID: PMC8811810 DOI: 10.1002/advs.202103981] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Indexed: 05/11/2023]
Abstract
Bombyx mori silk fibers exhibit significant potential for applications in smart textiles, such as fiber sensors, fiber actuators, optical fibers, and energy harvester. Silk fibroin (SF) from B. mori silkworm fibers can be reconstructed/functionalized at the mesoscopic scale during refolding from the solution state into fibers. This facilitates the mesoscopic functionalization by engaging functional seeds in the refolding of unfolded SF molecules. In particular, SF solutions can be self-assembled into regenerated fiber devices by artificial spinning technologies, such as wet spinning, dry spinning, microfluidic spinning, electrospinning, and direct writing. Meso-functionalization manipulates the SF property from the mesoscopic scale, transforming the original silk fibers into smart fiber devices with smart functionalities, such as sensors, actuators, optical fibers, luminous fibers, and energy harvesters. In this review, the progress of mesoscopic structural construction from SF materials to fiber electronics/photonics is comprehensively summarized, along with the spinning technologies and fiber structure characterization methods. The applications, prospects, and challenges of smart silk fibers in textile devices for wearable personalized healthcare, self-propelled exoskeletons, optical and luminous fibers, and sustainable energy harvesters are also discussed.
Collapse
Affiliation(s)
- Ronghui Wu
- College of Ocean and Earth SciencesState Key Laboratory of Marine Environmental Science (MEL)Xiamen361005P. R. China
| | - Liyun Ma
- College of Ocean and Earth SciencesState Key Laboratory of Marine Environmental Science (MEL)Xiamen361005P. R. China
| | - Xiang Yang Liu
- College of Ocean and Earth SciencesState Key Laboratory of Marine Environmental Science (MEL)Xiamen361005P. R. China
| |
Collapse
|
19
|
Shi C, Hu F, Wu R, Xu Z, Shao G, Yu R, Liu XY. New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible Meso-Electronics/Photonics Based on Cocoon Silk Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005910. [PMID: 33852764 DOI: 10.1002/adma.202005910] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Two of the key questions to be addressed are whether and how one can turn cocoon silk into fascinating materials with different electronic and optical functions so as to fabricate the flexible devices. In this review, a comprehensive overview of the unique strategy of mesoscopic functionalization starting from silk fibroin (SF) materials to the fabrication of various meso flexible SF devices is presented. Notably, SF materials with novel and enhanced properties can be achieved by mesoscopically reconstructing the hierarchical structures of SF materials. This is based on rerouting the refolding process of SF molecules by meso-nucleation templating. As-acquired functionalized SF materials can be applied to fabricate bio-compatible/degradable flexible/implantable meso-optical/electronic devices of various types. Consequently, functionalized SF can be fabricated into optical elements, that is, nonlinear photonic and fluorescent components, and make it possible to construct silk meso-electronics with high-performance. These advances enable the applications of SF-material based devices in the areas of physical and biochemical sensing, meso-memristors, transistors, brain electrodes, and energy generation/storage, applicable to on-skin long-term monitoring of human physiological conditions, and in-body sensing, information processing, and storage.
Collapse
Affiliation(s)
- Chenyang Shi
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Fan Hu
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Ronghui Wu
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Zijie Xu
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Guangwei Shao
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
- College of Textiles, Engineering Research Center of Technical Textile of Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Rui Yu
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Xiang Yang Liu
- College of Ocean and Earth Sciences, College of Materials, College of Physical Science and Technology, State Key Laboratory of Marine Environmental Science (MEL), Research Institute for Biomimetics and Soft Matter, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| |
Collapse
|
20
|
Abstract
Bio-memristors constitute candidates for the next generation of non-volatile storage and bionic synapses due to their biocompatibility, environmental benignity, sustainability, flexibility, degradability, and impressive memristive performance. Silk fibroin (SF), a natural and abundant biomaterial with excellent mechanical, optical, electrical, and structure-adjustable properties as well as being easy to process, has been utilized and shown to have potential in the construction of bio-memristors. Here, we first summarize the fundamental mechanisms of bio-memristors based on SF. Then, the latest achievements and developments of pristine and composited SF-based memristors are highlighted, followed by the integration of memristive devices. Finally, the challenges and insights associated with SF-based bio-memristors are presented. Advances in SF-based bio-memristors will open new avenues in the design and integration of high-performance bio-integrated systems and facilitate their application in logic operations, complex circuits, and neural networks.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
21
|
Wang L, Wang Y, Wen D. Tunable biological nonvolatile multilevel data storage devices. Phys Chem Chem Phys 2021; 23:24834-24841. [PMID: 34719695 DOI: 10.1039/d1cp04622e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The speed with which electronic products are updated is continuously increasing. Consequently, since waste electronic products can cause serious environmental pollution, the demand for electronic products made of biological materials is becoming increasingly urgent. Although biological memristors have significant advantages, their electrical characteristics still do not meet the requirements to be used in future nonvolatile memories. Therefore, how to control their electrical characteristics has become a popular topic of research. In this study, tunable biomemristors with an Al/tussah blood (TB)-carbon nanotube (CNT)/indium tin oxide (ITO)/glass structure were fabricated. Such a device exhibits stable bipolar resistance switching behavior and good retention characteristics (104 s). Experimental results show that the ON/OFF current ratio can be effectively controlled by modifying the CNT concentration in the TB-CNT composite film. Multilevel (8 levels, 3 bits per cell) storage capabilities can be achieved in the device by controlling its compliance current in order to achieve high-density storage. The resistance switching behavior originates from the formation and rupture of conductive oxygen vacancy filaments. TB is a promising natural biomaterial in the field of green electronics, and this research could blaze a new trail for the development of biological memory devices. Biomemristors with multilevel resistance states can be used as electronic synapses and are one of the choices for simulating biological synapses.
Collapse
Affiliation(s)
- Lu Wang
- School of Electronic Engineering, Heilongjiang University, Harbin, 150080, China. .,HLJ Province Key Laboratory of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin, 150080, China
| | - Yuting Wang
- School of Electronic Engineering, Heilongjiang University, Harbin, 150080, China. .,HLJ Province Key Laboratory of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin, 150080, China
| | - Dianzhong Wen
- School of Electronic Engineering, Heilongjiang University, Harbin, 150080, China. .,HLJ Province Key Laboratory of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
22
|
Zhou PK, Zong LL, Song KY, Yang ZC, Li HH, Chen ZR. Embedding Azobenzol-Decorated Tetraphenylethylene into the Polymer Matrix to Implement a Ternary Memory Device with High Working Temperature/Humidity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50350-50357. [PMID: 34647456 DOI: 10.1021/acsami.1c14686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of new high-density memories that can work in harsh environments such as high temperature and humidity will be significant for some special occasions such as oil and geothermal industries. Herein, a facial strategy for implementing a ternary memory device with high working temperature/humidity was executed. In detail, an asymmetric aggregation-induced-emission active molecule (azobenzol-decorated tetraphenylethylene, i.e., TPE-Azo) was embedded into flexible poly(ethylene-alt-maleic anhydride) (PEM) to prepare a TPE-Azo@PEM composite, which served as an active layer to fabricate the FTO/TPE-Azo@PEM/Ag device. This device can demonstrate excellent ternary memory performances with a current ratio of 1:104.2:101.6 for "OFF", "ON1", and "ON2" states. Specially, it can exhibit good environmental endurance at high working temperature (350 °C) and humidity (RH = 90%). The ternary memory mechanism can be explained as the combination of aggregation-induced current/conductance and conformational change-induced charge transfer in the TPE-Azo molecule, which was verified by Kelvin probe force microscopy, UV-vis spectra, X-ray diffraction, and single-crystal structural analysis. This strategy can be used as a universal method for the construction of high-density multilevel memristors with good environmental tolerance.
Collapse
Affiliation(s)
- Pan-Ke Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lu-Lu Zong
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kai-Yue Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhen-Cong Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hao-Hong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou 350108, China
| | - Zhi-Rong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
23
|
Dual-Tunable Memristor Based on Carbon Nanotubes and Graphene Quantum Dots. NANOMATERIALS 2021; 11:nano11082043. [PMID: 34443874 PMCID: PMC8401814 DOI: 10.3390/nano11082043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Nanocarbon materials have the advantages of biocompatibility, thermal stability and chemical stability and have shown excellent electrical properties in electronic devices. In this study, Al/MWCNT:GQD/ITO memristors with rewritable nonvolatile properties were prepared based on composites consisting of multiwalled carbon nanotubes (MWCNTs) and graphene quantum dots (GQDs). The switching current ratio of such a device can be tuned in two ways. Due to the ultraviolet light sensitivity of GQDs, when the dielectric material is illuminated by ultraviolet light, the charge capture ability of the GQDs decreases with an increasing duration of illumination, and the switching current ratio of the device also decreases with an increasing illumination duration (103–10). By exploiting the charge capture characteristics of GQDs, the trap capture level can be increased by increasing the content of GQDs in the dielectric layer. The switching current ratio of the device increases with increasing GQD content (10–103). The device can be programmed and erased more than 100 times; the programmable switching state can withstand 105 read pulses, and the retention time is more than 104 s. This memristor has a simple structure, low power consumption, and enormous application potential for data storage, artificial intelligence, image processing, artificial neural networks, and other applications.
Collapse
|
24
|
Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02008-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Electrochemical detection of CA125 using thionine and gold nanoparticles supported on heteroatom-doped graphene nanocomposites. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Zhang Y, Han F, Fan S, Zhang Y. Low-Power and Tunable-Performance Biomemristor Based on Silk Fibroin. ACS Biomater Sci Eng 2021; 7:3459-3468. [PMID: 34165975 DOI: 10.1021/acsbiomaterials.1c00513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomemristors have attracted significant attention because of their potential applications in logic operations, nonvolatile memory, and synaptic emulators, thus leading to the urgent need to improve memristive performance. In this work, a silk fibroin (SF)-based memristor, integrated with both low power and low operating current simultaneously, has been reported. Doping the SF with Ag and an ethanol-based post-treatment promote microcrystal formation in the bulk of the SF. This induces carrier transport along fixed, short paths and results in a low set voltage, low operating current, and high memristive stability. Such performances can greatly reduce power consumption and heat generation, beneficial for the accuracy and durability of memristor devices. The memristive mechanism of SF-based memristors with different Ag contents is the space-charge-limited conduction (SCLC) mechanism. In addition, the nonlinear transmission property of SF-based memristors suggests useful applications in bioelectronics.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
27
|
Gong Y, Xing X, Wang Y, Lv Z, Zhou Y, Han ST. Emerging MXenes for Functional Memories. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yue Gong
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| | - Xuechao Xing
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| | - Yan Wang
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| | - Ye Zhou
- Institute for Advanced Study Shenzhen University Shenzhen 518060 P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
28
|
Zeng T, Yang Z, Liang J, Lin Y, Cheng Y, Hu X, Zhao X, Wang Z, Xu H, Liu Y. Flexible and transparent memristive synapse based on polyvinylpyrrolidone/N-doped carbon quantum dot nanocomposites for neuromorphic computing. NANOSCALE ADVANCES 2021; 3:2623-2631. [PMID: 36134157 PMCID: PMC9419774 DOI: 10.1039/d1na00152c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/28/2021] [Indexed: 05/19/2023]
Abstract
Memristive devices are widely recognized as promising hardware implementations of neuromorphic computing. Herein, a flexible and transparent memristive synapse based on polyvinylpyrrolidone (PVP)/N-doped carbon quantum dot (NCQD) nanocomposites through regulating the NCQD doping concentration is reported. In situ Kelvin probe force microscopy showed that the trapping/detrapping of space charge can account for the memristive mechanism of the device. Diverse synaptic functions, including excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), spike-timing-dependent plasticity (STDP), and the transition from short-term plasticity (STP) to long-term plasticity (LTP), are emulated, enabling the PVP-NCQD hybrid system to be a valuable candidate for the design of novel artificial neural architectures. In addition, the synaptic device showed excellent flexibility against mechanical strain after repeated bending tests. This work provides a new approach to develop flexible and transparent organic artificial synapses for future wearable neuromorphic computing systems.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China
| | - Zhi Yang
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China
| | - Jiabing Liang
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China
| | - Ya Lin
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China
| | - Yankun Cheng
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China
| | - Xiaochi Hu
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China
| | - Xiaoning Zhao
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China
| | - Zhongqiang Wang
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China
| | - Haiyang Xu
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China
| | - Yichun Liu
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education 5268 Renmin Street Changchun P. R. China
| |
Collapse
|
29
|
Navada KM, G. K N, R R, D’Souza JN, Kouser S, D. J M. Synthesis, characterization of phyto-functionalized CuO nano photocatalysts for mitigation of textile dyes in waste water purification, antioxidant, anti-inflammatory and anticancer evaluation. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01688-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Arshad N, Irshad MS, Abbasi MS, Ur Rehman S, Ahmed I, Javed MQ, Ahmad S, Sharaf M, Al Firdausi MD. Green thin film for stable electrical switching in a low-cost washable memory device: proof of concept. RSC Adv 2021; 11:4327-4338. [PMID: 35424390 PMCID: PMC8694386 DOI: 10.1039/d0ra08784j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/26/2020] [Indexed: 11/21/2022] Open
Abstract
Low-cost and washable resistive switching (RS) memory devices with stable retention and low operational voltage are important for higher speed and denser non-volatile memories. In the case of green electronics, pectin has emerged as a suitable alternative to toxic metal oxides for resistive switching applications. Herein, a pectin-based thin film was fabricated on a fluorine-doped tin oxide glass substrate for RS mechanism. The presence of sp3-C groups with low binding energy corresponds to tunable charged defects and the oxygen vacancies confirmed by the O 1s spectra that plays a decisive role in the resistive switching mechanism, as revealed by X-ray photoemission spectroscopy (XPS). The surface morphology of the pectin film shows homogeneous growth and negligible surface roughness (38.98 ± 9.09). The pectin film can dissolve in DI water (10 minutes) owing to its ionization of carboxylic groups, that meet the trends of transient electronics. The developed Ag/pectin/FTO-based memory cell exhibits stable and reproducible bipolar resistive switching behavior along with an excellent ON/OFF ratio (104) and negligible electrical degradation was observed over 30 repeated cycles. Hence, it appears to be a valuable application for green electronics. Indeed, biocompatible storage devices derived from natural pectin are promising for high-density safe applications for information storage systems, flexible electronics, and green electronics.
Collapse
Affiliation(s)
- Naila Arshad
- Institute of Quantum Optics and Quantum Information, School of Science, Xi'an Jiaotong University (XJTU) 710049 P. R. China
| | - Muhammad Sultan Irshad
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University Wuhan 430062 P. R. China +86-156-23138982
| | - Misbah Sehar Abbasi
- School of Energy and Power Engineering, Xi'an Jiaotong University (XJTU) 710049 P. R. China
| | - Saif Ur Rehman
- Clean Energy Technology Research Lab (CERL, ), Department of Physics, COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Iftikhar Ahmed
- Energy Research Centre, COMSATS University Islamabad Lahore Campus 54000 Lahore Pakistan +92-321-8856761
| | - M Qasim Javed
- Food and Biotechnology Research Center (FBRC), Pakistan Council of Scientific and Industrial Research Lahore 54000 Pakistan
| | - Shafiq Ahmad
- Department of Industrial Engineering, College of Engineering, King Saud University Riyadh Saudi Arabia
| | - Mohamed Sharaf
- Department of Industrial Engineering, College of Engineering, King Saud University Riyadh Saudi Arabia
| | | |
Collapse
|
31
|
Jiang T, Meng X, Zhou Z, Wu Y, Tian Z, Liu Z, Lu G, Eginlidil M, Yu HD, Liu J, Huang W. Highly flexible and degradable memory electronics comprised of all-biocompatible materials. NANOSCALE 2021; 13:724-729. [PMID: 33393574 DOI: 10.1039/d0nr05858k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biocompatible materials have received increasing attention as one of the most important building blocks for flexible and transient memories. Herein, a fully biocompatible resistive switching (RS) memory electronic composed of a carbon dot (CD)-polyvinyl pyrrolidone (PVP) nanocomposite and a silver nanowire (Ag NW) network buried in a flexible gelatin film is introduced with promising nonvolatile RS characteristics for flexible and transient memory applications. The fabricated device exhibited a rewritable flash-type memory behavior, such as low operation voltage (≈-1.12 V), high ON/OFF ratio (>102), long retention time (over 104 s), and small bending radius (15 mm). As a proof of degradability, this transient memory can dissolve completely within 90 s after being immersed into deionized water at 55 °C; it can decompose naturally in soil within 6 days. This fully biocompatible memory electronic paves a novel way for flexible and wearable green electronics.
Collapse
Affiliation(s)
- Tongfen Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yu J, Luo M, Lv Z, Huang S, Hsu HH, Kuo CC, Han ST, Zhou Y. Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. NANOSCALE 2020; 12:23391-23423. [PMID: 33227110 DOI: 10.1039/d0nr06719a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The substantial amount of data generated every second in the big data age creates a pressing requirement for new and advanced data storage techniques. Luminescent nanomaterials (LNMs) not only possess the same optical properties as their bulk materials but also have unique electronic and mechanical characteristics due to the strong constraints of photons and electrons at the nanoscale, enabling the development of revolutionary methods for data storage with superhigh storage capacity, ultra-long working lifetime, and ultra-low power consumption. In this review, we investigate the latest achievements in LNMs for constructing next-generation data storage systems, with a focus on optical data storage and optoelectronic data storage. We summarize the LNMs used in data storage, namely upconversion nanomaterials, long persistence luminescent nanomaterials, and downconversion nanomaterials, and their applications in optical data storage and optoelectronic data storage. We conclude by discussing the superiority of the two types of data storage and survey the prospects for the field.
Collapse
Affiliation(s)
- Jinbo Yu
- Institute of Microscale Optoelectronics, Shenzhen University, 3688 Nanhai Road, Shenzhen, 518060, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
All-inkjet-printed MoS2 field-effect transistors on paper for low-cost and flexible electronics. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Lee T, Kim S, Kim J, Park SC, Yoon J, Park C, Sohn H, Ahn JH, Min J. Recent Advances in Biomolecule-Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3520. [PMID: 32784985 PMCID: PMC7475838 DOI: 10.3390/ma13163520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
With the acceleration of the Fourth Industrial Revolution, the development of information and communications technology requires innovative information storage devices and processing devices with low power and ultrahigh stability. Accordingly, bioelectronic devices have gained considerable attention as a promising alternative to silicon-based devices because of their various applications, including human-body-attached devices, biomaterial-based computation systems, and biomaterial-nanomaterial hybrid-based charge storage devices. Nanomaterial-based charge storage devices have witnessed considerable development owing to their similarity to conventional charge storage devices and their ease of applicability. The introduction of a biomaterial-to-nanomaterial-based system using a combination of biomolecules and nanostructures provides outstanding electrochemical, electrical, and optical properties that can be applied to the fabrication of charge storage devices. Here, we describe the recent advances in charge storage devices containing a biomolecule and nanoparticle heterolayer including (1) electrical resistive charge storage devices, (2) electrochemical biomemory devices, (3) field-effect transistors, and (4) biomemristors. Progress in biomolecule-nanomaterial heterolayer-based charge storage devices will lead to unprecedented opportunities for the integration of information and communications technology, biotechnology, and nanotechnology for the Fourth Industrial Revolution.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.K.); (J.K.); (C.P.); (H.S.)
| | - Soomin Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.K.); (J.K.); (C.P.); (H.S.)
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.K.); (J.K.); (C.P.); (H.S.)
| | - Sang-Chan Park
- Department of Electronic Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea;
| | - Jinho Yoon
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.K.); (J.K.); (C.P.); (H.S.)
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.K.); (J.K.); (C.P.); (H.S.)
| | - Jae-Hyuk Ahn
- Department of Electronic Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea;
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
35
|
Lan S, Zhong J, Li E, Yan Y, Wu X, Chen Q, Lin W, Chen H, Guo T. High-performance Nonvolatile Organic Photoelectronic Transistor Memory Based on Bulk Heterojunction Structure. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31716-31724. [PMID: 32551530 DOI: 10.1021/acsami.0c09221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Depending on the storage mechanisms, organic field-effect transistor (OFET) memory is usually divided into floating gate memory, ferroelectric memory, and polymer-electret-based memory. In this work, a new type of nonvolatile OFET memory is proposed by simply blending a p-type semiconductor and a n-type semiconductor without using an extra trapping layer. The results show that the memory window can be effectively modulated by the dopant concentration of the n-type semiconductor. With the addition of a 5% n-type semiconductor, blending devices exhibit a large memory window up to 57.7 V, an ON/OFF current ratio (ION/IOFF) ≈ 105, and a charge retention time of over 10 years, which is comparable or even better than those of most of the traditional OFET memories. The discontinuous n-type semiconductor is set as a charge-trapping center for charge storage due to the quantum well-like organic heterojunctions. The generalization of this method is also investigated in other organic systems. Moreover, the blend devices are also applied to optical memory and show multilevel optical storage, which are further scaled up to 8 × 8 array to map up two-dimensional (2D) optical images with long-term retention and reprogramming characteristic. The results reveal that the novel system design has great potential application in the field of digital image memory and photoelectronic system.
Collapse
Affiliation(s)
- Shuqiong Lan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Jianfeng Zhong
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Enlong Li
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Yujie Yan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Xiaomin Wu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Qizhen Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Weikun Lin
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Tailiang Guo
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| |
Collapse
|
36
|
Lin FJ, Yang CW, Chen HH, Tao YT. Alignment and Photopolymerization of Hexa- peri-hexabenzocoronene Derivatives Carrying Diacetylenic Side Chains for Charge-Transporting Application. J Am Chem Soc 2020; 142:11763-11771. [PMID: 32510215 DOI: 10.1021/jacs.0c02055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thin films of four discotic liquid-crystalline hexa-peri-hexabenzocoronene (HBC) derivatives carrying three diacetylenic side chains and three saturated alkyl chains at different positions around the central HBC core were prepared on phenyltrichlorosilane-modified SiO2 substrate by the Chinese brush-coating method. The brush-coated films of molecules with D3h symmetry and C1 symmetry all exhibited anisotropic alignment with an edge-on orientation and molecular π-π stacking along the coating direction on the surface, in contrast to the spin-coated films, where a mixture of face-on and edge-on orientations was obtained. Hexagonally packed columnar structure or lamella-like columnar structure was obtained, depending on the location of the diacetylenic unit along the chain. UV irradiation of the films resulted in cross-linking/polymerization of the molecular columns. Among them, the lamella-like structure with a diacetylene unit closer to the HBC core gave more closely packed and ordered HBC arrays with the poly(ene-yne) backbones stretching along the column direction, based on a variety of experimental evidence. A thin-film transistor based on this irradiated film gave a highest mobility of 1.5 cm2 V-1 s-1 along the column direction, which is a 3 orders of magnitude improvement over that of the monomeric film. However, for those with a diacetylenic unit extended farther away from the core, cross-linking between neighboring columns was suggested to occur and no mobility can be measured for devices based on those films.
Collapse
Affiliation(s)
- Fang-Ju Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan
| | - Hsiu-Hui Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yu-Tai Tao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
37
|
Generation and delivery of “Yamanaka factor” recombinant proteins mediated with magnetic iron oxide nanoparticles (MIONPs). APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Park HL, Lee Y, Kim N, Seo DG, Go GT, Lee TW. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903558. [PMID: 31559670 DOI: 10.1002/adma.201903558] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/10/2019] [Indexed: 05/08/2023]
Abstract
Flexible neuromorphic electronics that emulate biological neuronal systems constitute a promising candidate for next-generation wearable computing, soft robotics, and neuroprosthetics. For realization, with the achievement of simple synaptic behaviors in a single device, the construction of artificial synapses with various functions of sensing and responding and integrated systems to mimic complicated computing, sensing, and responding in biological systems is a prerequisite. Artificial synapses that have learning ability can perceive and react to events in the real world; these abilities expand the neuromorphic applications toward health monitoring and cybernetic devices in the future Internet of Things. To demonstrate the flexible neuromorphic systems successfully, it is essential to develop artificial synapses and nerves replicating the functionalities of the biological counterparts and satisfying the requirements for constructing the elements and the integrated systems such as flexibility, low power consumption, high-density integration, and biocompatibility. Here, the progress of flexible neuromorphic electronics is addressed, from basic backgrounds including synaptic characteristics, device structures, and mechanisms of artificial synapses and nerves, to applications for computing, soft robotics, and neuroprosthetics. Finally, future research directions toward wearable artificial neuromorphic systems are suggested for this emerging area.
Collapse
Affiliation(s)
- Hea-Lim Park
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeongjun Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Naryung Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Gyeong-Tak Go
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Engineering Research Research Institute of Advanced Materials, Nano Systems Institute (NSI), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
39
|
Sun L, Zhou Z, Zhong J, Shi Z, Mao Y, Li H, Cao J, Tao TH. Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000294. [PMID: 32162840 DOI: 10.1002/smll.202000294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Metamaterial (MM) sensors and devices, usually consisting of artificially structured composite materials with engineered responses that are mainly determined by the unit structure rather than the bulk properties or composition, offer new functionalities not readily available in nature. A set of implantable and resorbable therapeutic MM devices at terahertz (THz) frequencies are designed and fabricated by patterning magnesium split ring resonators on drug-loaded silk protein substrates with controllable device degradation and drug release rates. To demonstrate proof-of-concept, a set of silk-based, antibiotics-loaded MM devices, which can serve as degradable antibacterial skin patches with capabilities to monitor drug-release in real time are fabricated. The extent of drug release, which correlates with the degradation of the MM skin patch, can be monitored by analyzing the resonant responses in reflection during degradation using a portable THz camera. Animal experiments are performed to demonstrate the in vivo degradation process and the efficacy of the devices for antibacterial treatment. Thus, the implantable and resorbable therapeutic MM devices do not need to be retrieved once implanted, providing an appealing alternative for in-vivo sensing and in situ treatment applications.
Collapse
Affiliation(s)
- Long Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Hua Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Juncheng Cao
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| |
Collapse
|
40
|
Lv Z, Wang Y, Chen J, Wang J, Zhou Y, Han ST. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chem Rev 2020; 120:3941-4006. [DOI: 10.1021/acs.chemrev.9b00730] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yan Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jingrui Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junjie Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
41
|
Li L. Biomemristic Behavior for Water-Soluble Chitosan Blended with Graphene Quantum Dot Nanocomposite. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E559. [PMID: 32244863 PMCID: PMC7153374 DOI: 10.3390/nano10030559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 11/16/2022]
Abstract
Bionanocomposite has promising biomemristic behaviors for data storage inspired by a natural biomaterial matrix. Carboxylated chitosan (CCS), a water-soluble derivative of chitosan avoiding the acidic salt removal, has better biodegradability and bioactivity, and is able to absorb graphene quantum dots (GQDs) employed as charge-trapping centers. In this investigation, biomemristic devices based on water-soluble CCS:GQDs nanocomposites were successfully achieved with the aid of the spin-casting method. The promotion of binary biomemristic behaviors for Ni/CCS:GQDs/indium-tin-oxide (ITO) was evaluated for distinct weight ratios of the chemical components. Fourier transform infrared spectroscopy, Raman spectroscopy (temperature dependence), thermogravimetric analyses and scanning electron microscopy were performed to assess the nature of the CCS:GQDs nanocomposites. The fitting curves on the experimental data further confirmed that the conduction mechanism might be attributed to charge trapping-detrapping in the CCS:GQDs nanocomposite film. Advances in water-soluble CCS-based electronic devices would open new avenues in the biocompatibility and integration of high-performance biointegrated electronics.
Collapse
Affiliation(s)
- Lei Li
- HLJ Province Key Laboratories of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin 150080, China; ; Tel.: +86-136-7462-1831
- Research Center for Fiber Optic Sensing Technology National Local Joint Engineering, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
42
|
Pradhan B, Das S, Li J, Chowdhury F, Cherusseri J, Pandey D, Dev D, Krishnaprasad A, Barrios E, Towers A, Gesquiere A, Tetard L, Roy T, Thomas J. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. SCIENCE ADVANCES 2020; 6:eaay5225. [PMID: 32095529 PMCID: PMC7015692 DOI: 10.1126/sciadv.aay5225] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/25/2019] [Indexed: 05/22/2023]
Abstract
Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 108 AW-1 and specific detectivity of 4.72 × 1015 Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices.
Collapse
Affiliation(s)
- Basudev Pradhan
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Sonali Das
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Jinxin Li
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
| | - Farzana Chowdhury
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Jayesh Cherusseri
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Deepak Pandey
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Durjoy Dev
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA
| | - Adithi Krishnaprasad
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA
| | - Elizabeth Barrios
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Andrew Towers
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Andre Gesquiere
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Laurene Tetard
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA
| | - Tania Roy
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Corresponding author. (J.T.); (T.R.)
| | - Jayan Thomas
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Corresponding author. (J.T.); (T.R.)
| |
Collapse
|
43
|
Zhu S, Zhou G, Yuan W, Mao S, Yang F, Fu G, Sun B. Non-zero-crossing current-voltage hysteresis behavior induced by capacitive effects in bio-memristor. J Colloid Interface Sci 2020; 560:565-571. [DOI: 10.1016/j.jcis.2019.10.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
|
44
|
Hu X, Yin D, Xie J, Chen X, Bai C. Experimental study of viscosity characteristics of graphite/engine oil (5 W-40) nanofluids. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01240-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Ge J, Li D, Huang C, Zhao X, Qin J, Liu H, Ye W, Xu W, Liu Z, Pan S. Memristive synapses with high reproducibility for flexible neuromorphic networks based on biological nanocomposites. NANOSCALE 2020; 12:720-730. [PMID: 31829372 DOI: 10.1039/c9nr08001e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Memristive synapses from biomaterials are promising for building flexible and implantable artificial neuromorphic systems due to their remarkable mechanical and biological properties. However, these biological devices have relatively poor memristive switching characteristics, and thus fail to meet the requirement of neuromorphic networks for high learning accuracy. Here, memristive synapses based on carrageenan nanocomposites that possess desirable characteristics are demonstrated. These devices show highly reproducible analog resistive switching behaviors with 250 conductance states, low write noise, good write linearity, high retention of more than 104 s and endurance for at least 106 pulses. The enhanced switching properties are attributed to controllable and confined conductive filament growth, owing to the synergistic effect of self-assembled silver nanocluster doping and nanocone-shaped electrode contact. Moreover, the devices exhibit excellent reliability after 1000 bending cycles. Simulations including the non-ideal factors prove that the synaptic device array can operate with an online learning accuracy of 94.3%. These findings enable broader applications of biomaterials in flexible memristive devices and neuromorphic systems.
Collapse
Affiliation(s)
- Jun Ge
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xing X, Chen M, Gong Y, Lv Z, Han ST, Zhou Y. Building memory devices from biocomposite electronic materials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:100-121. [PMID: 32165990 PMCID: PMC7054979 DOI: 10.1080/14686996.2020.1725395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 05/05/2023]
Abstract
Natural biomaterials are potential candidates for the next generation of green electronics due to their biocompatibility and biodegradability. On the other hand, the application of biocomposite systems in information storage, photoelectrochemical sensing, and biomedicine has further promoted the progress of environmentally benign bioelectronics. Here, we mainly review recent progress in the development of biocomposites in data storage, focusing on the application of biocomposites in resistive random-access memory (RRAM) and field effect transistors (FET) with their device structure, working mechanism, flexibility, transient characteristics. Specifically, we discuss the application of biocomposite-based non-volatile memories for simulating biological synapse. Finally, the application prospect and development potential of biocomposites are presented.
Collapse
Affiliation(s)
- Xuechao Xing
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, P. R. China
| | - Meng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Yue Gong
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, P. R. China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
- CONTACT Ye Zhou Institute for Advanced Study, Shenzhen University, Shenzhen518060, P. R. China
| |
Collapse
|
47
|
Wu W, Lin XL, Liu Q, He Y, Huang YR, Chen B, Li HH, Chen ZR. The engineering of stilbazolium/iodocuprate hybrids with optical/electrical performances by modulating inter-molecular charge transfer among H-aggregated chromophores. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01672d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Good electrical bistability performances in stilbazolium/iodocuprate hybrids stem from the better face-to-face π⋯π stacking interactions induced by the substituents with appropriate lengths and electronic natures.
Collapse
Affiliation(s)
- Wei Wu
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | | | - Qian Liu
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Yan He
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | | | - Bin Chen
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Hao-Hong Li
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | | |
Collapse
|
48
|
Ye C, Xu Z, Chang KC, Li L, Lin X, Zhang R, Zhou Y, Xiong W, Kuo TP. Hafnium nanocrystals observed in a HfTiO compound film bring about excellent performance of flexible selectors in memory integration. NANOSCALE 2019; 11:20792-20796. [PMID: 31657422 DOI: 10.1039/c9nr07470h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a HfTiO compound film on polyethylene naphthalate (PEN) has been investigated and designed as the selective layer material to fabricate flexible selector devices, since a selector is considered as a promising candidate for solving the sneak current issues in high-density memory integration. According to material analysis, hafnium nanocrystals observed in the HfTiO film play a key role in the performance improvement of the selector. The correlation between the HfTiO material and the corresponding current conduction mechanisms and the proposed physical mechanism model with hafnium nanocrystals have been thoroughly investigated to clarify and explain the enhanced selective behavior including high uniformity, excellent endurance and fast operation speed. Moreover, the selector with the HfTiO film exhibits superior bending reliability with no working performance degradation under a bending radius ranging from 50 mm to 30 mm, indicating the excellent flexibility and applicability of the selector in flexible application scenarios. These achievements of the Pt/HfTiO/ITO selector induced by the HfTiO film with hafnium crystals offer great potential for material and interface design in future memory integration and flexible applications.
Collapse
Affiliation(s)
- Cong Ye
- Faculty of Physics and Electronic Science, Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei Key Laboratory of Applied Mathematics, Wuhan 430062, China
| | - Zhong Xu
- Faculty of Physics and Electronic Science, Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei Key Laboratory of Applied Mathematics, Wuhan 430062, China
| | - Kuan-Chang Chang
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Lei Li
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xinnan Lin
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Rui Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yi Zhou
- Faculty of Physics and Electronic Science, Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei Key Laboratory of Applied Mathematics, Wuhan 430062, China
| | - Wen Xiong
- Faculty of Physics and Electronic Science, Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei Key Laboratory of Applied Mathematics, Wuhan 430062, China
| | - Tzu-Peng Kuo
- Department of Physics, National Sun Yat-sen University, Kaohsiung 804, Taiwan and Institute of Materials and Optoelectronics, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
49
|
Guimarães ML, da Silva FAG, da Costa MM, de Oliveira HP. Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01181-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Sun B, Guo T, Zhou G, Ranjan S, Hou W, Hou Y, Zhao Y. Tunneling of photon-generated carrier in the interface barrier induced resistive switching memory behaviour. J Colloid Interface Sci 2019; 553:682-687. [DOI: 10.1016/j.jcis.2019.06.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/05/2019] [Accepted: 06/23/2019] [Indexed: 12/18/2022]
|