1
|
Marquez G, Dechiraju H, Baniya P, Li H, Tebyani M, Pansodtee P, Jafari M, Barbee A, Orozco J, Teodorescu M, Rolandi M, Gomez M. Delivering biochemicals with precision using bioelectronic devices enhanced with feedback control. PLoS One 2024; 19:e0298286. [PMID: 38743674 PMCID: PMC11093312 DOI: 10.1371/journal.pone.0298286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/22/2024] [Indexed: 05/16/2024] Open
Abstract
Precision medicine endeavors to personalize treatments, considering individual variations in patient responses based on factors like genetic mutations, age, and diet. Integrating this approach dynamically, bioelectronics equipped with real-time sensing and intelligent actuation present a promising avenue. Devices such as ion pumps hold potential for precise therapeutic drug delivery, a pivotal aspect of effective precision medicine. However, implementing bioelectronic devices in precision medicine encounters formidable challenges. Variability in device performance due to fabrication inconsistencies and operational limitations, including voltage saturation, presents significant hurdles. To address this, closed-loop control with adaptive capabilities and explicit handling of saturation becomes imperative. Our research introduces an enhanced sliding mode controller capable of managing saturation, adept at satisfactory control actions amidst model uncertainties. To evaluate the controller's effectiveness, we conducted in silico experiments using an extended mathematical model of the proton pump. Subsequently, we compared the performance of our developed controller with classical Proportional Integral Derivative (PID) and machine learning (ML)-based controllers. Furthermore, in vitro experiments assessed the controller's efficacy using various reference signals for controlled Fluoxetine delivery. These experiments showcased consistent performance across diverse input signals, maintaining the current value near the reference with a relative error of less than 7% in all trials. Our findings underscore the potential of the developed controller to address challenges in bioelectronic device implementation, offering reliable precision in drug delivery strategies within the realm of precision medicine.
Collapse
Affiliation(s)
- Giovanny Marquez
- Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Harika Dechiraju
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Prabhat Baniya
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Houpu Li
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Maryam Tebyani
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Pattawong Pansodtee
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Mohammad Jafari
- Department of Earth and Space Sciences, Columbus State University, Columbus, GA, United States of America
| | - Alexie Barbee
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Jonathan Orozco
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Mircea Teodorescu
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Marco Rolandi
- Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| | - Marcella Gomez
- Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America
| |
Collapse
|
2
|
Chen S, Liu TL, Dong Y, Li J. A Wireless, Regeneratable Cocaine Sensing Scheme Enabled by Allosteric Regulation of pH Sensitive Aptamers. ACS NANO 2022; 16:20922-20936. [PMID: 36468646 DOI: 10.1021/acsnano.2c08511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A key challenge for achieving continuous biosensing with existing technologies is the poor reusability of the biorecognition interface due to the difficulty in the dissociation of analytes from the bioreceptors upon surface saturation. In this work, we introduce a regeneratable biosensing scheme enabled by allosteric regulation of a re-engineered pH sensitive anti-cocaine aptamer. The aptamer can regain its affinity with target analytes due to proton-promoted duplex-to-triplex transition in DNA configuration followed by the release of adsorbed analytes. A Pd/PdHx electrode placed next to the sensor can enable the pH regulation of the local chemical environment via electrochemical reactions. Demonstration of a "flower-shaped", stretchable, and inductively coupled electronic system with sensing and energy harvesting capabilities provides a promising route to designing wireless devices in biointegrated forms. These advances have the potential for future development of electronic sensing platforms with on-chip regeneration capability for continuous, quantitative, and real-time monitoring of chemical and biological markers.
Collapse
Affiliation(s)
- Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43210, United States
| | - Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43210, United States
| | - Yan Dong
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43210, United States
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43210, United States
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
3
|
pH Modulation in Adhesive Cells with a Protonic Biotransducer. Bioelectrochemistry 2022; 147:108202. [DOI: 10.1016/j.bioelechem.2022.108202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
|
4
|
Nandi R, Agam Y, Amdursky N. A Protein-Based Free-Standing Proton-Conducting Transparent Elastomer for Large-Scale Sensing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101208. [PMID: 34219263 DOI: 10.1002/adma.202101208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/20/2021] [Indexed: 05/26/2023]
Abstract
A most important endeavor in modern materials' research is the current shift toward green environmental and sustainable materials. Natural resources are one of the attractive building blocks for making environmentally friendly materials. In most cases, however, the performance of nature-derived materials is inferior to the performance of carefully designed synthetic materials. This is especially true for conductive polymers, which is the topic here. Inspired by the natural role of proteins in mediating protons, their utilization in the creation of a free-standing transparent polymer with a highly elastic nature and proton conductivity comparable to that of synthetic polymers, is demonstrated. Importantly, the polymerization process relies on natural protein crosslinkers and is spontaneous and energy-efficient. The protein used, bovine serum albumin, is one of the most affordable proteins, resulting in the ability to create large-scale materials at a low cost. Due to the inherent biodegradability and biocompatibility of the elastomer, it is promising for biomedical applications. Here, its immediate utilization as a solid-state interface for sensing of electrophysiological signals, is shown.
Collapse
Affiliation(s)
- Ramesh Nandi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuval Agam
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
5
|
Zhao Z, Li Q, Chen L, Zhao Y, Gong J, Li Z, Zhang J. A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring. LAB ON A CHIP 2021; 21:916-932. [PMID: 33438703 DOI: 10.1039/d0lc01075h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Flexible biosensors for monitoring systems have emerged as a promising portable diagnostics platform due to their potential for in situ point-of-care (POC) analytic devices. Assessment of biological analytes in sweat can provide essential information for human physiology. Conventional measurements rely on laboratory equipment. This work exploits an alternative approach for epidermal sweat sensing and detection through a wearable microfluidic thread/fabric-based analytical device (μTFAD). This μTFAD is a flexible and skin-mounted band that integrates hydrophilic dot-patterns with a hydrophobic surface via embroidering thread into fabric. After chromogenic reaction treatment, the thread-embroidered patterns serve as the detection zones for sweat transferred by the hydrophilic threads, enabling precise analysis of local sweat loss, pH and concentrations of chloride and glucose in sweat. Colorimetric reference markers embroidered surrounding the working dots provide accurate data readout either by apparent color comparison or by digital acquirement through smartphone-assisted calibration plots. On-body tests were conducted on five healthy volunteers. Detection results of pH, chloride and glucose in sweat from the volunteers were 5.0-6.0, 25-80 mM and 50-200 μM by apparent color comparison with reference markers through direct visual observation. Similar results of 5.47-6.30, 50-77 mM and 47-66 μM for pH, chloride and glucose were obtained through calibration plots based on the RGB values from the smartphone app Lanse®. The limit of detection (LOD) is 10 mM for chloride concentration, 4.0-9.0 for pH and 10 μM for glucose concentration, respectively. For local sweat loss, it is found that the forehead is the region of heavy sweat loss. Sweat secretion is a cumulating process with a lower sweat rate at the beginning which increases as body movement continues along with increased heat production. These results demonstrate the capability and availability of our sensing device for quantitative detection of multiple biomarkers in sweat, suggesting the great potential for development of feasible non-invasive biosensors, with a similar performance to conventional measurements.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Linna Chen
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Yu Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China and Collaborative Innovation Center for Eco-Textiles of Shandong Province, Shandong, Qingdao 266071, China
| |
Collapse
|
6
|
Abstract
The development of wearable sensors is aimed at enabling continuous real-time health monitoring, which leads to timely and precise diagnosis anytime and anywhere. Unlike conventional wearable sensors that are somewhat bulky, rigid, and planar, research for next-generation wearable sensors has been focused on establishing fully-wearable systems. To attain such excellent wearability while providing accurate and reliable measurements, fabrication strategies should include (1) proper choices of materials and structural designs, (2) constructing efficient wireless power and data transmission systems, and (3) developing highly-integrated sensing systems. Herein, we discuss recent advances in wearable devices for non-invasive sensing, with focuses on materials design, nano/microfabrication, sensors, wireless technologies, and the integration of those.
Collapse
|
7
|
Gluschke JG, Seidl J, Lyttleton RW, Nguyen K, Lagier M, Meyer F, Krogstrup P, Nygård J, Lehmann S, Mostert AB, Meredith P, Micolich AP. Integrated bioelectronic proton-gated logic elements utilizing nanoscale patterned Nafion. MATERIALS HORIZONS 2021; 8:224-233. [PMID: 34821301 DOI: 10.1039/d0mh01070g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A central endeavour in bioelectronics is the development of logic elements to transduce and process ionic to electronic signals. Motivated by this challenge, we report fully monolithic, nanoscale logic elements featuring n- and p-type nanowires as electronic channels that are proton-gated by electron-beam patterned Nafion. We demonstrate inverter circuits with state-of-the-art ion-to-electron transduction performance giving DC gain exceeding 5 and frequency response up to 2 kHz. A key innovation facilitating the logic integration is a new electron-beam process for patterning Nafion with linewidths down to 125 nm. This process delivers feature sizes compatible with low voltage, fast switching elements. This expands the scope for Nafion as a versatile patternable high-proton-conductivity element for bioelectronics and other applications requiring nanoengineered protonic membranes and electrodes.
Collapse
Affiliation(s)
- J G Gluschke
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Strakosas X, Seitanidou M, Tybrandt K, Berggren M, Simon DT. An electronic proton-trapping ion pump for selective drug delivery. SCIENCE ADVANCES 2021; 7:7/5/eabd8738. [PMID: 33514549 PMCID: PMC7846156 DOI: 10.1126/sciadv.abd8738] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/11/2020] [Indexed: 05/24/2023]
Abstract
The organic electronic ion pump (OEIP) delivers ions and charged drugs from a source electrolyte, through a charge-selective membrane, to a target electrolyte upon an electric bias. OEIPs have successfully delivered γ-aminobutyric acid (GABA), a neurotransmitter that reduces neuronal excitations, in vitro, and in brain tissue to terminate induced epileptic seizures. However, during pumping, protons (H+), which exhibit higher ionic mobility than GABA, are also delivered and may potentially cause side effects due to large local changes in pH. To reduce the proton transfer, we introduced proton traps along the selective channel membrane. The traps are based on palladium (Pd) electrodes, which selectively absorb protons into their structure. The proton-trapping Pd-OEIP improves the overall performance of the current state-of-the-art OEIP, namely, its temporal resolution, efficiency, selectivity, and dosage precision.
Collapse
Affiliation(s)
- X Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - M Seitanidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - K Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - M Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - D T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| |
Collapse
|
9
|
Possanzini L, Decataldo F, Mariani F, Gualandi I, Tessarolo M, Scavetta E, Fraboni B. Textile sensors platform for the selective and simultaneous detection of chloride ion and pH in sweat. Sci Rep 2020; 10:17180. [PMID: 33057081 PMCID: PMC7560666 DOI: 10.1038/s41598-020-74337-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
The development of wearable sensors, in particular fully-textile ones, is one of the most interesting open challenges in bioelectronics. Several and significant steps forward have been taken in the last decade in order to achieve a compact, lightweight, cost-effective, and easy to wear platform for healthcare and sport activities real-time monitoring. We have developed a fully textile, multi-thread biosensing platform that can detect different bioanalytes simultaneously without interference, and, as an example, we propose it for testing chloride ions (Cl-) concentration and pH level. The textile sensors are simple threads, based on natural and synthetic fibers, coated with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) and properly functionalized with either a nano-composite material or a chemical sensitive dye to obtain Cl- and pH selective sensing functionality, respectively. The single-thread sensors show excellent sensitivity, reproducibility, selectivity, long term stability and the ability to work with small volumes of solution. The performance of the developed textile devices is demonstrated both in buffer solution and in artificial human perspiration to perform on-demand and point-of-care epidermal fluids analysis. The possibility to easily knit or sew the thread sensors into fabrics opens up a new vision for a textile wearable multi-sensing platform achievable in the near future.
Collapse
Affiliation(s)
- Luca Possanzini
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy.
| | - Francesco Decataldo
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Marta Tessarolo
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Beatrice Fraboni
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| |
Collapse
|
10
|
Nag OK, Muroski ME, Hastman DA, Almeida B, Medintz IL, Huston AL, Delehanty JB. Nanoparticle-Mediated Visualization and Control of Cellular Membrane Potential: Strategies, Progress, and Remaining Issues. ACS NANO 2020; 14:2659-2677. [PMID: 32078291 DOI: 10.1021/acsnano.9b10163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interfacing of nanoparticle (NP) materials with cells, tissues, and organisms for a range of applications including imaging, sensing, and drug delivery continues at a rampant pace. An emerging theme in this area is the use of NPs and nanostructured surfaces for the imaging and/or control of cellular membrane potential (MP). Given the important role that MP plays in cellular biology, both in normal physiology and in disease, new materials and methods are continually being developed to probe the activity of electrically excitable cells such as neurons and muscle cells. In this Review, we highlight the current state of the art for both the visualization and control of MP using traditional materials and techniques, discuss the advantageous features of NPs for performing these functions, and present recent examples from the literature of how NP materials have been implemented for the visualization and control of the activity of electrically excitable cells. We conclude with a forward-looking perspective of how we expect to see this field progress in the near term and further into the future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Megan E Muroski
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Bethany Almeida
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Alan L Huston
- Division of Optical Sciences, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|