1
|
Song Y, Sun W, Shi X, Qin Z, Wu Q, Yin S, Liang S, Liu Z, Sun H. Bio-inspired e-skin with integrated antifouling and comfortable wearing for self-powered motion monitoring and ultra-long-range human-machine interaction. J Colloid Interface Sci 2025; 679:1299-1310. [PMID: 39427584 DOI: 10.1016/j.jcis.2024.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Electronic skin (e-skin) inspired by the sensory function of the skin demonstrates broad application prospects in health, medicine, and human-machine interaction. Herein, we developed a self-powered all-fiber bio-inspired e-skin (AFBI E-skin) that integrated functions of antifouling, antibacterial, biocompatibility and breathability. AFBI E-skin was composed of three layers of electrospun nanofibrous films. The superhydrophobic outer layer Poly(vinylidene fluoride)-silica nanofibrous films (PVDF-SiO2 NFs) possessed antifouling properties against common liquids in daily life and resisted bacterial adhesion. The polyaniline nanofibrous films (PANI NFs) were used as the electrode layer, and it had strong "static" antibacterial capability. Meanwhile, the inner layer Polylactic acid nanofibrous films (PLA NFs) served as a biocompatible substrate. Based on the triboelectric nanogenerator principle, AFBI E-skin not only enabled self-powered sensing but also utilized the generated electrical stimulation for "dynamic" antibacterial. The "dynamic-static" synergistic antibacterial strategy greatly enhanced the antibacterial effect. AFBI E-skin could be used for self-powered motion monitoring to obtain a stable signal output even when water was splashed on its surface. Finally, based on AFBI E-skin, we constructed an ultra-long-range human-machine interaction control system, enabling synchronized hand gestures between human hand and robotic hand in any internet-covered area worldwide theoretically. AFBI E-skin exhibited vast application potential in fields like smart wearable electronics and intelligent robotics.
Collapse
Affiliation(s)
- Yudong Song
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Wuliang Sun
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xinjian Shi
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhen Qin
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Qianqian Wu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
2
|
Wen S, Zhang R, Zhao Y, Xu X, Ji S. Patterning Adhesive Layers for Array Electrodes via Electrochemically Grafted Polymers. ACS OMEGA 2025; 10:3190-3198. [PMID: 39895730 PMCID: PMC11780560 DOI: 10.1021/acsomega.4c10830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Electrophysiological sensors (electrodes) are used to collect complex electrophysiological signals, providing extensive information about the body's condition. Reliable signal acquisition necessitates stable skin-electrode interfaces to prevent adverse effects arising from interface variations. Although the incorporation of conductive adhesive layers can improve the stability of these interfaces, in array electrodes, the layer may also cause short circuits and signal crosstalk. Here, we propose a general strategy for patterning the adhesive layer of array electrodes based on electrochemically grafted adhesive polymers (EGAPs). Utilizing the conductivity differences between the sensing sites and the substrate material of flexible electrodes, spatial selective loading of adhesive and ionically conductive polymers can be achieved through in situ electrochemical reactions, thus realizing spontaneous patterning. This EGAP-based method allows for a rapid and selective electrode surface modification in just two steps. Furthermore, array electrodes with EGAP acquired stable electrophysiological signals while improving the stability of the skin-electrode interface and the quality of signal collected and effectively avoided signal crosstalk between arrayed sensing sites.
Collapse
Affiliation(s)
- Shuai Wen
- Institute
of Functional Nano & Soft Materials (FUNSOM), College of Nano
Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow
University, Suzhou 215123, China
| | - Ruipeng Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), College of Nano
Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow
University, Suzhou 215123, China
| | - Yahui Zhao
- Institute
of Functional Nano & Soft Materials (FUNSOM), College of Nano
Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow
University, Suzhou 215123, China
| | - Xinyue Xu
- Department
of Polymer Science and Engineering, College of Chemistry, Chemical
Engineering and Materials Science, Soochow
University, Suzhou 215123, China
| | - Shaobo Ji
- Institute
of Functional Nano & Soft Materials (FUNSOM), College of Nano
Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based
Functional Materials & Devices, Soochow
University, Suzhou 215123, China
| |
Collapse
|
3
|
Belay AN, Guo R, Ahmadian Koudakan P, Pan S. Biointerface engineering of flexible and wearable electronics. Chem Commun (Camb) 2025. [PMID: 39838849 DOI: 10.1039/d4cc06078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Biointerface sensing is a cutting-edge interdisciplinary field that merges conceptual and practical aspects. Wearable bioelectronics enable efficient interaction and close contact with biological components such as tissues and organs, paving the way for a wide range of medical applications, including personal health monitoring and medical intervention. To be applicable in real-world settings, the patches must be stable and adhere to the skin without causing discomfort or allergies in both wet and dry conditions, as well as other desirable features such as being ultra-soft, thin, flexible, and stretchable. Biosensors have emerged as promising tools primarily used to directly detect biological and electrophysiological signals, enhancing the efficacy of personalized medical treatments and enabling accurate tracking of human well-being. This review highlights the engineering of skin-tissue surfaces/interfaces and their interactions with wearable patches, aiming for both a broad and in-depth understanding of the mechanical and physicochemical properties required for the advancement of flexible and wearable skin patches. Specifically, the advantages of flexible bioelectronics and sensors with optimized surface geometry for long-term diagnosis are discussed. This insight aims to guide the future development of functional materials that can interact with human tissue in a controlled manner. Finally, we provide perspectives on the challenges and potential applications of biointerface engineering in wearable devices.
Collapse
Affiliation(s)
- Alebel Nibret Belay
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | - Shuaijun Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
4
|
Lai J, Xiao L, Zhu B, Xie L, Jiang H. 3D printable and myoelectrically sensitive hydrogel for smart prosthetic hand control. MICROSYSTEMS & NANOENGINEERING 2025; 11:15. [PMID: 39833177 PMCID: PMC11747008 DOI: 10.1038/s41378-024-00825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 01/22/2025]
Abstract
Surface electromyogram (sEMG) serves as a means to discern human movement intentions, achieved by applying epidermal electrodes to specific body regions. However, it is difficult to obtain high-fidelity sEMG recordings in areas with intricate curved surfaces, such as the body, because regular sEMG electrodes have stiff structures. In this study, we developed myoelectrically sensitive hydrogels via 3D printing and integrated them into a stretchable, flexible, and high-density sEMG electrodes array. This electrode array offered a series of excellent human-machine interface (HMI) features, including conformal adherence to the skin, high electron-to-ion conductivity (and thus lower contact impedance), and sustained stability over extended periods. These attributes render our electrodes more conducive than commercial electrodes for long-term wearing and high-fidelity sEMG recording at complicated skin interfaces. Systematic in vivo studies were used to investigate its efficacy to control a prosthetic hand by decoding sEMG signals from the human hand via a multiple-channel readout circuit and a sophisticated artificial intelligence algorithm. Our findings demonstrate that the 3D printed gel myoelectric sensing system enables real-time and highly precise control of a prosthetic hand.
Collapse
Affiliation(s)
- Jinxin Lai
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Longya Xiao
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Beichen Zhu
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Longhan Xie
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.
| | - Hongjie Jiang
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.
| |
Collapse
|
5
|
Sun Y, He W, Jiang C, Li J, Liu J, Liu M. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. NANO-MICRO LETTERS 2025; 17:109. [PMID: 39812886 PMCID: PMC11735798 DOI: 10.1007/s40820-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films. While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene, the rapid development of new 2D materials with exotic properties has opened up novel applications, particularly in smart interaction and integrated functionalities. This review aims to consolidate recent progress, highlight the unique advantages of 2D materials, and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices. We begin with an in-depth analysis of the advantages, sensing mechanisms, and potential applications of 2D materials in wearable biodevice fabrication. Following this, we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body. Special attention is given to showcasing the integration of multi-functionality in 2D smart devices, mainly including self-power supply, integrated diagnosis/treatment, and human-machine interaction. Finally, the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of 2D materials for advanced biodevices.
Collapse
Affiliation(s)
- Yingzhi Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Weiyi He
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Can Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
6
|
Liu T, Mao Y, Dou H, Zhang W, Yang J, Wu P, Li D, Mu X. Emerging Wearable Acoustic Sensing Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2408653. [PMID: 39749384 DOI: 10.1002/advs.202408653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Indexed: 01/04/2025]
Abstract
Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy. Furthermore, with the recent development of artificial intelligence technology applied to speech recognition, speech recognition devices, and systems capable of assisting disabled individuals in interacting with scenes are constantly being updated. This review meticulously summarizes the sensing mechanisms, materials, structural design, and multidisciplinary applications of wearable acoustic devices applied to human health and human-computer interaction. Further, the advantages and disadvantages of the different approaches used in flexible acoustic devices in various fields are examined. Finally, the current challenges and a roadmap for future research are analyzed based on existing research progress to achieve more comprehensive and personalized healthcare.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Yuchen Mao
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Hanjie Dou
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Wangyang Zhang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Jiaqian Yang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Pengfan Wu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
7
|
Du X, Yang L, Shi X, Ye C, Wang Y, Song D, Xiong W, Gu X, Lu C, Liu N. Ultrathin Bioelectrode Array with Improved Electrochemical Performance for Electrophysiological Sensing and Modulation. ACS NANO 2024; 18:34971-34985. [PMID: 39665785 DOI: 10.1021/acsnano.4c13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
To achieve high accuracy and effectiveness in sensing and modulating neural activity, efficient charge-transfer biointerfaces and a high spatiotemporal resolution are required. Ultrathin bioelectrode arrays exhibiting mechanical compliance with biological tissues offer such biointerfaces. However, their thinness often leads to a lack of mechano-electrical stability or sufficiently high electrochemical capacitance, thus deteriorating their overall performance. Here, we report ultrathin (∼115 nm) bioelectrode arrays that simultaneously enable ultraconformability, mechano-electrical stability and high electrochemical performance. These arrays show high opto-electrical conductivity (2060 S cm-1@88% transparency), mechanical stretchability (110% strain), and excellent electrochemical properties (24.5 mC cm-2 charge storage capacity and 3.5 times lower interfacial impedance than commercial electrodes). The improved mechano-electrical and electrochemical performance is attributed to the synergistic interactions within the poly(3,4-ethylenedioxythiophene) sulfonate (PEDOT:PSS)/graphene oxide (GO) interpenetrating network (PGIN), where π-π and hydrogen bonding interactions improve conductive pathways between PEDOT chains and enhance the charge-transfer mobility. This ultrathin bioelectrode is compatible with photolithography processing and provides spatiotemporally precise signal mapping capabilities for sensing and modulating neuromuscular activity. By capturing weak multichannel facial electromyography signals and applying machine learning algorithms, we achieve high accuracy in silent speech recognition. Moreover, the high transparency of the bioelectrode allows simultaneous recording of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals, facilitating dual-mode brain activity analysis with both high temporal and high spatial resolution.
Collapse
Affiliation(s)
- Xiaojia Du
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Leyi Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaohu Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Chujie Ye
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P. R. China
| | - Yunfei Wang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Dekui Song
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei Xiong
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P. R. China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
8
|
Abstract
Soft materials are crucial for epidermal interfaces in biomedical devices due to their capability to conform to the body compared to rigid inorganic materials. Gels, liquids, and polymers have been extensively explored, but they lack sufficient electrical and thermal conductivity required for many application settings. Gallium-based alloys are molten metals at room temperature with exceptional electrical and thermal conductivity. These liquid metals and their composites can be directly applied onto the skin as interface materials. In this Spotlight on Applications, we focus on the rapidly evolving field of liquid metal-enabled epidermal interfaces featuring unique physical properties beyond traditional gels and polymers. We delve into the role of liquid metal in electrical and thermal biointerfaces in various epidermal applications. Current challenges and future directions in this active area are also discussed.
Collapse
Affiliation(s)
- Ting Fang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, Jiangsu, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, Jiangsu, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, Jiangsu, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, Jiangsu, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, Jiangsu, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, Jiangsu, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
| |
Collapse
|
9
|
Dong J, Hou J, Peng Y, Zhang Y, Liu H, Long J, Park S, Liu T, Huang Y. Breathable and Stretchable Epidermal Electronics for Health Management: Recent Advances and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409071. [PMID: 39420650 DOI: 10.1002/adma.202409071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Advanced epidermal electronic devices, capable of real-time monitoring of physical, physiological, and biochemical signals and administering appropriate therapeutics, are revolutionizing personalized healthcare technology. However, conventional portable electronic devices are predominantly constructed from impermeable and rigid materials, which thus leads to the mechanical and biochemical disparities between the devices and human tissues, resulting in skin irritation, tissue damage, compromised signal-to-noise ratio (SNR), and limited operational lifespans. To address these limitations, a new generation of wearable on-skin electronics built on stretchable and porous substrates has emerged. These substrates offer significant advantages including breathability, conformability, biocompatibility, and mechanical robustness, thus providing solutions for the aforementioned challenges. However, given their diverse nature and varying application scenarios, the careful selection and engineering of suitable substrates is paramount when developing high-performance on-skin electronics tailored to specific applications. This comprehensive review begins with an overview of various stretchable porous substrates, specifically focusing on their fundamental design principles, fabrication processes, and practical applications. Subsequently, a concise comparison of various methods is offered to fabricate epidermal electronics by applying these porous substrates. Following these, the latest advancements and applications of these electronics are highlighted. Finally, the current challenges are summarized and potential future directions in this dynamic field are explored.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiayu Hou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuxi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haoran Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiayan Long
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Wang L, Kong D. Stretchable and Self-Adhesive Conductors for Smart Epidermal Electronics. Macromol Rapid Commun 2024:e2400774. [PMID: 39579092 DOI: 10.1002/marc.202400774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Epidermal electronics utilize deformable devices that are seamlessly integrated into the body for various cutting-edge applications. Stretchable conductors are essential for creating electrodes in these devices, allowing them to interface with the skin for sensing and stimulation. Despite considerable progress in improved deformability, these conductors may not easily adhere to the skin for long-term use. There is a growing interest in imparting self-adhesive properties to epidermal devices to ensure secure integration with the body. This article focuses on the emerging field of stretchable and self-adhesive conductors. It explores the design strategy required to enable stretchability and conformability in these materials and discusses their pivotal applications in smart epidermal electronics. Additionally, this article also addresses the current challenges and future directions in this dynamic area of research.
Collapse
Affiliation(s)
- Lin Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210021, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210021, China
| |
Collapse
|
11
|
Zhao Z, Huang C, Zeng H. Zwitterion-Conjugated Protein Coatings for Enhanced Antifouling in Complex Biofluids: Underlying Molecular Interaction Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39561020 DOI: 10.1021/acs.langmuir.4c03975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Biofouling can cause severe infections, device malfunctions, and failures in diagnostics and therapeutics. Proteins such as bovine serum albumin (BSA) have recently been used as coatings to resist biofouling because they combine surface anchoring and antifouling properties. However, their antifouling effectiveness will significantly deteriorate in complex biofluids with high salinity, limiting their practical applications. In this work, we developed a zwitterion-conjugated protein with enhanced antifouling capability by grafting zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) onto BSA protein via a click reaction. This conjugated protein can easily anchor on various substrates, both inorganic and organic, and exhibits efficient and broad-spectrum fouling resistance to metabolites, proteins, and complex biofluids. Even in the complex fetal bovine serum with higher salinity, the BSA@MPC coating can also maintain 99% fouling resistance robustly, over 6-fold superior to native BSA-coated surfaces in antifouling capability. Direct surface forces measurement reveals that such outstanding antifouling properties of conjugated protein BSA@MPC could be attributed to the stable hydration layer on its surface and the steric repulsion from the antipolyelectrolyte behavior of zwitterionic MPC polymer in the high-salinity environment. Our findings advance the development of protein-based functional materials and provide valuable insights for designing novel antifouling surfaces for marine, food, and bioengineering applications.
Collapse
Affiliation(s)
- Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
12
|
Li T, Ding Y, Teng C, Zheng Y, Wang X, Zhou D. Spray-Coated Ultrathin and Porous Films for Physiological Sensing and Force Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60625-60632. [PMID: 39453918 DOI: 10.1021/acsami.4c11179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Epidermal electronics employed on human skin for the long term require good breathability and nonforeign wearing. In this work, we combine phase separation and spray coating to fabricate a porous and ultrathin electrode within minutes as well as micrometer-scale porous pressure sensors. The resulting electrodes show a water vapor transmission rate of 18.4 mg·cm-2·h-1, sheet resistance of 5.2 Ω/sq, and thickness below 5 μm. The introduction of the biogel further reduced the electrode-skin impedance, which is lower than that of the commercial gel electrode, indicating that the electrode can have a high degree of conformal contact with the skin. The epidermal electronics prepared by this strategy exhibit an excellent performance in force sensing. Such results strongly prove the efficiency and practicality of the strategy.
Collapse
Affiliation(s)
- Tang Li
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yichen Ding
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chao Teng
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Yan Zheng
- Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoliang Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
13
|
Miyamoto K, Miller RM, Voors‐Pette C, Oosterhaven JAF, van den Dobbelsteen M, Mihara K, Geldof M, Sato Y, Matsuda N, Kirita S, Sawa M, Arimura A. Safety, pharmacokinetics, and pharmacodynamics of sofnobrutinib, a novel non-covalent BTK inhibitor, in healthy subjects: First-in-human phase I study. Clin Transl Sci 2024; 17:e70060. [PMID: 39523516 PMCID: PMC11551066 DOI: 10.1111/cts.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Bruton's tyrosine kinase (BTK) is a potential therapeutic target for allergic and autoimmune diseases. This first-in-human phase I study evaluated safety, pharmacokinetic, and pharmacodynamic profiles of sofnobrutinib (formerly AS-0871), a highly selective, orally available, non-covalent BTK inhibitor, in healthy adult subjects. Single ascending doses (SAD; 5-900 mg) and multiple ascending doses (MAD; 50-300 mg twice daily [b.i.d.] for 14 days [morning dose only on Day 14]) of sofnobrutinib were tested. In the entire study, all adverse events (AEs) were mild or moderate, and no apparent dose-proportional trend in severity or frequency was observed. No serious treatment-emergent AEs, cardiac arrythmias, or bleeding-related AEs were reported. In the SAD part, sofnobrutinib exhibited approximately dose-dependent systemic exposures up to 900 mg with rapid absorption (median time to maximum concentration of 2.50-4.00 h) and gradual decline (mean half-lives of 3.7-9.0 h). In the MAD part, sofnobrutinib showed low accumulation after multiple dosing (mean accumulation ratios of ≤1.54) and reached a steady state on ≤Day 7. Single dosing of sofnobrutinib rapidly and dose-dependently suppressed basophil and B-cell activations in ex vivo whole blood assays. Multiple dosing of sofnobrutinib achieved 50.8%-79.4%, 67.6%-93.6%, and 90.1%-98.0% inhibition of basophil activation during the dosing interval of 50, 150, and 300 mg b.i.d., respectively. Based on pharmacokinetic-pharmacodynamic analysis, half-maximal inhibitory concentration (IC50) of sofnobrutinib for basophil activation was 54.06 and 57.01 ng/mL in the SAD and MAD parts, respectively. Similarly, IC50 for B-cell activation was 187.21 ng/mL. These data support further investigation of sofnobrutinib in allergic and autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Akinori Arimura
- CarnaBio USA, Inc.South San FranciscoCaliforniaUSA
- Carna Biosciences, Inc.KobeJapan
| |
Collapse
|
14
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
15
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
16
|
Xing L, Liu L, Jin R, Zhang H, Shen Y, Zhang S, He Z, Li D, Ren H, Huang Q, Cao X, Zhang S, Dong S, Cheng W, Zhu B. Flexible yet Durable Microneedle Electrodes Based on Nanowire-Embedded Polyimide for Precise Wearable Electrophysiological Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57695-57704. [PMID: 39396246 DOI: 10.1021/acsami.4c12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A precise recording of electrophysiological signals requires high-performance flexible bioelectrodes to build a robust skin interface. The past decade has witnessed encouraging progress in the development of elastomeric electrodes for wearable electrophysiological monitoring; however, it remains challenging to achieve excellent flexibility, conformal contact, and high durability simultaneously. Herein, we report on an effective method to fabricate flexible yet durable microneedle electrodes (MEs) based on vertically aligned gold nanowires (Au NWs) embedded polyimide (PI), which meet the above three design requirements. The Au NWs embedded PI MEs could build conformal contact with human skin and maintain electrical stability with minimal contact impedance by effectively penetrating the stratum corneum of the skin. In comparison studies, we found our MEs outperformed conventional gel or elastomeric soft electrodes. We further integrated the vertical Au-NW MEs into a wearable healthcare system and achieved wireless real-time recordings of electromyography (EMG) and electrocardiography (ECG) with high signal-to-noise ratios (SNRs) and low motion artifacts. Our fabrication strategy opens a new route to improve the durability and reliability of emerging nanomaterial-based soft bioelectrodes for long-term wearable healthcare applications.
Collapse
Affiliation(s)
- Lixiang Xing
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Lihua Liu
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
| | - Ran Jin
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Haiyue Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Yiyang Shen
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
| | - Siyu Zhang
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
| | - Ziyi He
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Dingwei Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Huihui Ren
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Qi Huang
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
| | - Xuan Cao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Shaomin Zhang
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Shurong Dong
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, New South Wales 2008, Australia
| | - Bowen Zhu
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| |
Collapse
|
17
|
Wu J, Xian J, He C, Lin H, Li J, Li F. Asymmetric Wettability Hydrogel Surfaces for Enduring Electromyographic Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405372. [PMID: 39135403 DOI: 10.1002/adma.202405372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/04/2024] [Indexed: 10/11/2024]
Abstract
Hydrogel electrode interfaces have shown tremendous promise in the acquisition of surface electromyography (EMG) signals. However, the perspiration or moisture environments will trigger the deadhesion between hydrogel electrodes and human skin. Despite the hydrophobic/hydrophilic surfaces can perform the anti-moisture or adhesion respectively, it remains a challenge to integrally form a Janus hydrogel with homogeneous mechanical elasticity and electronic performance. Herein, a surface induction strategy is proposed to approach the hydrophobic/hydrophilic hydrogel surfaces. The hydrophobic interaction between surfactants and molds regulates the distribution of hydrophobic/hydrophilic monomers on the surface. The hydrophobic molds induce a hydrophilic hydrogel surface, while the hydrophilic molds induce a hydrophobic surface. It presents a new phenomenon of reversal wettability inducing and optional hydrogel surfaces. The integral Janus hydrogel can be easily obtained by the hydrophilic molds. Balance of adhesion, elasticity, and conductivity endows the hydrogel electrode patch with durable conformal adhesion and high-fidelity EMG signals even in the sweaty epidermis due to the asymmetric wettability surfaces. This hydrogel performs the quantitative description of muscle strength and accurate fatigue assessment. It offers a reliable candidate for future practical applications in continuous digital healthcare and intelligent human-machine interaction, even the Metaverse.
Collapse
Affiliation(s)
- Jiahao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| | - Jiabao Xian
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| | - Chaofan He
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| | - Haowen Lin
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| | - Jianliang Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
18
|
Xu K, Cai Z, Luo H, Lu Y, Ding C, Yang G, Wang L, Kuang C, Liu J, Yang H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS NANO 2024; 18:26435-26476. [PMID: 39288275 DOI: 10.1021/acsnano.4c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The burgeoning demands for health care and human-machine interfaces call for the next generation of multifunctional integrated sensor systems with facile fabrication processes and reliable performances. Laser-induced graphene (LIG) with highly tunable physical and chemical characteristics plays vital roles in developing versatile skin-like flexible or stretchable sensor systems. This Progress Report presents an in-depth overview of the latest advances in LIG-based techniques in the applications of flexible sensors. First, the merits of the LIG technique are highlighted especially as the building blocks for flexible sensors, followed by the description of various fabrication methods of LIG and its variants. Then, the focus is moved to diverse LIG-based flexible sensors, including physical sensors, chemical sensors, and electrophysiological sensors. Mechanisms and advantages of LIG in these scenarios are described in detail. Furthermore, various representative paradigms of integrated LIG-based sensor systems are presented to show the capabilities of LIG technique for multipurpose applications. The signal cross-talk issues are discussed with possible strategies. The LIG technology with versatile functionalities coupled with other fabrication strategies will enable high-performance integrated sensor systems for next-generation skin electronics.
Collapse
Affiliation(s)
- Kaichen Xu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zimo Cai
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Huayu Luo
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyao Lu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenliang Ding
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Geng Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huayong Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
19
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
20
|
Guo J, Wang X, Bai R, Zhang Z, Chen H, Xue K, Ma C, Zang D, Yin E, Gao K, Ji B. A Cost-Effective and Easy-to-Fabricate Conductive Velcro Dry Electrode for Durable and High-Performance Biopotential Acquisition. BIOSENSORS 2024; 14:432. [PMID: 39329808 PMCID: PMC11430566 DOI: 10.3390/bios14090432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Compared with the traditional gel electrode, the dry electrode is being taken more seriously in bioelectrical recording because of its easy preparation, long-lasting ability, and reusability. However, the commonly used dry AgCl electrodes and silver cloth electrodes are generally hard to record through hair due to their flat contact surface. Claw electrodes can contact skin through hair on the head and body, but the internal claw structure is relatively hard and causes discomfort after being worn for a few hours. Here, we report a conductive Velcro electrode (CVE) with an elastic hook hair structure, which can collect biopotential through body hair. The elastic hooks greatly reduce discomfort after long-time wearing and can even be worn all day. The CVE electrode is fabricated by one-step immersion in conductive silver paste based on the cost-effective commercial Velcro, forming a uniform and durable conductive coating on a cluster of hook microstructures. The electrode shows excellent properties, including low impedance (15.88 kΩ @ 10 Hz), high signal-to-noise ratio (16.0 dB), strong water resistance, and mechanical resistance. After washing in laundry detergent, the impedance of CVE is still 16% lower than the commercial AgCl electrodes. To verify the mechanical strength and recovery capability, we conducted cyclic compression experiments. The results show that the displacement change of the electrode hook hair after 50 compression cycles was still less than 1%. This electrode provides a universal acquisition scheme, including effective acquisition of different parts of the body with or without hair. Finally, the gesture recognition from electromyography (EMG) by the CVE electrode was applied with accuracy above 90%. The CVE proposed in this study has great potential and promise in various human-machine interface (HMI) applications that employ surface biopotential signals on the body or head with hair.
Collapse
Affiliation(s)
- Jun Guo
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuanqi Wang
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ruiyu Bai
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zimo Zhang
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huazhen Chen
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Xue
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chuang Ma
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China
- Intelligent Game and Decision Laboratory, Beijing 100071, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Dawei Zang
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Erwei Yin
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China
- Intelligent Game and Decision Laboratory, Beijing 100071, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Kunpeng Gao
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
21
|
Kim S, Lee J, Chung WG, Hong YM, Park W, Lim JA, Park JU. Three-Dimensional Electrodes of Liquid Metals for Long-Term, Wireless Cardiac Analysis and Modulation. ACS NANO 2024; 18:24364-24378. [PMID: 39167771 DOI: 10.1021/acsnano.4c06607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cardiovascular disease is a major public health issue, and smart diagnostic approaches play an important role in the analysis of electrocardiograms. Here, we present three-dimensional, soft electrodes of liquid metals that can be conformably attached to the surfaces of the heart and skin for long-term cardiac analysis. The fine micropillar structures of biocompatible liquid metals enable precise targeting to small tissue areas, allowing for spatiotemporal mapping and modulation of cardiac electrical activity with high resolution. The low mechanical modulus of these liquid-metal electrodes not only helps avoid inflammatory responses triggered by modulus mismatch between the tissue and electrodes, but also minimizes pain when embedded in biological tissues such as the skin and heart. Furthermore, in vivo experiments with animal models and human trials demonstrate long-term and accurate monitoring of electrocardiograms over a period of 30 days.
Collapse
Affiliation(s)
- Sumin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jakyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Won Gi Chung
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Yeon-Mi Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Wonjung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jung Ah Lim
- Yonsei-KIST Convergence Research Institute, Seoul 03722, Republic of Korea
- Soft Hybrid Materials Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Seoul 03722, Republic of Korea
| |
Collapse
|
22
|
Oh JY, Lee Y, Lee TW. Skin-Mountable Functional Electronic Materials for Bio-Integrated Devices. Adv Healthc Mater 2024; 13:e2303797. [PMID: 38368254 DOI: 10.1002/adhm.202303797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Skin-mountable electronic materials are being intensively evaluated for use in bio-integrated devices that can mutually interact with the human body. Over the past decade, functional electronic materials inspired by the skin are developed with new functionalities to address the limitations of traditional electronic materials for bio-integrated devices. Herein, the recent progress in skin-mountable functional electronic materials for skin-like electronics is introduced with a focus on five perspectives that entail essential functionalities: stretchability, self-healing ability, biocompatibility, breathability, and biodegradability. All functionalities are advanced with each strategy through rational material designs. The skin-mountable functional materials enable the fabrication of bio-integrated electronic devices, which can lead to new paradigms of electronics combining with the human body.
Collapse
Affiliation(s)
- Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yeongjun Lee
- Department of Brain and Cognitive Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Molecular Foundry, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
23
|
Holm D, Schommer K, Kottner J. Review of Medical Adhesive Technology in the Context of Medical Adhesive-Related Skin Injury. J Wound Ostomy Continence Nurs 2024; 51:S9-S17. [PMID: 39313962 DOI: 10.1097/won.0000000000001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In clinical practice, a large variety of medical devices adhere to skin to perform their function. The repeated application and removal of these devices can lead to skin damage or medical adhesive-related skin injury. Awareness of this problem has increased in the past decade, and this adverse event can be prevented with appropriate selection of adhesive products and the appropriate techniques for application and removal. A wide variety of adhesives and backing systems have been developed to create medical devices with an array of attributes, so they can accomplish many different indications in the clinical setting and meet various needs, including doing the clinical job without damaging the skin and causing further patient complications. The selection of an adhesive product should take into consideration a patient's skin assessment and history of medical adhesive-related skin injury, and using only the minimal adhesive strength needed to perform the function while protecting the skin from damage.
Collapse
Affiliation(s)
- David Holm
- David Holm, PhD, Solventum, Maplewood, MN
- Kimberly Schommer, RN, BSN, PHN, VA-BC, Solventum, Maplewood, MN
- Jan Kottner, RN, PhD, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kimberly Schommer
- David Holm, PhD, Solventum, Maplewood, MN
- Kimberly Schommer, RN, BSN, PHN, VA-BC, Solventum, Maplewood, MN
- Jan Kottner, RN, PhD, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Kottner
- David Holm, PhD, Solventum, Maplewood, MN
- Kimberly Schommer, RN, BSN, PHN, VA-BC, Solventum, Maplewood, MN
- Jan Kottner, RN, PhD, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
24
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Wu B, Wu T, Huang Z, Ji S. Advancing Flexible Sensors through On-Demand Regulation of Supramolecular Nanostructures. ACS NANO 2024; 18:22664-22674. [PMID: 39152049 DOI: 10.1021/acsnano.4c08310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The evolution of flexible sensors heavily relies on advances in soft-material design and sensing mechanisms. Supramolecular chemistry offers a powerful toolbox for manipulating nanoscale and molecular structures within soft materials, thus fostering recent advancements in flexible sensors and electronics. Supramolecular interactions have been utilized to nanoengineer functional sensing materials or construct chemical sensors with lower cost and broader targets. In this perspective, we will highlight the use of supramolecular interactions to regulate and optimize nanostructures within functional soft materials and illustrate their importance in expanding the nanocavities of bioreceptors for chemical sensing. Overall, a bridge between tissue-mimicking flexible sensors and cell-mimetic supramolecular chemistry has been built, which will further advance human healthcare innovation.
Collapse
Affiliation(s)
- Bohang Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Tong Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Zehuan Huang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Shaobo Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
26
|
Tessier A, Zhuo S, Kabiri Ameri S. Ultrasoft Long-Lasting Reusable Hydrogel-Based Sensor Patch for Biosignal Recording. BIOSENSORS 2024; 14:405. [PMID: 39194634 DOI: 10.3390/bios14080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Here, we report an ultrasoft extra long-lasting, reusable hydrogel-based sensor that enables high-quality electrophysiological recording with low-motion artifacts. The developed sensor can be used and stored in an ambient environment for months before being reused. The developed sensor is made of a self-adhesive electrical-conductivity-enhanced ultrasoft hydrogel mounted in an Ecoflex-based frame. The hydrogel's conductivity was enhanced by incorporating polypyrrole (PPy), resulting in a conductivity of 0.25 S m-1. Young's modulus of the sensor is only 12.9 kPa, and it is stretchable up to 190%. The sensor was successfully used for electrocardiography (ECG) and electromyography (EMG). Our results indicate that using the developed hydrogel-based sensor, the signal-to-noise ratio of recorded electrophysiological signals was improved in comparison to that when medical-grade silver/silver chloride (Ag/AgCl) wet gel electrodes were used (33.55 dB in comparison to 22.16 dB). Due to the ultra-softness, high stretchability, and self-adhesion of the developed sensor, it can conform to the skin and, therefore, shows low susceptibility to motion. In addition, the sensor shows no sign of irritation or allergic reaction, which usually occurs after long-term wearing of medical-grade Ag/AgCl wet gel electrodes on the skin. Further, the sensor is fabricated using a low-cost and scalable fabrication process.
Collapse
Affiliation(s)
- Alexandre Tessier
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Shuyun Zhuo
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Shideh Kabiri Ameri
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
27
|
Lin Y, Wang H, Qiu W, Ye C, Kong D. Liquid Metal-Based Self-Healing Conductors for Flexible and Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43083-43092. [PMID: 39115969 DOI: 10.1021/acsami.4c10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Flexible and stretchable electronics rely on compliant conductors as essential building materials. However, these materials are susceptible to wear and tear, leading to degradation over time. In response to this concern, self-healing conductors have been developed to prolong the lifespan of functional devices. These conductors can autonomously restore their properties following damage. Conventional self-healing conductors typically comprise solid conductive fillers and healing agents dispersed within polymer matrices. However, the solid additives increase the stiffness and reduce the stretchability of the resulting composites. There is growing interest in utilizing gallium-based liquid metal alloys due to their exceptional electrical conductivity and liquid-phase deformability. These liquid metals are considered attractive candidates for developing compliant conductors capable of automatic recovery. This perspective delves into the rapidly advancing field of liquid metal-based self-healing conductors, exploring their design, fabrication, and critical applications. Furthermore, this article also addresses the current challenges and future directions in this active area of research.
Collapse
Affiliation(s)
- Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Hao Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Weijie Qiu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Chenyang Ye
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Wang K, Margolis S, Cho JM, Wang S, Arianpour B, Jabalera A, Yin J, Hong W, Zhang Y, Zhao P, Zhu E, Reddy S, Hsiai TK. Non-Invasive Detection of Early-Stage Fatty Liver Disease via an On-Skin Impedance Sensor and Attention-Based Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400596. [PMID: 38887178 PMCID: PMC11336938 DOI: 10.1002/advs.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Indexed: 06/20/2024]
Abstract
Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr-/-) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.
Collapse
Affiliation(s)
- Kaidong Wang
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineGreater Los Angeles Veterans Affairs (VA) Healthcare SystemLos AngelesCA90073USA
| | - Samuel Margolis
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jae Min Cho
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Shaolei Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Brian Arianpour
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Alejandro Jabalera
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Wen Hong
- Department of Materials Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Yaran Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Peng Zhao
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Enbo Zhu
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Materials Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Srinivasa Reddy
- Department of Molecular and Medical PharmacologyUniversity of California Los AngelesLos AngelesCA90095USA
| | - Tzung K. Hsiai
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineGreater Los Angeles Veterans Affairs (VA) Healthcare SystemLos AngelesCA90073USA
| |
Collapse
|
29
|
Liu C, Kelley SO, Wang Z. Self-Healing Materials for Bioelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401219. [PMID: 38844826 DOI: 10.1002/adma.202401219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Indexed: 08/29/2024]
Abstract
Though the history of self-healing materials stretches far back to the mid-20th century, it is only in recent years where such unique classes of materials have begun to find use in bioelectronics-itself a burgeoning area of research. Inspired by the natural ability of biological tissue to self-repair, self-healing materials play a multifaceted role in the context of soft, wireless bioelectronic systems, in that they can not only serve as a protective outer shell or substrate for the internal electronic circuitry-analogous to the mechanical barrier that skin provides for the human body-but also, and most importantly, act as an active sensing safeguard against mechanical damage to preserve device functionality and enhance overall durability. This perspective presents the historical overview, general design principles, recent developments, and future outlook of self-healing materials for bioelectronic devices, which integrates topics in many research disciplines-from materials science and chemistry to electronics and bioengineering-together.
Collapse
Affiliation(s)
- Claire Liu
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, 60611, USA
| | - Zongjie Wang
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60607, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
30
|
Hu R, Yao B, Geng Y, Zhou S, Li M, Zhong W, Sun F, Zhao H, Wang J, Ge J, Wei R, Liu T, Jin J, Xu J, Fu J. High-Fidelity Bioelectrodes with Bidirectional Ion-Electron Transduction Capability by Integrating Multiple Charge-Transfer Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403111. [PMID: 38934213 DOI: 10.1002/adma.202403111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Bioelectronics is an exciting field that bridges the gap between physiological activities and external electronic devices, striving for high resolution, high conformability, scalability, and ease of integration. One crucial component in bioelectronics is bioelectrodes, designed to convert neural activity into electronic signals or vice versa. Previously reported bioelectrodes have struggled to meet several essential requirements simultaneously: high-fidelity signal transduction, high charge injection capability, strain resistance, and multifunctionality. This work introduces a novel strategy for fabricating superior bioelectrodes by merging multiple charge-transfer processes. The resulting bioelectrodes offer accurate ion-to-electron transduction for capturing electrophysiological signals, dependable charge injection capability for neuromodulation, consistent electrode potential for artifact rejection and biomolecule sensing, and high transparency for seamless integration with optoelectronics. Furthermore, the bioelectrode can be designed to be strain-insensitive by isolating signal transduction from electron transportation. The innovative concept presented in this work holds great promise for extending to other electrode materials and paves the way for the advancement of multimodal bioelectronics.
Collapse
Affiliation(s)
- Rongjian Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Bowen Yao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yuhao Geng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shuai Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Wei Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fuyao Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haojie Zhao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jingyu Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Jiahao Ge
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Ran Wei
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Tong Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajie Jin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
31
|
Serrano RR, Velasco‐Bosom S, Dominguez‐Alfaro A, Picchio ML, Mantione D, Mecerreyes D, Malliaras GG. High Density Body Surface Potential Mapping with Conducting Polymer-Eutectogel Electrode Arrays for ECG imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301176. [PMID: 37203308 PMCID: PMC11251564 DOI: 10.1002/advs.202301176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Electrocardiography imaging (ECGi) is a non-invasive inverse reconstruction procedure which employs body surface potential maps (BSPM) obtained from surface electrode array measurements to improve the spatial resolution and interpretability of conventional electrocardiography (ECG) for the diagnosis of cardiac dysfunction. ECGi currently lacks precision, which has prevented its adoption in clinical setups. The introduction of high-density electrode arrays could increase ECGi reconstruction accuracy but is not attempted before due to manufacturing and processing limitations. Advances in multiple fields have now enabled the implementation of such arrays which poses questions on optimal array design parameters for ECGi. In this work, a novel conducting polymer electrode manufacturing process on flexible substrates is proposed to achieve high-density, mm-sized, conformable, long-term, and easily attachable electrode arrays for BSPM with parameters optimally selected for ECGi applications. Temporal, spectral, and correlation analysis are performed on a prototype array demonstrating the validity of the chosen parameters and the feasibility of high-density BSPM, paving the way for ECGi devices fit for clinical application.
Collapse
Affiliation(s)
| | | | - Antonio Dominguez‐Alfaro
- Electrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
| | - Matias L. Picchio
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
| | - Daniele Mantione
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - David Mecerreyes
- POLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 72Donostia‐San SebastianGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | | |
Collapse
|
32
|
Li J, Zhang F, Lyu H, Yin P, Shi L, Li Z, Zhang L, Di CA, Tang P. Evolution of Musculoskeletal Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303311. [PMID: 38561020 DOI: 10.1002/adma.202303311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/10/2024] [Indexed: 04/04/2024]
Abstract
The musculoskeletal system, constituting the largest human physiological system, plays a critical role in providing structural support to the body, facilitating intricate movements, and safeguarding internal organs. By virtue of advancements in revolutionized materials and devices, particularly in the realms of motion capture, health monitoring, and postoperative rehabilitation, "musculoskeletal electronics" has actually emerged as an infancy area, but has not yet been explicitly proposed. In this review, the concept of musculoskeletal electronics is elucidated, and the evolution history, representative progress, and key strategies of the involved materials and state-of-the-art devices are summarized. Therefore, the fundamentals of musculoskeletal electronics and key functionality categories are introduced. Subsequently, recent advances in musculoskeletal electronics are presented from the perspectives of "in vitro" to "in vivo" signal detection, interactive modulation, and therapeutic interventions for healing and recovery. Additionally, nine strategy avenues for the development of advanced musculoskeletal electronic materials and devices are proposed. Finally, concise summaries and perspectives are proposed to highlight the directions that deserve focused attention in this booming field.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houchen Lyu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Lei Shi
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Zhiyi Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China
| |
Collapse
|
33
|
Zhao Z, Yu H, Wisniewski DJ, Cea C, Ma L, Trautmann EM, Churchland MM, Gelinas JN, Khodagholy D. Formation of Anisotropic Conducting Interlayer for High-Resolution Epidermal Electromyography Using Mixed-Conducting Particulate Composite. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308014. [PMID: 38600655 PMCID: PMC11251554 DOI: 10.1002/advs.202308014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Indexed: 04/12/2024]
Abstract
Epidermal electrophysiology is a non-invasive method used in research and clinical practices to study the electrical activity of the brain, heart, nerves, and muscles. However, electrode/tissue interlayer materials such as ionically conducting pastes can negatively affect recordings by introducing lateral electrode-to-electrode ionic crosstalk and reducing spatial resolution. To overcome this issue, biocompatible, anisotropic-conducting interlayer composites (ACI) that establish an electrically anisotropic interface with the skin are developed, enabling the application of dense cutaneous sensor arrays. High-density, conformable electrodes are also microfabricated that adhere to the ACI and follow the curvilinear surface of the skin. The results show that ACI significantly enhances the spatial resolution of epidermal electromyography (EMG) recording compared to conductive paste, permitting the acquisition of single muscle action potentials with distinct spatial profiles. The high-density EMG in developing mice, non-human primates, and humans is validated. Overall, high spatial-resolution epidermal electrophysiology enabled by ACI has the potential to advance clinical diagnostics of motor system disorders and enhance data quality for human-computer interface applications.
Collapse
Affiliation(s)
- Zifang Zhao
- Department of Electrical EngineeringColumbia UniversityNew York10027USA
| | - Han Yu
- Department of Electrical EngineeringColumbia UniversityNew York10027USA
| | | | - Claudia Cea
- Department of Electrical EngineeringColumbia UniversityNew York10027USA
| | - Liang Ma
- Department of Biomedical EngineeringColumbia UniversityNew York10027USA
| | - Eric M. Trautmann
- Department of NeuroscienceColumbia UniversityNew YorkNY10032USA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew York10027USA
| | - Mark M. Churchland
- Department of NeuroscienceColumbia UniversityNew YorkNY10032USA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew York10027USA
- Kavli Institute for Brain ScienceColumbia UniversityNew York10032USA
- Grossman Center for the Statistics of MindColumbia UniversityNew YorkUSA
| | - Jennifer N. Gelinas
- Department of Biomedical EngineeringColumbia UniversityNew York10027USA
- Department of NeurologyColumbia University Irving Medical CenterNew York10032USA
| | - Dion Khodagholy
- Department of Electrical EngineeringColumbia UniversityNew York10027USA
- Department of Electrical EngineeringUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
34
|
Liu Z, Xu X, Huang S, Huang X, Liu Z, Yao C, He M, Chen J, Chen HJ, Liu J, Xie X. Multichannel microneedle dry electrode patches for minimally invasive transdermal recording of electrophysiological signals. MICROSYSTEMS & NANOENGINEERING 2024; 10:72. [PMID: 38828404 PMCID: PMC11143369 DOI: 10.1038/s41378-024-00702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024]
Abstract
The collection of multiple-channel electrophysiological signals enables a comprehensive understanding of the spatial distribution and temporal features of electrophysiological activities. This approach can help to distinguish the traits and patterns of different ailments to enhance diagnostic accuracy. Microneedle array electrodes, which can penetrate skin without pain, can lessen the impedance between the electrodes and skin; however, current microneedle methods are limited to single channels and cannot achieve multichannel collection in small areas. Here, a multichannel (32 channels) microneedle dry electrode patch device was developed via a dimensionality reduction fabrication and integration approach and supported by a self-developed circuit system to record weak electrophysiological signals, including electroencephalography (EEG), electrocardiogram (ECG), and electromyography (EMG) signals. The microneedles reduced the electrode-skin contact impedance by penetrating the nonconducting stratum corneum in a painless way. The multichannel microneedle array (MMA) enabled painless transdermal recording of multichannel electrophysiological signals from the subcutaneous space, with high temporal and spatial resolution, reaching the level of a single microneedle in terms of signal precision. The MMA demonstrated the detection of the spatial distribution of ECG, EMG and EEG signals in live rabbit models, and the microneedle electrode (MNE) achieved better signal quality in the transcutaneous detection of EEG signals than did the conventional flat dry electrode array. This work offers a promising opportunity to develop advanced tools for neural interface technology and electrophysiological recording.
Collapse
Grants
- National Key R&D Program of China (Grant No. 2021YFF1200700), the National Natural Science Foundation of China (Grant No. T2225010, 32171399, 32171456, 62105380), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515011267), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 22dfx02), Pazhou Lab, Guangzhou (Grant No. PZL2021KF0003), the Opening Project of Key Laboratory of State Key Laboratory of Optoelectronic Materials and Technologies (OEMT-2022-ZRC-04), State key laboratory of precision measuring technology and instruments (Grant No. pilab2211),the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, Grant No.2023-skllmd-09). the Open Fund of Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications (No. 2022A01), the Opening Project of State Key Laboratory of Bioelectronics, Southeast University (No. 2023-K09)
- China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Shuang Huang
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Zhibo Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Mengyi He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Jiayi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Hui-jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Park B, Jeong C, Ok J, Kim TI. Materials and Structural Designs toward Motion Artifact-Free Bioelectronics. Chem Rev 2024; 124:6148-6197. [PMID: 38690686 DOI: 10.1021/acs.chemrev.3c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Bioelectronics encompassing electronic components and circuits for accessing human information play a vital role in real-time and continuous monitoring of biophysiological signals of electrophysiology, mechanical physiology, and electrochemical physiology. However, mechanical noise, particularly motion artifacts, poses a significant challenge in accurately detecting and analyzing target signals. While software-based "postprocessing" methods and signal filtering techniques have been widely employed, challenges such as signal distortion, major requirement of accurate models for classification, power consumption, and data delay inevitably persist. This review presents an overview of noise reduction strategies in bioelectronics, focusing on reducing motion artifacts and improving the signal-to-noise ratio through hardware-based approaches such as "preprocessing". One of the main stress-avoiding strategies is reducing elastic mechanical energies applied to bioelectronics to prevent stress-induced motion artifacts. Various approaches including strain-compliance, strain-resistance, and stress-damping techniques using unique materials and structures have been explored. Future research should optimize materials and structure designs, establish stable processes and measurement methods, and develop techniques for selectively separating and processing overlapping noises. Ultimately, these advancements will contribute to the development of more reliable and effective bioelectronics for healthcare monitoring and diagnostics.
Collapse
Affiliation(s)
- Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chanho Jeong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
36
|
Xu S, Li C, Wei C, Kang X, Shu S, Liu G, Xu Z, Han M, Luo J, Tang W. Closed-Loop Wearable Device Network of Intrinsically-Controlled, Bilateral Coordinated Functional Electrical Stimulation for Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304763. [PMID: 38429890 PMCID: PMC11077660 DOI: 10.1002/advs.202304763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/28/2024] [Indexed: 03/03/2024]
Abstract
Innovative functional electrical stimulation has demonstrated effectiveness in enhancing daily walking and rehabilitating stroke patients with foot drop. However, its lack of precision in stimulating timing, individual adaptivity, and bilateral symmetry, resulted in diminished clinical efficacy. Therefore, a closed-loop wearable device network of intrinsically controlled functional electrical stimulation (CI-FES) system is proposed, which utilizes the personal surface myoelectricity, derived from the intrinsic neuro signal, as the switch to activate/deactivate the stimulation on the affected side. Simultaneously, it decodes the myoelectricity signal of the patient's healthy side to adjust the stimulation intensity, forming an intrinsically controlled loop with the inertial measurement units. With CI-FES assistance, patients' walking ability significantly improved, evidenced by the shift in ankle joint angle mean and variance from 105.53° and 28.84 to 102.81° and 17.71, and the oxyhemoglobin concentration tested by the functional near-infrared spectroscopy. In long-term CI-FES-assisted clinical testing, the discriminability in machine learning classification between patients and healthy individuals gradually decreased from 100% to 92.5%, suggesting a remarkable recovery tendency, further substantiated by performance on the functional movement scales. The developed CI-FES system is crucial for contralateral-hemiplegic stroke recovery, paving the way for future closed-loop stimulation systems in stroke rehabilitation is anticipated.
Collapse
Affiliation(s)
- Shuxing Xu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chengyu Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Conghui Wei
- Rehabilitation Medicine DepartmentThe Second Affiliated Hospital of Nanchang UniversityNanchang City330006P. R. China
| | - Xinfang Kang
- Rehabilitation Medicine DepartmentThe Second Affiliated Hospital of Nanchang UniversityNanchang City330006P. R. China
| | - Sheng Shu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Guanlin Liu
- Center on Nanoenergy ResearchSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Zijie Xu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Mengdi Han
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871China
| | - Jun Luo
- Rehabilitation Medicine DepartmentThe Second Affiliated Hospital of Nanchang UniversityNanchang City330006P. R. China
| | - Wei Tang
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- Institute of Applied NanotechnologyJiaxingZhejiang314031China
| |
Collapse
|
37
|
Yang G, Hu Y, Guo W, Lei W, Liu W, Guo G, Geng C, Liu Y, Wu H. Tunable Hydrogel Electronics for Diagnosis of Peripheral Neuropathy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308831. [PMID: 37906182 DOI: 10.1002/adma.202308831] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Indexed: 11/02/2023]
Abstract
Peripheral neuropathy characterized by rapidly increasing numbers of patients is commonly diagnosed via analyzing electromyography signals obtained from stimulation-recording devices. However, existing commercial electrodes have difficulty in implementing conformal contact with skin and gentle detachment, dramatically impairing stimulation/recording performances. Here, this work develops on-skin patches with polyaspartic acid-modified dopamine/ethyl-based ionic liquid hydrogel (PDEH) as stimulation/recording devices to capture electromyography signals for the diagnosis of peripheral neuropathy. Triggered by a one-step electric field treatment, the hydrogel achieves rapid and wide-range regulation of adhesion and substantially strengthened mechanical performances. Moreover, hydrogel patches assembled with a silver-liquid metal (SLM) layer exhibit superior charge injection and low contact impedance, capable of capturing high-fidelity electromyography. This work further verifies the feasibility of hydrogel devices for accurate diagnoses of peripheral neuropathy in sensory, motor, and mixed nerves. For various body parts, such as fingers, the elderly's loose skin, hairy skin, and children's fragile skin, this work regulates the adhesion of PDEH-SLM devices to establish intimate device/skin interfaces or ensure benign removal. Noticeably, hydrogel patches achieve precise diagnoses of nerve injuries in these clinical cases while providing extra advantages of more effective stimulation/recording performances. These patches offer a promising alternative for the diagnosis and rehabilitation of neuropathy in future.
Collapse
Affiliation(s)
- Ganguang Yang
- Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yijia Hu
- Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Guo
- Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Lei
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - ChaoFan Geng
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hao Wu
- Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
38
|
Zhao Z, Yang C, Li D. Skin Electrodes Based on TPU Fiber Scaffolds with Conductive Nanocomposites with Stretchability, Breathability, and Washability. MICROMACHINES 2024; 15:598. [PMID: 38793171 PMCID: PMC11122800 DOI: 10.3390/mi15050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
In the context of an aging population and escalating work pressures, cardiovascular diseases pose increasing health risks. Electrocardiogram (ECG) monitoring presents a preventive tool, but conventional devices often compromise comfort. This study proposes an approach using Ag NW/TPU composites for flexible and breathable epidermal electronics. In this new structure, TPU fibers are used to support Ag NWs/TPU nanocomposites. The TPU fiber-reinforced Ag NW/TPU (TFRAT) nanocomposites exhibit excellent conductivity, stretchability, and electromechanical durability. The composite ensures high steam permeability, maintaining stable electrical performance after washing cycles. Employing this technology, a flexible ECG detection system is developed, augmented with a convolutional neural network (CNN) for automated signal analysis. The experimental results demonstrate the system's reliability in capturing physiological signals. Additionally, a CNN model trained on ECG data achieves over 99% accuracy in diagnosing arrhythmias. This study presents TFRAT as a promising solution for wearable electronics, offering both comfort and functionality in long-term epidermal applications, with implications for healthcare and beyond.
Collapse
Affiliation(s)
| | - Chaopeng Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300130, China;
| | - Dongchan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300130, China;
| |
Collapse
|
39
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
40
|
Zhou Y, Feng B, Chen L, Fan F, Ji Z, Duan H. Wafer-Recyclable, Eco-Friendly, and Multiscale Dry Transfer Printing by Transferable Photoresist for Flexible Epidermal Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13525-13533. [PMID: 38467516 DOI: 10.1021/acsami.3c18576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Flexible electronics have been of great interest in the past few decades for their wide-ranging applications in health monitoring, human-machine interaction, artificial intelligence, and biomedical engineering. Currently, transfer printing is a popular technology for flexible electronics manufacturing. However, typical sacrificial intermediate layer-based transfer printing through chemical reactions results in a series of challenges, such as time consumption and interface incompatibility. In this paper, we have developed a time-saving, wafer-recyclable, eco-friendly, and multiscale transfer printing method by using a stable transferable photoresist. Demonstration of photoresist with various, high-resolution, and multiscale patterns from the donor substrate of silicon wafer to different flexible polymer substrates without any damage is conducted using the as-developed dry transfer printing process. Notably, by utilizing the photoresist patterns as conformal masks and combining them with physical vapor deposition and dry lift-off processes, we have achieved in situ fabrication of metal patterns on flexible substrates. Furthermore, a mechanical experiment has been conducted to demonstrate the mechanism of photoresist transfer printing and dry lift-off processes. Finally, we demonstrated the application of in situ fabricated electrode devices for collecting electromyography and electrocardiogram signals. Compared to commercially available hydrogel electrodes, our electrodes exhibited higher sensitivity, greater stability, and the ability to achieve long-term health monitoring.
Collapse
Affiliation(s)
- Yu Zhou
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, PR China
| | - Bo Feng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, PR China
| | - Lei Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, PR China
| | - Fu Fan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, PR China
| | - Zhiqiang Ji
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, PR China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, PR China
| |
Collapse
|
41
|
Varghese RJ, Pizzi M, Kundu A, Grison A, Burdet E, Farina D. Design, Fabrication and Evaluation of a Stretchable High-Density Electromyography Array. SENSORS (BASEL, SWITZERLAND) 2024; 24:1810. [PMID: 38544073 PMCID: PMC10975572 DOI: 10.3390/s24061810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024]
Abstract
The adoption of high-density electrode systems for human-machine interfaces in real-life applications has been impeded by practical and technical challenges, including noise interference, motion artefacts and the lack of compact electrode interfaces. To overcome some of these challenges, we introduce a wearable and stretchable electromyography (EMG) array, and present its design, fabrication methodology, characterisation, and comprehensive evaluation. Our proposed solution comprises dry-electrodes on flexible printed circuit board (PCB) substrates, eliminating the need for time-consuming skin preparation. The proposed fabrication method allows the manufacturing of stretchable sleeves, with consistent and standardised coverage across subjects. We thoroughly tested our developed prototype, evaluating its potential for application in both research and real-world environments. The results of our study showed that the developed stretchable array matches or outperforms traditional EMG grids and holds promise in furthering the real-world translation of high-density EMG for human-machine interfaces.
Collapse
Affiliation(s)
| | | | | | | | | | - Dario Farina
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London W12 0BZ, UK; (R.J.V.); (M.P.); (A.K.); (A.G.); (E.B.)
| |
Collapse
|
42
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
43
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
44
|
Sha B, Du Z. Neural repair and regeneration interfaces: a comprehensive review. Biomed Mater 2024; 19:022002. [PMID: 38232383 DOI: 10.1088/1748-605x/ad1f78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Neural interfaces play a pivotal role in neuromodulation, as they enable precise intervention into aberrant neural activity and facilitate recovery from neural injuries and resultant functional impairments by modulating local immune responses and neural circuits. This review outlines the development and applications of these interfaces and highlights the advantages of employing neural interfaces for neural stimulation and repair, including accurate targeting of specific neural populations, real-time monitoring and control of neural activity, reduced invasiveness, and personalized treatment strategies. Ongoing research aims to enhance the biocompatibility, stability, and functionality of these interfaces, ultimately augmenting their therapeutic potential for various neurological disorders. The review focuses on electrophysiological and optophysiology neural interfaces, discussing functionalization and power supply approaches. By summarizing the techniques, materials, and methods employed in this field, this review aims to provide a comprehensive understanding of the potential applications and future directions for neural repair and regeneration devices.
Collapse
Affiliation(s)
- Baoning Sha
- Brain Cognition and Brain Disease Institute, CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Zhanhong Du
- Brain Cognition and Brain Disease Institute, CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
45
|
Kim H, Cha H, Kim M, Lee YJ, Yi H, Lee SH, Ira S, Kim H, Im C, Yeo W. AR-Enabled Persistent Human-Machine Interfaces via a Scalable Soft Electrode Array. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305871. [PMID: 38087936 PMCID: PMC10870043 DOI: 10.1002/advs.202305871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/15/2023] [Indexed: 02/17/2024]
Abstract
Augmented reality (AR) is a computer graphics technique that creates a seamless interface between the real and virtual worlds. AR usage rapidly spreads across diverse areas, such as healthcare, education, and entertainment. Despite its immense potential, AR interface controls rely on an external joystick, a smartphone, or a fixed camera system susceptible to lighting. Here, an AR-integrated soft wearable electronic system that detects the gestures of a subject for more intuitive, accurate, and direct control of external systems is introduced. Specifically, a soft, all-in-one wearable device includes a scalable electrode array and integrated wireless system to measure electromyograms for real-time continuous recognition of hand gestures. An advanced machine learning algorithm embedded in the system enables the classification of ten different classes with an accuracy of 96.08%. Compared to the conventional rigid wearables, the multi-channel soft wearable system offers an enhanced signal-to-noise ratio and consistency over multiple uses due to skin conformality. The demonstration of the AR-integrated soft wearable system for drone control captures the potential of the platform technology to offer numerous human-machine interface opportunities for users to interact remotely with external hardware and software.
Collapse
Affiliation(s)
- Hodam Kim
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Ho‐Seung Cha
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Department of Biomedical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Minseon Kim
- School of Mechanical EngineeringSoongsil University369 Sangdo‐ro, Dongjak‐guSeoul06978Republic of Korea
| | - Yoon Jae Lee
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- School of Electrical and Computer EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Hoon Yi
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Sung Hoon Lee
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- School of Electrical and Computer EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Soltis Ira
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Hojoong Kim
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Chang‐Hwan Im
- Department of Biomedical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Woon‐Hong Yeo
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Wallace H. Coulter Department of Biomedical EngineeringCollege of EngineeringGeoriga Tech and Emory University School of MedicineAtlantaGA30332USA
- Parker H. Petit Institute for Bioengineering and BiosciencesInstitute for MaterialsInstitute for Robotics and Intelligent MachinesNeural Engineering CenterGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
46
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
47
|
Siboro P, Sharma AK, Lai PJ, Jayakumar J, Mi FL, Chen HL, Chang Y, Sung HW. Harnessing HfO 2 Nanoparticles for Wearable Tumor Monitoring and Sonodynamic Therapy in Advancing Cancer Care. ACS NANO 2024; 18:2485-2499. [PMID: 38197613 PMCID: PMC10811684 DOI: 10.1021/acsnano.3c11346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
Addressing the critical requirement for real-time monitoring of tumor progression in cancer care, this study introduces an innovative wearable platform. This platform employs a thermoplastic polyurethane (TPU) film embedded with hafnium oxide nanoparticles (HfO2 NPs) to facilitate dynamic tracking of tumor growth and regression in real time. Significantly, the synthesized HfO2 NPs exhibit promising characteristics as effective sonosensitizers, holding the potential to efficiently eliminate cancer cells through ultrasound irradiation. The TPU-HfO2 film, acting as a dielectric elastomer (DE) strain sensor, undergoes proportional deformation in response to changes in the tumor volume, thereby influencing its electrical impedance. This distinctive behavior empowers the DE strain sensor to continuously and accurately monitor alterations in tumor volume, determining the optimal timing for initiating HfO2 NP treatment, optimizing dosages, and assessing treatment effectiveness. Seamless integration with a wireless system allows instant transmission of detected electrical impedances to a smartphone for real-time data processing and visualization, enabling immediate patient monitoring and timely intervention by remote medical staff. By combining the dynamic tumor monitoring capabilities of the TPU-HfO2 film with the sonosensitizer potential of HfO2 NPs, this approach propels cancer care into the realm of telemedicine, representing a significant advancement in patient treatment.
Collapse
Affiliation(s)
- Putry
Yosefa Siboro
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Amit Kumar Sharma
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Pei-Jhun Lai
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Jayachandran Jayakumar
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Fwu-Long Mi
- Department
of Biochemistry and Molecular Cell Biology, School of Medicine, College
of Medicine, Taipei Medical University, Taipei 23142, Taiwan (ROC)
| | - Hsin-Lung Chen
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Yen Chang
- Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of
Medicine, Tzu Chi University, Hualien 97004, Taiwan (ROC)
| | - Hsing-Wen Sung
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| |
Collapse
|
48
|
Menke MA, Li BM, Arnold MG, Mueller LE, Dietrich R, Zhou S, Kelley‐Loughnane N, Dennis P, Boock JT, Estevez J, Tabor CE, Sparks JL. Silky Liquid Metal Electrodes for On-Skin Health Monitoring. Adv Healthc Mater 2024; 13:e2301811. [PMID: 37779336 PMCID: PMC11468510 DOI: 10.1002/adhm.202301811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Next generation on-skin electrodes will require soft, flexible, and gentle materials to provide both high-fidelity sensing and wearer comfort. However, many commercially available on-skin electrodes lack these key properties due to their use of rigid hardware, harsh adhesives, uncomfortable support structures, and poor breathability. To address these challenges, this work presents a new device paradigm by joining biocompatible electrospun spider silk with printable liquid metal to yield an incredibly soft and scalable on-skin electrode that is strain-tolerant, conformable, and gentle on-skin. These electrodes, termed silky liquid metal (SLiM) electrodes, are found to be over five times more breathable than commercial wet electrodes, while the silk's intrinsic adhesion mechanism allows SLiM electrodes to avoid the use of harsh artificial adhesives, potentially decreasing skin irritation and inflammation over long-term use. Finally, the SLiM electrodes provide comparable impedances to traditional wet and other liquid metal electrodes, offering a high-fidelity sensing alternative with increased wearer comfort. Human subject testing confirmed the SLiM electrodes ability to sense electrophysiological signals with high fidelity and minimal irritation to the skin. The unique properties of the reported SLiM electrodes offer a comfortable electrophysiological sensing solution especially for patients with pre-existing skin conditions or surface wounds.
Collapse
Affiliation(s)
- Maria A. Menke
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
| | - Braden M. Li
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
- Air Force Life Cycle Management CenterHuman Systems DivisionWright‐Patterson AFBDaytonOH45433USA
| | - Meghan G. Arnold
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
| | - Logan E. Mueller
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
| | - Robin Dietrich
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
| | - Shijie Zhou
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
| | - Nancy Kelley‐Loughnane
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
| | - Patrick Dennis
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
| | - Jason T. Boock
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
| | - Joseph Estevez
- Naval Air Warfare CenterWeapons DivisionChina LakeCA93555USA
| | - Christopher E. Tabor
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson AFBDaytonOH45433USA
| | - Jessica L. Sparks
- Department of ChemicalPaper, and Biomedical EngineeringMiami UniversityOxfordOH45056USA
| |
Collapse
|
49
|
Sayyad PW, Park SJ, Ha TJ. Bioinspired nanoplatforms for human-machine interfaces: Recent progress in materials and device applications. Biotechnol Adv 2024; 70:108297. [PMID: 38061687 DOI: 10.1016/j.biotechadv.2023.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The panoramic characteristics of human-machine interfaces (HMIs) have prompted the needs to update the biotechnology community with the recent trends, developments, and future research direction toward next-generation bioelectronics. Bioinspired materials are promising for integrating various bioelectronic devices to realize HMIs. With the advancement of scientific biotechnology, state-of-the-art bioelectronic applications have been extensively investigated to improve the quality of life by developing and integrating bioinspired nanoplatforms in HMIs. This review highlights recent trends and developments in the field of biotechnology based on bioinspired nanoplatforms by demonstrating recently explored materials and cutting-edge device applications. Section 1 introduces the recent trends and developments of bioinspired nanomaterials for HMIs. Section 2 reviews various flexible, wearable, biocompatible, and biodegradable nanoplatforms for bioinspired applications. Section 3 furnishes recently explored substrates as carriers for advanced nanomaterials in developing HMIs. Section 4 addresses recently invented biomimetic neuroelectronic, nanointerfaces, biointerfaces, and nano/microfluidic wearable bioelectronic devices for various HMI applications, such as healthcare, biopotential monitoring, and body fluid monitoring. Section 5 outlines designing and engineering of bioinspired sensors for HMIs. Finally, the challenges and opportunities for next-generation bioinspired nanoplatforms in extending the potential on HMIs are discussed for a near-future scenario. We believe this review can stimulate the integration of bioinspired nanoplatforms into the HMIs in addition to wearable electronic skin and health-monitoring devices while addressing prevailing and future healthcare and material-related problems in biotechnologies.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Joon Park
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Tae-Jun Ha
- Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
50
|
Guo X, Sun Y, Sun X, Li J, Wu J, Shi Y, Pan L. Doping Engineering of Conductive Polymers and Their Application in Physical Sensors for Healthcare Monitoring. Macromol Rapid Commun 2024; 45:e2300246. [PMID: 37534567 DOI: 10.1002/marc.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Indexed: 08/04/2023]
Abstract
Physical sensors have emerged as a promising technology for real-time healthcare monitoring, which tracks various physical signals from the human body. Accurate acquisition of these physical signals from biological tissue requires excellent electrical conductivity and long-term durability of the sensors under complex mechanical deformation. Conductive polymers, combining the advantages of conventional polymers and organic conductors, are considered ideal conductive materials for healthcare physical sensors due to their intrinsic conductive network, tunable mechanical properties, and easy processing. Doping engineering has been proposed as an effective approach to enhance the sensitivity, lower the detection limit, and widen the operational range of sensors based on conductive polymers. This approach enables the introduction of dopants into conductive polymers to adjust and control the microstructure and energy levels of conductive polymers, thereby optimizing their mechanical and conductivity properties. This review article provides a comprehensive overview of doping engineering methods to improve the physical properties of conductive polymers and highlights their applications in the field of healthcare physical sensors, including temperature sensors, strain sensors, stress sensors, and electrophysiological sensing. Additionally, the challenges and opportunities associated with conductive polymer-based physical sensors in healthcare monitoring are discussed.
Collapse
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yuqiong Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|