1
|
Yakovenko I, Mihai IS, Selinger M, Rosenbaum W, Dernstedt A, Gröning R, Trygg J, Carroll L, Forsell M, Henriksson J. Telomemore enables single-cell analysis of cell cycle and chromatin condensation. Nucleic Acids Res 2025; 53:gkaf031. [PMID: 39878215 PMCID: PMC11775621 DOI: 10.1093/nar/gkaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/15/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Single-cell RNA-seq methods can be used to delineate cell types and states at unprecedented resolution but do little to explain why certain genes are expressed. Single-cell ATAC-seq and multiome (ATAC + RNA) have emerged to give a complementary view of the cell state. It is however unclear what additional information can be extracted from ATAC-seq data besides transcription factor binding sites. Here, we show that ATAC-seq telomere-like reads counter-inituively cannot be used to infer telomere length, as they mostly originate from the subtelomere, but can be used as a biomarker for chromatin condensation. Using long-read sequencing, we further show that modern hyperactive Tn5 does not duplicate 9 bp of its target sequence, contrary to common belief. We provide a new tool, Telomemore, which can quantify nonaligning subtelomeric reads. By analyzing several public datasets and generating new multiome fibroblast and B-cell atlases, we show how this new readout can aid single-cell data interpretation. We show how drivers of condensation processes can be inferred, and how it complements common RNA-seq-based cell cycle inference, which fails for monocytes. Telomemore-based analysis of the condensation state is thus a valuable complement to the single-cell analysis toolbox.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Ionut Sebastian Mihai
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Industrial Doctoral School, Umeå University, Umeå, Sweden
| | - Martin Selinger
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Department of Chemistry, Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | - William Rosenbaum
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Andy Dernstedt
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Remigius Gröning
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, Linnaeus väg 10, Umeå universitet, 901 87, Umeå, Sweden
- Sartorius Corporate Research, Östra Strandgatan 24, 903 33, Umeå, Sweden
| | - Laura Carroll
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Integrated Science Lab (IceLab), Umeå University, Naturvetarhuset, Universitetsvägen, 901 87, Umeå, Sweden
| | - Mattias Forsell
- Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden
| | - Johan Henriksson
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden
- Integrated Science Lab (IceLab), Umeå University, Naturvetarhuset, Universitetsvägen, 901 87, Umeå, Sweden
| |
Collapse
|
2
|
Wang Y, Xue Y, Wang H, Qu Y, Zhang K, Shang L, Liang P, Chen F, Tang X, Luo W, Chin LK, Feng S, Li B. Automated Laser-Assisted Single-Cell Sorting for Cell Functional and RNA Sequencing. ACS Sens 2025. [PMID: 39843241 DOI: 10.1021/acssensors.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Accurate and efficient sorting of single target cells is crucial for downstream single-cell analysis, such as RNA sequencing, to uncover cellular heterogeneity and functional characteristics. However, conventional single-cell sorting techniques, such as manual micromanipulation or fluorescence-activated cell sorting, do not match current demands and are limited by low throughput, low sorting efficiency and precision, or limited cell viability. Here, we report an automated, highly efficient single-cell sorter, integrating laser-induced forward transfer (LIFT) with a high-throughput picoliter micropore array. The micropore array was surface-functionalized to manipulate liquid surface tension, facilitating the formation of single-cell picoliter droplets in the micropores to realize automated and highly efficient (>80%) single-cell isolation. Using an in-house built microscopic system, rare target cells were identified and automatically retrieved by LIFT with precise sorting efficiency (about 100%) for downstream single-cell analysis while maintaining high cell viability (about 80%). As a case demonstration, we demonstrated the accurate sorting of rare transfected PC-9 cells and post-transfection cell culture, minimizing cell loss and the risk of contamination. Furthermore, we performed single-cell RNA sequencing and showed that high-quality single-cell transcriptome information was efficiently and reliably obtained during cell sorting, preventing additional costs due to low sorting accuracy. The single-cell sorter will become invaluable for single-cell analysis, laying the foundation for multiomics analysis and precision medicine research.
Collapse
Affiliation(s)
- Yuntong Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Applied Optics, Changchun 130033, P. R. China
- Key Laboratory of Advanced Manufacturing for Optical Systems, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Ying Xue
- Hooke Laboratory, Changchun 130033, P. R. China
| | - Huan Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Qu
- Hooke Laboratory, Changchun 130033, P. R. China
- Haining High-tech Research Institute, Jiaxing, Zhejiang 314408, P. R. China
| | | | - Lindong Shang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Applied Optics, Changchun 130033, P. R. China
- Key Laboratory of Advanced Manufacturing for Optical Systems, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Peng Liang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Applied Optics, Changchun 130033, P. R. China
- Key Laboratory of Advanced Manufacturing for Optical Systems, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Fuyuan Chen
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Applied Optics, Changchun 130033, P. R. China
- Key Laboratory of Advanced Manufacturing for Optical Systems, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Xusheng Tang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Applied Optics, Changchun 130033, P. R. China
- Key Laboratory of Advanced Manufacturing for Optical Systems, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Wei Luo
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Lip Ket Chin
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bei Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Applied Optics, Changchun 130033, P. R. China
- Key Laboratory of Advanced Manufacturing for Optical Systems, Chinese Academy of Sciences, Changchun 130033, P. R. China
| |
Collapse
|
3
|
Ma D, Liang R, Luo Q, Song G. Pressure loading regulates the stemness of liver cancer stem cells via YAP/BMF signaling axis. J Cell Physiol 2025; 240:e31451. [PMID: 39358905 DOI: 10.1002/jcp.31451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Cancer stem cells (CSCs) are considered the major cause of the occurrence, progression, chemoresistance/radioresistance, recurrence, and metastasis of cancer. Increased interstitial fluid pressure (IFP) is a key feature of solid tumors. Our previous study showed that the distribution of liver cancer stem cells (LCSCs) correlated with the mechanical heterogeneity within liver cancer tissues. However, the regulation of liver cancer's mechanical microenvironment on the LCSC stemness is not fully understood. Here, we employed a cellular pressure-loading device to investigate the effects of normal IFP (5 mmHg), as well as increased IFP (40 and 200 mmHg) on the stemness of LCSCs. Compared to the control LCSCs (exposure to 5 mmHg pressure loading), the LCSCs exposed to 40 mmHg pressure loading exhibited significantly upregulated expression of CSC markers (CD44, EpCAM, Nanog), enhanced sphere and colony formation capacities, and tumorigenic potential, whereas continuously increased pressure to 200 mmHg suppressed the LCSC characteristics. Mechanistically, pressure loading regulated Yes-associated protein (YAP) activity and Bcl-2 modifying factor (BMF) expression. YAP transcriptionally regulated BMF expression to affect the stemness of LCSCs. Knockdown of YAP and overexpression of BMF attenuated pressure-mediated stemness and tumorgenicity, while YAP-deficient and BMF-deletion recused pressure-dependent stemness on LCSCs, suggesting the involvement of YAP/BMF signaling axis in this process. Together, our findings provide a potential target for overcoming the stemness of CSCs and elucidate the significance of increased IFP in cancer progression.
Collapse
Affiliation(s)
- Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Ma D, Liu S, Liu K, Kong L, Xiao L, Xin Q, Jiang C, Wu J. MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells by binding ITGB4/LAMB3 to activate the AKT signaling pathway. Cancer Biol Ther 2024; 25:2314324. [PMID: 38375821 PMCID: PMC10880501 DOI: 10.1080/15384047.2024.2314324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.
Collapse
Affiliation(s)
- Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| |
Collapse
|
5
|
Zhou S, Lin N, Yu L, Su X, Liu Z, Yu X, Gao H, Lin S, Zeng Y. Single-cell multi-omics in the study of digestive system cancers. Comput Struct Biotechnol J 2024; 23:431-445. [PMID: 38223343 PMCID: PMC10787224 DOI: 10.1016/j.csbj.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024] Open
Abstract
Digestive system cancers are prevalent diseases with a high mortality rate, posing a significant threat to public health and economic burden. The diagnosis and treatment of digestive system cancer confront conventional cancer problems, such as tumor heterogeneity and drug resistance. Single-cell sequencing (SCS) emerged at times required and has developed from single-cell RNA-seq (scRNA-seq) to the single-cell multi-omics era represented by single-cell spatial transcriptomics (ST). This article comprehensively reviews the advances of single-cell omics technology in the study of digestive system tumors. While analyzing and summarizing the research cases, vital details on the sequencing platform, sample information, sampling method, and key findings are provided. Meanwhile, we summarize the commonly used SCS platforms and their features, as well as the advantages of multi-omics technologies in combination. Finally, the development trends and prospects of the application of single-cell multi-omics technology in digestive system cancer research are prospected.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Nanfei Lin
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, & Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xiaowan Yu
- Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| |
Collapse
|
6
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
7
|
Li Y, Lin C, Chu Y, Wei Z, Ding Q, Gu S, Deng H, Liao Q, Shen Z. Characterization of Cancer Stem Cells in Laryngeal Squamous Cell Carcinoma by Single-cell RNA Sequencing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae056. [PMID: 39107908 PMCID: PMC11522873 DOI: 10.1093/gpbjnl/qzae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/03/2024] [Accepted: 07/23/2024] [Indexed: 11/01/2024]
Abstract
Cancer stem cells (CSCs) constitute a pivotal element within the tumor microenvironment (TME), driving the initiation and progression of cancer. However, the identification of CSCs and their underlying molecular mechanisms in laryngeal squamous cell carcinoma (LSCC) remains a formidable challenge. Here, we employed single-cell RNA sequencing of matched primary tumor tissues, paracancerous tissues, and local lymph nodes from three LSCC patients to comprehensively characterize the CSCs in LSCC. Two distinct clusters of stem cells originating from epithelial populations were delineated and verified as CSCs and normal stem cells (NSCs), respectively. CSCs were abundant in the paracancerous tissues compared to those in the tumor tissues. CSCs showed high expression of stem cell marker genes such as PROM1, ALDH1A1, and SOX4, and increased the activity of tumor-related hypoxia, Wnt/β-catenin, and Notch signaling pathways. We then explored the intricate crosstalk between CSCs and the TME cells and identified targets within the TME that related with CSCs. We also found eight marker genes of CSCs that were correlated significantly with the prognosis of LSCC patients. Furthermore, bioinformatics analyses showed that drugs such as erlotinib, OSI-027, and ibrutinib selectively targeted the CSC-specifically expressed genes. In conclusion, our results represent the first comprehensive characterization of CSC properties in LSCC at the single-cell level.
Collapse
Affiliation(s)
- Yanguo Li
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Chen Lin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yidian Chu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhengyu Wei
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Qi Ding
- The Ningbo Diagnostic Pathology Center, Ningbo 315021, China
| | - Shanshan Gu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
| | - Hongxia Deng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
| | - Qi Liao
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhisen Shen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
| |
Collapse
|
8
|
Kelson CO, Tessmann JW, Geisen ME, He D, Wang C, Gao T, Evers BM, Zaytseva YY. Upregulation of Fatty Acid Synthase Increases Activity of β-Catenin and Expression of NOTUM to Enhance Stem-like Properties of Colorectal Cancer Cells. Cells 2024; 13:1663. [PMID: 39404424 PMCID: PMC11475157 DOI: 10.3390/cells13191663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Dysregulated fatty acid metabolism is an attractive therapeutic target for colorectal cancer (CRC). We previously reported that fatty acid synthase (FASN), a key enzyme of de novo synthesis, promotes the initiation and progression of CRC. However, the mechanisms of how upregulation of FASN promotes the initiation and progression of CRC are not completely understood. Here, using Apc/VillinCre and ApcMin mouse models, we show that upregulation of FASN is associated with an increase in activity of β-catenin and expression of multiple stem cell markers, including Notum. Genetic and pharmacological downregulation of FASN in mouse adenoma organoids decreases the activation of β-catenin and expression of Notum and significantly inhibits organoid formation and growth. Consistently, we demonstrate that NOTUM is highly expressed in human CRC and its expression positively correlates with the expression of FASN in tumor tissues. Utilizing overexpression and shRNA-mediated knockdown of FASN, we demonstrate that upregulation of FASN increases β-catenin transcriptional activity, NOTUM expression and secretion, and enhances stem-like properties of human CRC cells. Pharmacological inhibition of NOTUM decreases adenoma organoids growth and proliferation of cancer cells. In summary, upregulation of FASN enhances β-catenin signaling, increases NOTUM expression and stem-like properties of CRC cells, thus suggesting that targeting FASN upstream of the β-catenin/NOTUM axis may be an effective preventative therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Courtney O. Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Mariah E. Geisen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Daheng He
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (D.H.); (C.W.)
| | - Chi Wang
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (D.H.); (C.W.)
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.G.); (B.M.E.)
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.G.); (B.M.E.)
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| |
Collapse
|
9
|
Ruan Z, Zhou W, Liu H, Wei J, Pan Y, Yan C, Wei X, Xiang W, Yan C, Chen S, Liu J. Precise detection of cell-type-specific domains in spatial transcriptomics. CELL REPORTS METHODS 2024; 4:100841. [PMID: 39127046 PMCID: PMC11384096 DOI: 10.1016/j.crmeth.2024.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Cell-type-specific domains are the anatomical domains in spatially resolved transcriptome (SRT) tissues where particular cell types are enriched coincidentally. It is challenging to use existing computational methods to detect specific domains with low-proportion cell types, which are partly overlapped with or even inside other cell-type-specific domains. Here, we propose De-spot, which synthesizes segmentation and deconvolution as an ensemble to generate cell-type patterns, detect low-proportion cell-type-specific domains, and display these domains intuitively. Experimental evaluation showed that De-spot enabled us to discover the co-localizations between cancer-associated fibroblasts and immune-related cells that indicate potential tumor microenvironment (TME) domains in given slices, which were obscured by previous computational methods. We further elucidated the identified domains and found that Srgn may be a critical TME marker in SRT slices. By deciphering T cell-specific domains in breast cancer tissues, De-spot also revealed that the proportions of exhausted T cells were significantly increased in invasive vs. ductal carcinoma.
Collapse
Affiliation(s)
- Zhihan Ruan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Weijun Zhou
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Jinmao Wei
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Yichen Pan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Chaoyang Yan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Xiaoyi Wei
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Wenting Xiang
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Chengwei Yan
- Centre for Bioinformatics and Intelligent Medicine, College of Computer Science, Nankai University, Tianjin 300350, China
| | - Shengquan Chen
- School of Mathematical Sciences, Nankai University, Tianjin 300350, China
| | - Jian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Computer Science, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Fan FM, Fleishman JS, Chen J, Chen ZS, Dong HH. New insights into the mechanism of resistance to lenvatinib and strategies for lenvatinib sensitization in hepatocellular carcinoma. Drug Discov Today 2024; 29:104069. [PMID: 38936692 DOI: 10.1016/j.drudis.2024.104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Lenvatinib is a multikinase inhibitor that suppresses vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor α (PDGFRα), as well as the proto-oncogenes RET and KIT. Lenvatinib has been approved by the US Food and Drug Administration (FDA) for the first-line treatment of hepatocellular carcinoma (HCC) due to its superior efficacy when compared to sorafenib. Unfortunately, the development of drug resistance to lenvatinib is becoming increasingly common. Thus, there is an urgent need to identify the factors that lead to drug resistance and ways to mitigate it. We summarize the molecular mechanisms that lead to lenvatinib resistance (LR) in HCC, which involve programmed cell death (PCD), translocation processes, and changes in the tumor microenvironment (TME), and provide strategies to reverse resistance.
Collapse
Affiliation(s)
- Fei-Mu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| | - Han-Hua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| |
Collapse
|
11
|
Peng Z, Fang C, Tong Z, Rao Q, Ren Z, Hu K. Crosstalk Between Cancer-associated Fibroblasts and Myeloid Cells Shapes the Heterogeneous Microenvironment of Gastric Cancer. Curr Genomics 2024; 25:390-411. [PMID: 39323622 PMCID: PMC11420565 DOI: 10.2174/0113892029300608240531111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 09/27/2024] Open
Abstract
Background Targeted therapies have improved the clinical outcomes of most patients with cancer. However, the heterogeneity of gastric cancer remains a major hurdle for precision treatment. Further investigations into tumor microenvironment heterogeneity are required to resolve these problems. Methods In this study, bioinformatic analyses, including metabolism analysis, pathway enrichment, differentiation trajectory inference, regulatory network construction, and survival analysis, were applied to gain a comprehensive understanding of tumor microenvironment biology within gastric cancer using single-cell RNA-seq and public datasets and experiments were carried out to confirm the conclusions of these analyses. Results We profiled heterogeneous single-cell atlases and identified eight cell populations with differential expression patterns. We identified two cancer-associated fibroblasts (CAFs) subtypes, with particular emphasis on the role of inflammatory cancer-associated fibroblasts (iCAFs) in EMT and lipid metabolic crosstalk within the tumor microenvironment. Notably, we detected two differentiation states of iCAFs that existed in different tissues with discrepant expression of genes involved in immuno-inflammation or ECM remodeling. Moreover, investigation of tumor-infiltrating myeloid cells has revealed the functional diversity of myeloid cell lineages in gastric cancer. Of which a proliferative cell lineage named C1QC+MKI67+TAMs was recognized with high immunosuppressive capacities, suggesting it has immune suppression and cell proliferation functions in the tumor niche. Finally, we explored regulatory networks based on ligand-receptor pairs and found crucial pro-tumor crosstalk between CAFs and myeloid cells in the tumor microenvironment (TME). Conclusion These findings provide insights for future cancer treatments and drug discovery.
Collapse
Affiliation(s)
- Zhiwei Peng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Can Fang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Zhiwei Tong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Qiufan Rao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zihao Ren
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, Anhui 236000, China
| |
Collapse
|
12
|
Liu Y, Chen H, Xiao L, Dong P, Ma Y, Zhou Y, Yang J, Bian B, Xie G, Chen L, Shen L. Notum enhances gastric cancer stem-like cell properties through upregulation of Sox2 by PI3K/AKT signaling pathway. Cell Oncol (Dordr) 2024; 47:463-480. [PMID: 37749430 PMCID: PMC11090966 DOI: 10.1007/s13402-023-00875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
PURPOSE Considerable evidence suggests that tumor cells with stemness features contribute to initiation, progression, recurrence of gastric cancer (GC) and resistance to therapy, but involvement of underlying regulators and mechanisms remain largely unclear. However, the clinical significance and biological function of Notum in GC tumor sphere formation and tumorigenesis remain unclear. METHODS Bioinformatics analysis, RT-qPCR, western blot and imunohistochemistry staining were applied to characterize Notum expression in GC specimens. The early diagnostic value of Notum was analyzed by logistic regression analysis method. Cancer stemness assays were used in Notum knockdown and overexpressing cells in vitro and in vivo. RNA-seq was employed to reveal the downstream effectors of Notum. RESULTS Notum is highly expressed in early stage of GC patients and stem-like GC cells. For discriminating the early-stage and advanced GC patients, the joint analysis had a better diagnostic value. Overexpression of Notum markedly increased stemness features of GC cells to promote tumor sphere formation and tumorigenesis. Conversely, Notum knockdown attenuated the stem-like cell properties in vitro and in vivo. Mechanically, Notum upregulates Sox2 through activating the PI3K/AKT signaling pathway. Notum inhibitor Caffeine exhibited a potent inhibitory effect on stemness features by impairing the PI3K/AKT signaling pathway activity and targeting Sox2. CONCLUSION Our findings confer a comprehensive and mechanistic function of Notum in GC tumor sphere formation and tumorigenesis that may provide a novel and promising target for early diagnosis and clinical therapy of GC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lanshu Xiao
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingxian Bian
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lei Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, 200240, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
13
|
Kelson CO, Zaytseva YY. Altered lipid metabolism in APC-driven colorectal cancer: the potential for therapeutic intervention. Front Oncol 2024; 14:1343061. [PMID: 38590663 PMCID: PMC10999677 DOI: 10.3389/fonc.2024.1343061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Altered lipid metabolism is a well-recognized feature of solid cancers, including colorectal cancer. In colorectal cancer, upregulation of lipid metabolism contributes to initiation, progression, and metastasis; thus, aberrant lipid metabolism contributes to a poor patient outcome. The inactivating mutation of APC, a vital tumor suppressor in the Wnt signaling pathway, is a key event that occurs early in the majority of colorectal cancer cases. The potential crosstalk between lipid metabolism and APC-driven colorectal cancer is poorly understood. This review collectively highlights and summarizes the limited understanding between mutations in APC and the upregulation of Wnt/beta-catenin signaling and lipid metabolism. The interconnection between APC inactivation and aberrant lipid metabolism activates Wnt/beta-catenin signaling which causes transcriptome, epigenetic, and microbiome changes to promote colorectal cancer initiation and progression. Furthermore, the downstream effects of this collaborative effort between aberrant Wnt/beta-catenin signaling and lipid metabolism are enhanced stemness, cellular proliferation, prooncogenic signaling, and survival. Understanding the mechanistic link between APC inactivation and alterations in lipid metabolism may foster identification of new therapeutic targets to enable development of more efficacious strategies for prevention and/or treatment of colorectal cancer.
Collapse
Affiliation(s)
- Courtney O Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Yekaterina Y Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
14
|
Ke C, Zhou H, Xia T, Xie X, Jiang B. GTP binding protein 2 maintains the quiescence, self-renewal, and chemoresistance of mouse colorectal cancer stem cells via promoting Wnt signaling activation. Heliyon 2024; 10:e27159. [PMID: 38468952 PMCID: PMC10926081 DOI: 10.1016/j.heliyon.2024.e27159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and the second most deadly cancer across the globe. Colorectal cancer stem cells (CCSCs) fuel CRC growth, metastasis, relapse, and chemoresistance. A complete understanding of the modulatory mechanisms of CCSC biology is essential for developing efficacious CRC treatment. In the current study, we characterized the expression and function of GTP binding protein 2 (GTPBP2) in a chemical-induced mouse CRC model. We found that GTPBP2 was expressed at a higher level in CD133+CD44+ CCSCs compared with other CRC cells. Using a lentivirus-based Cas9/sgRNA system, GTPBP2 expression was ablated in CRC cells in vitro. GTPBP2 deficiency caused the following effects on CCSCs: 1) Significantly accelerating proliferation and increasing the proportions of cells at G1, S, and G2/M phase; 2) Impairing resistance to 5-Fluorouracil; 3) Weakening self-renewal but not impacting cell migration. In addition, GTPBP2 deficiency remarkably decreased β-catenin expression while increasing β-catenin phosphorylation in CCSCs. These effects of GTPBP2 were present in CCSCs but not in other CRC cell populations. The Wnt agonist SKL2001 completely abolished these changes in GTPBP2-deficient CCSCs. When GTPBP2-deficient CCSCs were implanted in nude mice, they exhibited consistent changes compared with GTPBP2-expressing CCSCs. Collectively, this study indicates that GTPBP2 positively modulates Wnt signaling to reinforce the quiescence, self-renewal, and chemoresistance of mouse CCSCs. Therefore, we disclose a novel mechanism underlying CCSC biology and GTPBP2 could be a therapeutic target in future CRC treatment.
Collapse
Affiliation(s)
- Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Tian Xia
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Xingwang Xie
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| |
Collapse
|
15
|
Zuo X, Wang X, Ma T, Chen S, Cao P, Cheng H, Yang N, Han X, Gao W, Liu X, Sun Y. TNFRSF19 within the 13q12.12 Risk Locus Functions as a Lung Cancer Suppressor by Binding Wnt3a to Inhibit Wnt/β-Catenin Signaling. Mol Cancer Res 2024; 22:227-239. [PMID: 38047807 DOI: 10.1158/1541-7786.mcr-23-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Cancer risk loci provide special clues for uncovering pathogenesis of cancers. The TNFRSF19 gene located within the 13q12.12 lung cancer risk locus encodes TNF receptor superfamily member 19 (TNFRSF19) protein and has been proved to be a key target gene of a lung tissue-specific tumor suppressive enhancer, but its functional role in lung cancer pathogenesis remains to be elucidated. Here we showed that the TNFRSF19 gene could protect human bronchial epithelial Beas-2B cells from pulmonary carcinogen nicotine-derived nitrosamine ketone (NNK)-induced malignant transformation. Knockout of the TNFRSF19 significantly increased NNK-induced colony formation rate on soft agar. Moreover, TNFRSF19 expression was significantly reduced in lung cancer tissues and cell lines. Restoration of TNFRSF19 expression in A549 lung cancer cell line dramatically suppressed the tumor formation in xenograft mouse model. Interestingly, the TNFRSF19 protein that is an orphan membrane receptor could compete with LRP6 to bind Wnt3a, thereby inhibiting the Wnt/β-catenin signaling pathway that is required for NNK-induced malignant transformation as indicated by protein pulldown, site mutation, and fluorescence energy resonance transfer experiments. Knockout of the TNFRSF19 enhanced LRP6-Wnt3a interaction, promoting β-catenin nucleus translocation and the downstream target gene expression, and thus sensitized the cells to NNK carcinogen. In conclusion, our study demonstrated that the TNFRSF19 inhibited lung cancer carcinogenesis by competing with LRP6 to combine with Wnt3a to inhibit the Wnt/β-catenin signaling pathway. IMPLICATIONS These findings revealed a novel anti-lung cancer mechanism, highlighting the special significance of TNFRSF19 gene within the 13q12.12 risk locus in lung cancer pathogenesis.
Collapse
Affiliation(s)
- Xianglin Zuo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Xuchun Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Tingzheng Ma
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Shuhan Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Pingping Cao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - He Cheng
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
| | - Wei Gao
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Xiaoyu Liu
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Yujie Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China
- Department of Cell Biology, Nanjing Medical University, Nanjing, P.R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
16
|
Jones J, Shi Q, Nath RR, Brito IL. Keystone pathobionts associated with colorectal cancer promote oncogenic reprograming. PLoS One 2024; 19:e0297897. [PMID: 38363784 PMCID: PMC10871517 DOI: 10.1371/journal.pone.0297897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/12/2024] [Indexed: 02/18/2024] Open
Abstract
Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.
Collapse
Affiliation(s)
- Josh Jones
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Qiaojuan Shi
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Rahul R. Nath
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Ilana L. Brito
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
17
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
18
|
Jiang T, Zheng J, Li N, Li X, He J, Zhou J, Sun B, Chi Q. Dissecting the Mechanisms of Intestinal Immune Homeostasis by Analyzing T-Cell Immune Response in Crohn's Disease and Colorectal Cancer. Curr Gene Ther 2024; 24:422-440. [PMID: 38682449 DOI: 10.2174/0115665232294568240201073417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Crohn's disease (CD) and colorectal cancer (CRC) represent a group of intestinal disorders characterized by intricate pathogenic mechanisms linked to the disruption of intestinal immune homeostasis. Therefore, comprehending the immune response mechanisms in both categories of intestinal disorders is of paramount significance in the prevention and treatment of these debilitating intestinal ailments. METHOD IIn this study, we conducted single-cell analysis on paired samples obtained from primary colorectal tumors and individuals with Crohn's disease, which was aimed at deciphering the factors influencing the composition of the intestinal immune microenvironment. By aligning T cells across different tissues, we identified various T cell subtypes, such as γδ T cell, NK T cell, and regulatory T (Treg) cell, which maintained immune system homeostasis and were confirmed in enrichment analyses. Subsequently, we generated pseudo-time trajectories for subclusters of T cells in both syndromes to delineate their differentiation patterns and identify key driver genes Result: Furthermore, cellular communication and transcription factor regulatory networks are all essential components of the intricate web of mechanisms that regulate intestinal immune homeostasis. The identified complex cellular interaction suggested potential T-lineage immunotherapeutic targets against epithelial cells with high copy number variation (CNV) levels in CD and CRC. CONCLUSION Finally, the analysis of regulon networks revealed several promising candidates for cell-specific transcription factors (TFs). This study focused on the immune molecular mechanism under intestinal diseases. It contributed to the novel insight of depicting a detailed immune landscape and revealing T-cell responding mechanisms in CD and CRC.
Collapse
Affiliation(s)
- Tianming Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT06510, USA
| | - Nana Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaodong Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jixing He
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junde Zhou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, CT06510, USA
| | - Qiang Chi
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Peri SS, Narayanaa Y K, Hubert TD, Rajaraman R, Arfuso F, Sundaram S, Archana B, Warrier S, Dharmarajan A, Perumalsamy LR. Navigating Tumour Microenvironment and Wnt Signalling Crosstalk: Implications for Advanced Cancer Therapeutics. Cancers (Basel) 2023; 15:5847. [PMID: 38136392 PMCID: PMC10741643 DOI: 10.3390/cancers15245847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer therapeutics face significant challenges due to drug resistance and tumour recurrence. The tumour microenvironment (TME) is a crucial contributor and essential hallmark of cancer. It encompasses various components surrounding the tumour, including intercellular elements, immune system cells, the vascular system, stem cells, and extracellular matrices, all of which play critical roles in tumour progression, epithelial-mesenchymal transition, metastasis, drug resistance, and relapse. These components interact with multiple signalling pathways, positively or negatively influencing cell growth. Abnormal regulation of the Wnt signalling pathway has been observed in tumorigenesis and contributes to tumour growth. A comprehensive understanding and characterisation of how different cells within the TME communicate through signalling pathways is vital. This review aims to explore the intricate and dynamic interactions, expressions, and alterations of TME components and the Wnt signalling pathway, offering valuable insights into the development of therapeutic applications.
Collapse
Affiliation(s)
- Shraddha Shravani Peri
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Therese Deebiga Hubert
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Roshini Rajaraman
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - B. Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - Sudha Warrier
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India;
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lakshmi R. Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| |
Collapse
|
20
|
Gisina A, Kim Y, Yarygin K, Lupatov A. Can CD133 Be Regarded as a Prognostic Biomarker in Oncology: Pros and Cons. Int J Mol Sci 2023; 24:17398. [PMID: 38139228 PMCID: PMC10744290 DOI: 10.3390/ijms242417398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The CD133 cell membrane glycoprotein, also termed prominin-1, is expressed on some of the tumor cells of both solid and blood malignancies. The CD133-positive tumor cells were shown to exhibit higher proliferative activity, greater chemo- and radioresistance, and enhanced tumorigenicity compared to their CD133-negative counterparts. For this reason, CD133 is regarded as a potential prognostic biomarker in oncology. The CD133-positive cells are related to the cancer stem cell subpopulation in many types of cancer. Recent studies demonstrated the involvement of CD133 in the regulation of proliferation, autophagy, and apoptosis in cancer cells. There is also evidence of its participation in the epithelial-mesenchymal transition associated with tumor progression. For a number of malignant tumor types, high CD133 expression is associated with poor prognosis, and the prognostic significance of CD133 has been confirmed in a number of meta-analyses. However, some published papers suggest that CD133 has no prognostic significance or even demonstrate a certain correlation between high CD133 levels and a positive prognosis. This review summarizes and discusses the existing evidence for and against the prognostic significance of CD133 in cancer. We also consider possible reasons for conflicting findings from the studies of the clinical significance of CD133.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V. N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | | | | |
Collapse
|
21
|
Li X, He Y, Jiang Y, Pan B, Wu J, Zhao X, Huang J, Wang Q, Cheng L, Han J. PathwayTMB: A pathway-based tumor mutational burden analysis method for predicting the clinical outcome of cancer immunotherapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102026. [PMID: 37744173 PMCID: PMC10514137 DOI: 10.1016/j.omtn.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Immunotherapy has become one of the most promising therapy methods for cancer, but only a small number of patients are responsive to it, indicating that more effective biomarkers are urgently needed. This study developed a pathway analysis method, named PathwayTMB, to identify genomic mutation pathways that serve as potential biomarkers for predicting the clinical outcome of immunotherapy. PathwayTMB first calculates the patient-specific pathway-based tumor mutational burden (PTMB) to reflect the cumulative extent of mutations for each pathway. It then screens mutated survival benefit-related pathways to construct an immune-related prognostic signature based on PTMB (IPSP). In a melanoma training set, IPSP-high patients presented a longer overall survival and a higher response rate than IPSP-low patients. Moreover, the IPSP showed a superior predictive effect compared with TMB. In addition, the prognostic and predictive value of the IPSP was consistently validated in two independent validation sets. Finally, in a multi-cancer dataset, PathwayTMB also exhibited good performance. Our results indicate that PathwayTMB could identify the mutation pathways for predicting immunotherapeutic survival, and their combination may serve as a potential predictive biomarker for immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yalan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Bingyue Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xilong Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junling Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qian Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
22
|
Zhao H, Han R, Wang Z, Xian J, Bai X. Colorectal Cancer Stem Cells and Targeted Agents. Pharmaceutics 2023; 15:2763. [PMID: 38140103 PMCID: PMC10748092 DOI: 10.3390/pharmaceutics15122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since their discovery, cancer stem cells have become a hot topic in cancer therapy research. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent characteristics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here, we introduced the origin, biomarker proteins, identification, cultivation and research techniques of CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and propose potential therapies.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| | - Ruining Han
- Obstetric Department, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China;
| | - Zhankun Wang
- Emergency Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China;
| | - Junfang Xian
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
| | - Xiaosu Bai
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| |
Collapse
|
23
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med 2023; 21:686. [PMID: 37784157 PMCID: PMC10546755 DOI: 10.1186/s12967-023-04575-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Cancer stem cells (CSCs) have emerged as key contributors to tumor initiation, growth, and metastasis. In addition, CSCs play a significant role in inducing immune evasion, thereby compromising the effectiveness of cancer treatments. The reciprocal communication between CSCs and the tumor microenvironment (TME) is observed, with the TME providing a supportive niche for CSC survival and self-renewal, while CSCs, in turn, influence the polarization and persistence of the TME, promoting an immunosuppressive state. Consequently, these interactions hinder the efficacy of current cancer therapies, necessitating the exploration of novel therapeutic approaches to modulate the TME and target CSCs. In this review, we highlight the intricate strategies employed by CSCs to evade immune surveillance and develop resistance to therapies. Furthermore, we examine the dynamic interplay between CSCs and the TME, shedding light on how this interaction impacts cancer progression. Moreover, we provide an overview of advanced therapeutic strategies that specifically target CSCs and the TME, which hold promise for future clinical and translational studies in cancer treatment.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Wang H, Zhang Z, Ruan S, Yan Q, Chen Y, Cui J, Wang X, Huang S, Hou B. Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol 2023; 13:1251561. [PMID: 37736551 PMCID: PMC10509481 DOI: 10.3389/fonc.2023.1251561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ability of cancer stem cells (CSCs) to self-renew, differentiate, and generate new tumors is a significant contributor to drug resistance, relapse, and metastasis. Therefore, the targeting of CSCs for treatment is particularly important. Recent studies have demonstrated that CSCs are more susceptible to ferroptosis than non-CSCs, indicating that this could be an effective strategy for treating tumors. Ferroptosis is a type of programmed cell death that results from the accumulation of lipid peroxides caused by intracellular iron-mediated processes. CSCs exhibit different molecular characteristics related to iron and lipid metabolism. This study reviews the alterations in iron metabolism, lipid peroxidation, and lipid peroxide scavenging in CSCs, their impact on ferroptosis, and the regulatory mechanisms underlying iron metabolism and ferroptosis. Potential treatment strategies and novel compounds targeting CSC by inducing ferroptosis are also discussed.
Collapse
Affiliation(s)
- Hailiang Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Xinjian Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
26
|
Peng Z, Ren Z, Tong Z, Zhu Y, Zhu Y, Hu K. Interactions between MFAP5 + fibroblasts and tumor-infiltrating myeloid cells shape the malignant microenvironment of colorectal cancer. J Transl Med 2023; 21:405. [PMID: 37344903 DOI: 10.1186/s12967-023-04281-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND The therapeutic targeting of the tumor microenvironment (TME) in colorectal cancer (CRC) has not yet been fully developed and utilized because of the complexity of the cell-cell interactions within the TME. The further exploration of these interactions among tumor-specific clusters would provide more detailed information about these communication networks with potential curative value. METHODS Single-cell RNA sequencing, spatial transcriptomics, and bulk RNA sequencing datasets were integrated in this study to explore the biological properties of MFAP5 + fibroblasts and their interactions with tumor-infiltrating myeloid cells in colorectal cancer. Immunohistochemistry and multiplex immunohistochemistry were performed to confirm the results of these analyses. RESULTS We profiled heterogeneous single-cell landscapes across 27,414 cells obtained from tumors and adjacent tissues. We mainly focused on the pro-tumorigenic functions of the identified MFAP5 + fibroblasts. We demonstrated that tumor-resident MFAP5 + fibroblasts and myeloid cells (particularly C1QC + macrophages) were positively correlated in both spatial transcriptomics and bulk RNA-seq public cohorts. These cells and their interactions might shape the malignant behavior of CRC. Intercellular interaction analysis suggested that MFAP5 + fibroblasts could reciprocally communicate with C1QC + macrophages and other myeloid cells to remodel unfavorable conditions via MIF/CD74, IL34/CSF1R, and other tumor-promoting signaling pathways. CONCLUSION Our study has elucidated the underlying pro-tumor mechanisms of tumor-resident MFAP5 + fibroblasts and provided valuable targets for the disruption of their properties.
Collapse
Affiliation(s)
- Zhiwei Peng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zihao Ren
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhiwei Tong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yinan Zhu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yansong Zhu
- School of Life Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
| |
Collapse
|
27
|
Wen R, Zhou L, Peng Z, Fan H, Zhang T, Jia H, Gao X, Hao L, Lou Z, Cao F, Yu G, Zhang W. Single-cell sequencing technology in colorectal cancer: a new technology to disclose the tumor heterogeneity and target precise treatment. Front Immunol 2023; 14:1175343. [PMID: 37256123 PMCID: PMC10225552 DOI: 10.3389/fimmu.2023.1175343] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal tumors, and its high tumor heterogeneity makes traditional sequencing methods incapable of obtaining information about the heterogeneity of individual cancer cells in CRC. Therefore, single-cell sequencing technology can be applied to better analyze the differences in genetic and protein information between cells, to obtain genomic sequence information of single cells, and to more thoroughly analyze the cellular characteristics and interactions in the CRC microenvironment. This will provide a more comprehensive understanding of colorectal cancer development and metastasis and indicate the treatment plan and prognosis. In this study, we review the application of single-cell sequencing to analyze the tumor microenvironment of CRC, explore the mechanisms involved in CRC metastasis and progression, and provide a reference for potential treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fuao Cao
- *Correspondence: Wei Zhang, ; Guanyu Yu, ; Fuao Cao,
| | - Guanyu Yu
- *Correspondence: Wei Zhang, ; Guanyu Yu, ; Fuao Cao,
| | - Wei Zhang
- *Correspondence: Wei Zhang, ; Guanyu Yu, ; Fuao Cao,
| |
Collapse
|
28
|
Zhao N, Yin G, Liu C, Zhang W, Shen Y, Wang D, Lin Z, Yang J, Mao J, Guo R, Zhang Y, Wang F, Liu Z, Lu X, Liu L. Critically short telomeres derepress retrotransposons to promote genome instability in embryonic stem cells. Cell Discov 2023; 9:45. [PMID: 37130870 PMCID: PMC10154409 DOI: 10.1038/s41421-023-00538-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/08/2023] [Indexed: 05/04/2023] Open
Abstract
Telomeres, at the ends of chromosomes, protect chromosomes from fusion and preserve genomic stability. However, the molecular mechanisms underlying telomere attrition-induced genome instability remain to be understood. We systematically analyzed the expression of retrotransposons and performed genomic sequencing of different cell and tissue types with telomeres of varying lengths due to telomerase deficiency. We found that critically short telomeres altered retrotransposon activity to promote genomic instability in mouse embryonic stem cells, as evidenced by elevated numbers of single nucleotide variants, indels and copy number variations (CNVs). Transpositions of retrotransposons such as LINE1 resulting from the short telomeres can also be found in these genomes with elevated number of mutations and CNVs. Retrotransposon activation is linked to increased chromatin accessibility, and reduced heterochromatin abundance correlates with short telomeres. Re-elongation of telomeres upon recovery of telomerase partly represses retrotransposons and heterochromatin accumulation. Together, our findings suggest a potential mechanism by which telomeres maintain genomic stability by suppressing chromatin accessibility and retrotransposon activity.
Collapse
Affiliation(s)
- Nannan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoxing Yin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Chun Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
| | - Yang Shen
- Genome Institute of Singapore, Singapore, Singapore
| | - Dan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhenzhen Lin
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Jian Mao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongwang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- College of Pharmacy, Nankai University, Tianjin, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China.
| |
Collapse
|
29
|
Xing F, Zheng R, Liu B, Huang K, Wang D, Su R, Feng S. A new strategy for searching determinants in colorectal cancer progression through whole-part relationship combined with multi-omics. Talanta 2023; 259:124543. [PMID: 37058941 DOI: 10.1016/j.talanta.2023.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023]
Abstract
The high incidence and mortality of colorectal cancer (CRC) and the lack of adequate diagnostic molecules have led to poor treatment outcomes for colorectal cancer, making it particularly important to develop methods to obtain molecular with significant diagnostic effects. Here, we proposed a whole and part study strategy (early-stage colorectal cancer as "part" and colorectal cancer as "whole") to identify specific and co-pathways of change in early-stage and colorectal cancers and to discover the determinants of colorectal cancer development. Metabolite biomarkers discovered in plasma may not necessarily reflect the pathological status of tumor tissue. To explore the determinant biomarkers associated with plasma and tumor tissue in the CRC progression, multi-omics were performed on three phases of biomarker discovery studies (discovery, identification and validation) including 128 plasma metabolomes and 84 tissue transcriptomes. Importantly, we observe that the metabolic levels of oleic acid and FA (18:2) in patients with colorectal cancer were much higher than in healthy people. Finally, biofunctional verification confirmed that oleic acid and FA (18:2) can promote the growth of colorectal cancer tumor cells and be used as plasma biomarkers for early-stage colorectal cancer. We propose a novel research strategy to discover co-pathways and important biomarkers that may be targeted for a potential role in early colorectal cancer, and our work provides a promising tool for the clinical diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Fan Xing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ran Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Botong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Daguang Wang
- Department of Gastric Colorectal and Anal Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
30
|
Jones J, Shi Q, Nath RR, Brito IL. Keystone pathobionts associated with colorectal cancer promote oncogenic reprograming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535410. [PMID: 37066368 PMCID: PMC10103987 DOI: 10.1101/2023.04.03.535410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.
Collapse
Affiliation(s)
- Josh Jones
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Qiaojuan Shi
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Rahul R. Nath
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Ilana L. Brito
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
31
|
Lai J, Yang S, Lin Z, Huang W, Li X, Li R, Tan J, Wang W. Update on Chemoresistance Mechanisms to First-Line Chemotherapy for Gallbladder Cancer and Potential Reversal Strategies. Am J Clin Oncol 2023; 46:131-141. [PMID: 36867653 PMCID: PMC10030176 DOI: 10.1097/coc.0000000000000989] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
OBJECTIVE Gallbladder cancer (GBC) mortality remains high and chemoresistance is increasing. This review consolidates what is known about the mechanisms of chemoresistance to inform and accelerate the development of novel GBC-specific chemotherapies. METHODS Studies related to GBC-related chemoresistance were systematically screened in PubMed using the advanced search function. Search terms included GBC, chemotherapy, and signaling pathway. RESULTS Analysis of existing studies showed that GBC has poor sensitivity to cisplatin, gemcitabine (GEM), and 5-fluorouracil. DNA damage repair-related proteins, including CHK1, V-SCR, and H2AX, are involved in tumor adaptation to drugs. GBC-specific chemoresistance is often accompanied by changes in the apoptosis and autophagy-related molecules, BCL-2, CRT, and GBCDRlnc1. CD44 + and CD133 + GBC cells are less resistant to GEM, indicating that tumor stem cells are also involved in chemoresistance. In addition, glucose metabolism, fat synthesis, and glutathione metabolism can influence the development of drug resistance. Finally, chemosensitizers such as lovastatin, tamoxifen, chloroquine, and verapamil are able improve the therapeutic effect of cisplatin or GEM in GBC. CONCLUSIONS This review summarizes recent experimental and clinical studies of the molecular mechanisms of chemoresistance, including autophagy, DNA damage, tumor stem cells, mitochondrial function, and metabolism, in GBC. Information on potential chemosensitizers is also discussed. The proposed strategies to reverse chemoresistance should inform the clinical use of chemosensitizers and gene-based targeted therapy for this disease.
Collapse
Affiliation(s)
- Jinbao Lai
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Songlin Yang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Zhuying Lin
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Wenwen Huang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Xiao Li
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Ruhong Li
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Jing Tan
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Wenju Wang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| |
Collapse
|
32
|
Kim J, Kim H, Lee MS, Lee H, Kim YJ, Lee WY, Yun SH, Kim HC, Hong HK, Hannenhalli S, Cho YB, Park D, Choi SS. Transcriptomes of the tumor-adjacent normal tissues are more informative than tumors in predicting recurrence in colorectal cancer patients. J Transl Med 2023; 21:209. [PMID: 36941605 PMCID: PMC10029176 DOI: 10.1186/s12967-023-04053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Previous investigations of transcriptomic signatures of cancer patient survival and post-therapy relapse have focused on tumor tissue. In contrast, here we show that in colorectal cancer (CRC) transcriptomes derived from normal tissues adjacent to tumors (NATs) are better predictors of relapse. RESULTS Using the transcriptomes of paired tumor and NAT specimens from 80 Korean CRC patients retrospectively determined to be in recurrence or nonrecurrence states, we found that, when comparing recurrent with nonrecurrent samples, NATs exhibit a greater number of differentially expressed genes (DEGs) than tumors. Training two prognostic elastic net-based machine learning models-NAT-based and tumor-based in our Samsung Medical Center (SMC) cohort, we found that NAT-based model performed better in predicting the survival when the model was applied to the tumor-derived transcriptomes of an independent cohort of 450 COAD patients in TCGA. Furthermore, compositions of tumor-infiltrating immune cells in NATs were found to have better prognostic capability than in tumors. We also confirmed through Cox regression analysis that in both SMC-CRC as well as in TCGA-COAD cohorts, a greater proportion of genes exhibited significant hazard ratio when NAT-derived transcriptome was used compared to when tumor-derived transcriptome was used. CONCLUSIONS Taken together, our results strongly suggest that NAT-derived transcriptomes and immune cell composition of CRC are better predictors of patient survival and tumor recurrence than the primary tumor.
Collapse
Affiliation(s)
- Jinho Kim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Hyunjung Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Min-Seok Lee
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Heetak Lee
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseng-gu, Daejeon, 34126, Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Seong Hyeon Yun
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hye Kyung Hong
- Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Korea
| | - Sridhar Hannenhalli
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, Bethesda, 20814, MD, USA
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.
| | | | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
33
|
Freitas SC, Sanderson D, Caspani S, Magalhães R, Cortés-Llanos B, Granja A, Reis S, Belo JH, Azevedo J, Gómez-Gaviro MV, de Sousa CT. New Frontiers in Colorectal Cancer Treatment Combining Nanotechnology with Photo- and Radiotherapy. Cancers (Basel) 2023; 15:383. [PMID: 36672333 PMCID: PMC9856291 DOI: 10.3390/cancers15020383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Despite recent advances in the treatment of this pathology, which include a personalized approach using radio- and chemotherapies in combination with advanced surgical techniques, it is imperative to enhance the performance of these treatments and decrease their detrimental side effects on patients' health. Nanomedicine is likely the pathway towards solving this challenge by enhancing both the therapeutic and diagnostic capabilities. In particular, plasmonic nanoparticles show remarkable potential due to their dual therapeutic functionalities as photothermal therapy agents and as radiosensitizers in radiotherapy. Their dual functionality, high biocompatibility, easy functionalization, and targeting capabilities make them potential agents for inducing efficient cancer cell death with minimal side effects. This review aims to identify the main challenges in the diagnosis and treatment of colorectal cancer. The heterogeneous nature of this cancer is also discussed from a single-cell point of view. The most relevant works in photo- and radiotherapy using nanotechnology-based therapies for colorectal cancer are addressed, ranging from in vitro studies (2D and 3D cell cultures) to in vivo studies and clinical trials. Although the results using nanoparticles as a photo- and radiosensitizers in photo- and radiotherapy are promising, preliminary studies showed that the possibility of combining both therapies must be explored to improve the treatment efficiency.
Collapse
Affiliation(s)
- Sara C. Freitas
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Sofia Caspani
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ricardo Magalhães
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Horta Belo
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Azevedo
- Colorectal Surgery—Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisboa, Portugal
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Célia Tavares de Sousa
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
34
|
Gisina A, Kholodenko I, Kim Y, Abakumov M, Lupatov A, Yarygin K. Glioma Stem Cells: Novel Data Obtained by Single-Cell Sequencing. Int J Mol Sci 2022; 23:14224. [PMID: 36430704 PMCID: PMC9694247 DOI: 10.3390/ijms232214224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas. Currently, the challenge for researchers is to study the intratumoral cell heterogeneity of newly defined glioma subtypes. Cancer stem cells (CSCs) present in gliomas and many other tumors are an example of intratumoral heterogeneity of great importance. In this review, we discuss the modern concept of glioma stem cells and recent single-cell sequencing-driven progress in the research of intratumoral glioma cell heterogeneity. The particular emphasis was placed on the recently revealed variations of the cell composition of the subtypes of the adult-type diffuse gliomas, including astrocytoma, oligodendroglioma and glioblastoma. The novel data explain the inconsistencies in earlier glioma stem cell research and also provide insight into the development of more effective targeted therapy and the cell-based immunotherapy of gliomas. Separate sections are devoted to the description of single-cell sequencing approach and its role in the development of cell-based immunotherapies for glioma.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Yan Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Maxim Abakumov
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
35
|
Zhang Z, Ji W, Huang J, Zhang Y, Zhou Y, Zhang J, Dong Y, Yuan T, Yang Q, Ding X, Tang L, Li H, Yin J, Wang Y, Ji T, Fei J, Zhang B, Chen P, Hu H. Characterization of the tumour microenvironment phenotypes in malignant tissues and pleural effusion from advanced osteoblastic osteosarcoma patients. Clin Transl Med 2022; 12:e1072. [PMID: 36305631 PMCID: PMC9615475 DOI: 10.1002/ctm2.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Malignant pleural effusion (MPE) is an adverse prognostic factor in patients with osteoblastic osteosarcoma; however, the cellular contexts of MPE are largely unknown. EXPERIMENTAL DESIGN We performed single-cell RNA-sequencing (scRNA-seq) on 27 260 cells from seven MPE samples and 91 186 cells from eight osteosarcoma tissues, including one recurrent, one lung metastasis and six primary tumour (PT) samples, to characterize their tumour microenvironment. RESULTS Thirteen main cell groups were identified in osteosarcoma tumour and MPE samples. Immune cells dominate the cellular contexts in MPE with more T/NK cells and less osteoclasts compared to PT samples. Of T/NK cells, CD8+ GNLY+ , CD8+ KLRC2+ T cells and FCGR3A+ NK cells were enriched in MPE but CD4+ FOXP3+ Tregs were enriched in PT samples. Naïve IGHD+ B and immune regulatory IGHA1+ B cells were largely identified in MPE, whereas bone metabolism-related CLEC11A+ B cells were significantly enriched in osteosarcoma PT. M2-type TAMs, including CLEC11A_TAM, C1QC_TAM and Prolif_TAMs, among myeloid cells were enriched in PT, which may suppress cytotoxicity activities of T cells through multiple ligand-receptor interactions. Mature LAMP3+ DCs were transformed from CD1C+ DC and CLEC9A+ DC sub-clusters when exposure to tumour alloantigens, which may improve T cell cytotoxicity activities on tumour cells under anti-PD-L1 treatments. In further, immune cells from MPE usually present up-regulated glycolysis and down-regulated oxidative phosphorylation and riboflavin metabolism activities compared to those in PT samples. CONCLUSIONS Our study provided a novel cellular atlas of MPE and PT in patients with advanced osteosarcoma, which may provide potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Zhichang Zhang
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina,Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai
China
| | - Weiping Ji
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jin Huang
- Pathology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yawen Zhang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yan Zhou
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jianjun Zhang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yang Dong
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Ting Yuan
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qingcheng Yang
- Orthopedic Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaomin Ding
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Lina Tang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Hongtao Li
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Junyi Yin
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yonggang Wang
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Tong Ji
- Department of Orthopaedics, Shanghai Ninth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jia Fei
- Department of Biochemistry and Molecular BiologyMedical College of Jinan UniversityGuangzhouChina
| | - Bing Zhang
- Orthopaedic Department of the Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Peizhan Chen
- Clinical Research Center, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Hu
- Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai
China,Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
36
|
Gasper W, Rossi F, Ligorio M, Ghersi D. Variant calling enhances the identification of cancer cells in single-cell RNA sequencing data. PLoS Comput Biol 2022; 18:e1010576. [PMID: 36191033 PMCID: PMC9560611 DOI: 10.1371/journal.pcbi.1010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Single-cell RNA-sequencing is an invaluable research tool that allows for the investigation of gene expression in heterogeneous cancer cell populations in ways that bulk RNA-seq cannot. However, normal (i.e., non tumor) cells in cancer samples have the potential to confound the downstream analysis of single-cell RNA-seq data. Existing methods for identifying cancer and normal cells include copy number variation inference, marker-gene expression analysis, and expression-based clustering. This work aims to extend the existing approaches for identifying cancer cells in single-cell RNA-seq samples by incorporating variant calling and the identification of putative driver alterations. We found that putative driver alterations can be detected in single-cell RNA-seq data obtained with full-length transcript technologies and noticed that a subset of cells in tumor samples are enriched for putative driver alterations as compared to normal cells. Furthermore, we show that the number of putative driver alterations and inferred copy number variation are not correlated in all samples. Taken together, our findings suggest that augmenting existing cancer-cell filtering methods with variant calling and analysis can increase the number of tumor cells that can be confidently included in downstream analyses of single-cell full-length transcript RNA-seq datasets.
Collapse
Affiliation(s)
- William Gasper
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Francesca Rossi
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Matteo Ligorio
- Department of Surgery, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| |
Collapse
|
37
|
Peng Z, Ye M, Ding H, Feng Z, Hu K. Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer. Lab Invest 2022; 20:302. [PMID: 35794563 PMCID: PMC9258101 DOI: 10.1186/s12967-022-03510-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022]
Abstract
Background The tumor-promoting role of tumor microenvironment (TME) in colorectal cancer has been widely investigated in cancer biology. Cancer-associated fibroblasts (CAFs), as the main stromal component in TME, play an important role in promoting tumor progression and metastasis. Hence, we explored the crosstalk between CAFs and microenvironment in the pathogenesis of colorectal cancer in order to provide basis for precision therapy. Methods We integrated spatial transcriptomics (ST) and bulk-RNA sequencing datasets to explore the functions of CAFs in the microenvironment of CRC. In detail, single sample gene set enrichment analysis (ssGSEA), gene set variation analysis (GSVA), pseudotime analysis and cell proportion analysis were utilized to identify the cell types and functions of each cell cluster. Immunofluorescence and immunohistochemistry were applied to confirm the results based on bioinformatics analysis. Results We profiled the tumor heterogeneity landscape and identified two distinct types of CAFs, which myo-cancer-associated fibroblasts (mCAFs) is associated with myofibroblast-like cells and inflammatory-cancer-associated fibroblasts (iCAFs) is related to immune inflammation. When we carried out functional analysis of two types of CAFs, we uncovered an extensive crosstalk between iCAFs and stromal components in TME to promote tumor progression and metastasis. Noticeable, some anti-tumor immune cells such as NK cells, monocytes were significantly reduced in iCAFs-enriched cluster. Then, ssGSEA analysis results showed that iCAFs were related to EMT, lipid metabolism and bile acid metabolism etc. Besides, when we explored the relationship of chemotherapy and microenvironment, we detected that iCAFs influenced immunosuppressive cells and lipid metabolism reprogramming in patient who underwent chemotherapy. Additionally, we identified the clinical role of iCAFs through a public database and confirmed it were related to poor prognosis. Conclusions In summary, we identified two types of CAFs using integrated data and explored their functional significance in TME. This in-depth understanding of CAFs in microenvironment may help us to elucidate its cancer-promoting functions and offer hints for therapeutic studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03510-8.
Collapse
|
38
|
Yao J, Liu Y, Yang J, Li M, Li S, Zhang B, Yang R, Zhang Y, Cui X, Feng C. Single-Cell Sequencing Reveals that DBI is the Key Gene and Potential Therapeutic Target in Quiescent Bladder Cancer Stem Cells. Front Genet 2022; 13:904536. [PMID: 35769986 PMCID: PMC9235029 DOI: 10.3389/fgene.2022.904536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Drug resistance and recurrence often develop during the treatment of muscle-invasive bladder cancer (MIBC). The existence of cancer stem cells (CSCs) in MIBC makes the formulation of effective treatment strategies extremely challenging. We aimed to use single-cell RNA sequencing approaches to identify CSCs and evaluate their molecular characteristics and to discover possible therapeutic measures. Methods: GEO data sets GSE130001 and GSE146137 were used to construct an expression matrix. After cells were identified by type, malignant epithelial cells inferred by InferCNV were extracted for stemness evaluation. The subset of cells with the highest stemness was subjected to weighted gene coexpression network analysis (WGCNA) and pseudotime analysis to identify key genes. In addition, we predicted drug sensitivity relationships for key genes in CTD and predicted the correlation between drugs and survival through siGDC. Results: We found that there were some CSCs in MIBC samples. The CSC population was heterogeneous during tumor development and was divided into quiescent and proliferating CSCs. We identified DBI as the key gene in quiescent CSCs. Analysis of a TCGA data set showed that higher DBI expression indicated higher histological grade. In addition, we predicted that acetaminophen can reduce DBI expression, thereby reducing the stemness of CSCs. Thus, we identified a potential new use of acetaminophen. Conclusion: We systematically explored CSCs in tumors and determined that DBI may be a key gene and potential therapeutic target in quiescent CSCs. In addition, we confirmed that acetaminophen may be a candidate drug targeting CSCs, improving our understanding of CSC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Jiaxi Yao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jitao Yang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengling Li
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Simin Li
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rui Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuchong Zhang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang, China
- *Correspondence: Xiaoyu Cui, ; ChunQing Feng,
| | - ChunQing Feng
- Department of Urology Surgery, The Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
- *Correspondence: Xiaoyu Cui, ; ChunQing Feng,
| |
Collapse
|
39
|
Sharifi-Azad M, Fathi M, Cho WC, Barzegari A, Dadashi H, Dadashpour M, Jahanban-Esfahlan R. Recent advances in targeted drug delivery systems for resistant colorectal cancer. Cancer Cell Int 2022; 22:196. [PMID: 35590367 PMCID: PMC9117978 DOI: 10.1186/s12935-022-02605-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world, the incidences and morality rate are rising and poses an important threat to the public health. It is known that multiple drug resistance (MDR) is one of the major obstacles in CRC treatment. Tumor microenvironment plus genomic instability, tumor derived exosomes (TDE), cancer stem cells (CSCs), circulating tumor cells (CTCs), cell-free DNA (cfDNA), as well as cellular signaling pathways are important issues regarding resistance. Since non-targeted therapy causes toxicity, diverse side effects, and undesired efficacy, targeted therapy with contribution of various carriers has been developed to address the mentioned shortcomings. In this paper the underlying causes of MDR and then various targeting strategies including exosomes, liposomes, hydrogels, cell-based carriers and theranostics which are utilized to overcome therapeutic resistance will be described. We also discuss implication of emerging approaches involving single cell approaches and computer-aided drug delivery with high potential for meeting CRC medical needs.
Collapse
Affiliation(s)
- Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Single-cell transcriptome highlights a multilayer regulatory network on an invasive trajectory within colorectal cancer progression. J Cancer Res Clin Oncol 2022; 148:2313-2322. [PMID: 35523976 PMCID: PMC9075720 DOI: 10.1007/s00432-022-04020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/09/2022] [Indexed: 10/28/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common and fatal gastrointestinal malignancies, in which cancer stem cells (CSCs) were identified to enable tumor heterogeneity and initiate tumor formation. However, the process from CSCs to invasion cells is unconfirmed. METHODS Several bioinformatics methods, including clustering, pseudotime analysis, gene set variation analysis and gene ontology enrichment, were used to construct a path of gradual transformation of CSCs to invasive cells, called "stem-to-invasion path". A large amount of signaling interactions were collated to build the multilayer regulatory network. Kaplan-Meier curve and time-dependent ROC method were applied to reveal prognostic values. RESULTS We validated the heterogeneity of cells in the tumor microenvironment and revealed the presence of malignant epithelial cells with high invasive potential within primary colonic carcinomas. Next, the "stem-to-invasion path" was identified through constructing a branching trajectory with cancer cells arranged in order. A multilayer regulatory network considered as the vital factor involved in acquiring invasion characteristics underlying the path was built to elucidate the interactions between tumor cell and tumor-associated microenvironment. Then we further identified a novel combinatorial biomarker that can be used to assess the prognosis for CRC patients, and validated its predictive robustness on the independent dataset. CONCLUSION Our work provides new insights into the acquisition of invasive potential in primary tumor cells, as well as potential therapeutic targets for CRC invasiveness, which may be useful for the cancer research and clinical treatment.
Collapse
|
41
|
Liu K, Gao X, Kang B, Liu Y, Wang D, Wang Y. The Role of Tumor Stem Cell Exosomes in Cancer Invasion and Metastasis. Front Oncol 2022; 12:836548. [PMID: 35350566 PMCID: PMC8958025 DOI: 10.3389/fonc.2022.836548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are lipid membrane bilayer-encapsulated vesicles secreted by cells into the extracellular space. They carry abundant inclusions (such as nucleic acids, proteins, and lipids) that play pivotal roles in intercellular communication. Tumor stem cells are capable of self-renewal and are crucial for survival, proliferation, drug resistance, metastasis, and recurrence of tumors. The miRNAs (microRNAs) in exosomes have various functions, such as participating in inflammatory response, cell migration, proliferation, apoptosis, autophagy, and epithelial-mesenchymal transition. Tumor stem cells secrete exosomes that act as important messengers involved in various tumor processes and several studies provide increasing evidence supporting the importance of these exosomes in tumor recurrence and metastasis. This review primarily focuses on the production and secretion of exosomes from tumors and tumor stem cells and their effects on cancer progression. Cancer stem cancer derived exosome play an important massager in the tumor microenvironment. It also emphasizes on the study of tumor stem cell exosomes in the light of cancer metastasis and recurrence aiming to provide valuable insights and novel perspectives, which could be beneficial for developing effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Kun Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Xin Gao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Baoqiang Kang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dingding Wang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| |
Collapse
|
42
|
Crutcher MM, Baybutt TR, Kopenhaver JS, Snook AE, Waldman SA. Emerging drug targets for colon cancer: A preclinical assessment. Expert Opin Ther Targets 2022; 26:207-216. [PMID: 35129035 PMCID: PMC9075542 DOI: 10.1080/14728222.2022.2039119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second leading cause of cancer-related death in the United States. There have been improvements in screening, and therefore overall survival, but patients continue to present at late stages when minimal treatment options are available to them. While some targeted therapies have been introduced, their application is limited by patient-specific tumor characteristics. Additional targets for CRC in patients who present at a late stage, or who experience tumor relapse, need to be identified to continue to improve patient outcomes. AREAS COVERED This review focuses on emerging pathways and drug targets for the treatment of colorectal cancer. The shift to the cancer stem cell model and potential targets involving Wnt, NF-κB, phosphodiesterases, RAS, and guanylyl cyclase C, are discussed. The current utility of checkpoint inhibitors and evolving immunological options are examined. EXPERT OPINION Surgery and current systemic cytotoxic therapies are inadequate to appropriately treat the full spectrum of CRC, especially in those patients who present with metastatic or treatment-refractory disease. In addition to the identification of new, more generalizable targets, additional focus is being placed on novel administrations. Immuno-oncologic options and stem cell-targeting therapies for mCRC will become available to patients and may increase survival.
Collapse
Affiliation(s)
- Madison M. Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Trevor R. Baybutt
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jessica S. Kopenhaver
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E. Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A. Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
43
|
Garza-Treviño EN, Martínez-Rodríguez HG, Delgado-González P, Solís-Coronado O, Ortíz-Lopez R, Soto-Domínguez A, Treviño VM, Padilla-Rivas GR, Islas-Cisneros JF, Quiroz-Reyes AG, Said-Fernández SL. Chemosensitivity analysis and study of gene resistance on tumors and cancer stem cell isolates from patients with colorectal cancer. Mol Med Rep 2021; 24:721. [PMID: 34396431 PMCID: PMC8383037 DOI: 10.3892/mmr.2021.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer (CRC) is one of the main causes of mortality. Recent studies suggest that cancer stem cells (CSCs) can survive after chemotherapy and promote tumor invasiveness and aggression. According to a higher hierarchy complexity of CSC, different protocols for isolation, expansion, and characterization have been used; however, there are no available resistance biomarkers that allow predicting the clinical response of treatment 5‑fluorouracil (5FU) and oxaliplatin. Therefore, the primary aim of the present study was to analyze the expression of gene resistance on tumors and CSC‑derived isolates from patients CRC. In the present study, adenocarcinomas of the colon and rectum (CRAC) were classified based on an in vitro adenosine triphosphate‑based chemotherapy response assay, as sensitive and resistant and the percentage of CD24 and CD44 markers are evaluated by immunohistochemistry. To isolate resistant colon‑CSC, adenocarcinoma tissues resistant to 5FU and oxaliplatin were evaluated. Finally, all samples were sequenced using a custom assay with chemoresistance‑associated genes to find a candidate gene on resistance colon‑CSC. Results showed that 59% of the CRC tissue analyzed was resistant and had a higher percentage of CD44 and CD24 markers. An association was found in the expression of some genes between the tumor‑resistant tissue and CSC. Overall, isolates of the CSC population CD44+ resistant to 5FU and oxaliplatin demonstrated different expression profiles; however, the present study was able to identify overexpression of the KRT‑18 gene, in most of the isolates. In conclusion, the results of the present study showed overexpression of KRT‑18 in CD44+ cells is associated with chemoresistance to 5FU and oxaliplatin in CRAC.
Collapse
Affiliation(s)
- Elsa N. Garza-Treviño
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Herminia G. Martínez-Rodríguez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Paulina Delgado-González
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Orlando Solís-Coronado
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Rocio Ortíz-Lopez
- Monterrey Institute of Technology and Higher Education, School of Medicine and Health Sciences, Monterrey, Nuevo Leon 64710, Mexico
| | - Adolfo Soto-Domínguez
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Víctor M. Treviño
- Monterrey Institute of Technology and Higher Education, School of Medicine and Health Sciences, Monterrey, Nuevo Leon 64710, Mexico
| | - Gerardo R. Padilla-Rivas
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Jose F. Islas-Cisneros
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Adriana G. Quiroz-Reyes
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| | - Salvador L. Said-Fernández
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, University Hospital ‘Dr. Jose Eleuterio Gonzalez’, Monterrey, Nuevo Leon 64460, Mexico
| |
Collapse
|