1
|
Chen B, Yao D, Dong P, He J, Su J, Ma B, Chen F, Tian N, Zheng G, Chen M, Wang J, Peng Y, Han Q, Gao Y, Long F. UV-Resistant Nanostructured Anti-reflective Film for Achieving Efficiency Enhancement of Perovskite Solar Cells and Potential of Fabricating Large-Scale Cu(In, Ga)Se 2 Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9266-9277. [PMID: 39874458 DOI: 10.1021/acsami.4c18588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Sticker-type transparent antireflective film (STAF) is applied to perovskite solar cells (PSCs) to reduce the reflection and improve the light-trapping ability of PSCs. However, the development of STAF is hindered by many factors, such as expensive materials, low actual service life, unsatisfactory antireflective effect, and a lack of research on stability. This work proposes an ultraviolet (UV)-resistant enhanced sticker-type nanostructure acrylic resin antireflective film (SNAAF), which is applied to the incident surface of PSCs. SNAAF is prepared by using a cleverly designed two-step peeling transfer process. The average reflectance of the related device is reduced by 4.06% through the entire visible light spectrum, which also helps achieve the champion performance of the PSCs with STAF. The excellent antireflection performance increases power conversion efficiency (PCE) from 20.77% to 22.1% owing to the significantly enhanced short-circuit current density by 5.5% with the SNAAF. Additionally, the target device maintains nearly 80% of its initial PCE after 480 h of irradiation with UV light (365 nm), far exceeding the exposure levels in IEC 61215. Moreover, the designed SNAAF is applicable to large-area Cu(In, Ga)Se2 (CIGS) solar cells (area: 225 cm2), which develops a practical external engineering strategy for optimizing device performance for different types of commercial solar cells.
Collapse
Affiliation(s)
- Bitao Chen
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Disheng Yao
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Pengpeng Dong
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Jian He
- Shenzhen Nahum-Eli Optical Technology Co., Ltd. Building 3, Huixin Technology Industrial Park, Shenzhen, Guangdong 518103, China
| | - Jiale Su
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Bin Ma
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Fei Chen
- Shenzhen Nahum-Eli Optical Technology Co., Ltd. Building 3, Huixin Technology Industrial Park, Shenzhen, Guangdong 518103, China
| | - Nan Tian
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Guoyuan Zheng
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Mingguang Chen
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Jilin Wang
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Yong Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Qifeng Han
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yihua Gao
- National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fei Long
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| |
Collapse
|
2
|
Xiao Y, Fu J, Pihosh Y, Karmakar K, Zhang B, Domen K, Li Y. Interface engineering for photoelectrochemical oxygen evolution reaction. Chem Soc Rev 2025; 54:1268-1317. [PMID: 39679444 DOI: 10.1039/d4cs00309h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a promising approach for solving sustainable energy challenges and achieving carbon neutrality goals. The oxygen evolution reaction (OER), a key bottleneck in the PEC water-splitting system occurring at the photoanode/electrolyte interface, plays a fundamental role in sustainable solar fuel production. Proper surface or interface engineering strategies have been proven to be necessary to achieve efficient and stable PEC water oxidation. This review summarizes the recent advances in interface engineering, including junction formation, surface doping, surface passivation or protection, surface sensitization, and OER cocatalyst modification, while highlighting the remarkable research achievements in the field of PEC water splitting. The benefits of each interface engineering strategy and how it enhances the device performance are critically analyzed and compared. Finally, the outlook for the development of interface engineering for efficient PEC water splitting is briefly discussed. This review illustrates the importance of employing rational interface engineering in realizing efficient and stable PEC water splitting devices.
Collapse
Affiliation(s)
- Yequan Xiao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, China Three Gorges University, Yichang, Hubei 443002, China
| | - Jie Fu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yuriy Pihosh
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keshab Karmakar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Beibei Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Kazunari Domen
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan
| | - Yanbo Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
3
|
Dong X, Shen Y, Wang F, He Z, Zhao Y, Miao Z, Wu Z. MAPbX 3 Perovskite Single Crystals for Advanced Optoelectronic Applications: Progress, Challenges, and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412809. [PMID: 39895148 DOI: 10.1002/smll.202412809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Perovskite single crystals have garnered significant attention due to their impressive properties in optoelectronic applications, including long carrier diffusion lengths, low trap-state densities, and enhanced stability. Methylamino lead halide perovskite (MAPbX3, where X is a halogen such as Cl, Br, or I) is a notable example of a metal halide perovskite with desirable properties and ideal cubic perovskites with a tolerance factor between 0.9 and 1.0. MAPbX3 has adjustable bandgap, high thermal and chemical stability, and excellent light absorption capacity. Here the unique characteristics of MAPbX3, including molecular structure, optical absorption properties, and carrier transport of MAPbX3 single crystals are summarized. Universal growth technologies for MAPbX3 single crystals, including inverse temperature crystallization, anti-solvent evaporation crystallization, solvent evaporation method, and single-crystalline thin film, including epitaxial method and space limiting method, are briefly introduced. Additionally, a comprehensive review of MAPbX3 single crystals in various optoelectronic device applications, including photodetectors, X-ray detectors, light-emitting diodes, lasers, and solar cells is mainly discussed. Finally, the current challenges and future prospects of the large-scale preparation and growth of MAPbX3 single crystals are put forward. With the continuous progress of photoelectric technology, more innovative photoelectric applications in the future are expected to bring more convenience and progress.
Collapse
Affiliation(s)
- Xue Dong
- Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Yue Shen
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Fangmin Wang
- Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Zemin He
- Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Yuzhen Zhao
- Technological Institute of Materials & Energy Science (TIMES), School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Zhongbin Wu
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
4
|
She J, Cen H, Shen Z, Wang J, Liu X, Xi J, Cheng Y, Meng G. A ferroelectrically modulated ultrasensitive two-dimensional perovskite phototransistor with zero-gate-bias. NANOSCALE 2025. [PMID: 39831515 DOI: 10.1039/d4nr04910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)2SnI4 perovskite and the Al:HfO2 ferroelectric layer is meticulously studied, working without an external gate voltage. The nonvolatile remanent polarization provides a stable floating gate to locally define the potential profile, regulate barrier contact, and modulate carrier transport properties and charge redistributions, which facilitates an ultralow level of dark current and accurate photocurrent extraction at zero gate bias. Consequently, the fabricated phototransistor exhibits an outstanding responsivity and detectivity of 4918 A W-1 and 2.15 × 1015 Jones, respectively. The developed phototransistor contributes to advancements in optoelectronic applications including large-scale intelligent sensor arrays, light-wave communications and integrated circuits.
Collapse
Affiliation(s)
- Junyi She
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Hanlin Cen
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhiheng Shen
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jianyu Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jun Xi
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Guodong Meng
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
5
|
Yan Y, Zhou B, Lin X, Shi J, Wang S, Qu D, Tu Y, Luo X, Huang W. High Performance Perovskite Photodiodes via Molecule-Assisted Interfacial and Bulk Modulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407015. [PMID: 39580695 DOI: 10.1002/smll.202407015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Metal halide perovskites have attracted significant attention in photodetection due to their superior photophysical properties and improved stability. However, the performance of their photodiodes is predominantly limited by non-radiative recombination within the perovskite layer or at interfaces. Here, molecular engineering via phenylethylammonium chloride for interfacial modulation and methylenediammonium dichloride for bulk modulation is introduced into vertical perovskite photodiodes to boost the photodetection performance. The responsivity at 635 nm excitation increased from 0.09 to 0.33 A W-1 with interfacial modulation, compared to the original perovskite device, and is further improved to 0.40 A W-1 with the combined effects of interfacial and bulk modulations (i.e., synergistic bimolecular engineering). The optimized photodiodes demonstrated high detectivity of over 1011 Jones, a rapid response time of ≈1 µs, and a linear dynamic range of ≈100 dB. Furthermore, the photocurrent exhibited a U-shaped dependence on temperature ranging from 10 to 300 K, with linearity breaking under strong illumination at low temperatures. These results confirmed that molecular engineering is the promising strategy for achieving high-performance perovskite photodetectors.
Collapse
Affiliation(s)
- Yuting Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Bin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xi Lin
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jian Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shasha Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Duo Qu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yongguang Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaoguang Luo
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
6
|
Li C, Chen C, Gao W, Dong H, Zhou Y, Wu Z, Ran C. Wide-Bandgap Lead Halide Perovskites for Next-Generation Optoelectronics: Current Status and Future Prospects. ACS NANO 2024; 18:35130-35163. [PMID: 39692273 DOI: 10.1021/acsnano.4c12107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Over the past decade, lead halide perovskites (LHPs), an emerging class of organic-inorganic ionic-type semiconductors, have drawn worldwide attention, which injects vitality into next-generation optoelectronics. Facilely tunable bandgap is one of the fascinating features of LHPs, enabling them to be widely used in various nano/microscale applications. Notably, wide-bandgap (WBG) LHPs have been considered as promising alternatives to traditional WBG semiconductors owing to the merits of low-cost, solution processability, superior optoelectronic characteristics, and flexibility, which could improve the cost-effectiveness and expand the application scenarios of traditional WBG devices. Herein, we provide a comprehensive review on the up-to-date research progress of WBG LHPs and their optoelectronics in terms of material fundamentals, optoelectronic devices, and their practical applications. First, the features and shortcomings of WBG LHPs are introduced to objectively display their natural features. Then we separately depict three typical optoelectronic devices based on WBG LHPs, including solar cells, light emitting diodes, and photodetectors. Sequentially, the inspiring applications of these optoelectronic devices in integrated functional systems are elaborately demonstrated. At last, the remaining challenges and future promise of WBG LHPs in optoelectronic applications are discussed. This review highlights the significance of WGB LHPs for promoting the development of the next-generation optoelectronics industry.
Collapse
Affiliation(s)
- Changbo Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Changshun Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Weiyin Gao
- Engineering Research Center of Smart Energy and Carbon Neutral in Oil & Gas Field Universities of Shaanxi Province, College of New Energy, Xi'an Shiyou University, Xi'an 710065, China
| | - He Dong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Yipeng Zhou
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| |
Collapse
|
7
|
Samatov MR, Liu D, Zhao L, Kazakova EA, Abrameshin DA, Das A, Vasenko AS, Prezhdo OV. Ion Migration at Metal Halide Perovskite Grain Boundaries Elucidated with a Machine Learning Force Field. J Phys Chem Lett 2024; 15:12362-12369. [PMID: 39652334 DOI: 10.1021/acs.jpclett.4c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Metal halide perovskites are promising optoelectronic materials with excellent defect tolerance in carrier recombination, believed to arise largely from their unique soft lattices. However, weak lattice interactions also promote ion migration, leading to serious stability issues. Grain boundaries (GBs) have been experimentally identified as the primary migration channels, but the relevant mechanism remains elusive. Using molecular dynamics with a machine learning force field, we directly model ion migration at a common CsPbBr3 GB. We demonstrate that the as-built GB model, containing 6400 atoms, experiences structural reconstruction over several nanoseconds, and only Br atoms diffuse after that. A fraction of Br atoms near the GB either migrate toward the GB center or along the GB through different migration channels. Increasing the temperature not only accelerates the ion migration via the Arrhenius activation but also allows more Br atoms to migrate. The activation energies are much lower at the GB than in the bulk due to large-scale structural distortions and favorable non-stoichiometric local environments available at GBs. Making the local GB composition more stoichiometric by doping or annealing can suppress the ion migration. The reported results provide valuable atomistic insights into the GB properties and ion migration in metal halide perovskites.
Collapse
Affiliation(s)
| | | | - Long Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Elena A Kazakova
- Department of Biochemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Abinash Das
- PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu 641004, India
| | - Andrey S Vasenko
- HSE University, 101000 Moscow, Russia
- Donostia International Physics Center (DIPC), 20018 San Sebastián-Donostia, Euskadi, Spain
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Gao X, Wu Y, Zhang Y, Chen X, Song Z, Zhang T, Fang Q, Ji Q, Ju MG, Wang J. How the Spacer Influences the Stability of 2D Perovskites? SMALL METHODS 2024:e2401172. [PMID: 39460454 DOI: 10.1002/smtd.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Two-dimensional lead halide perovskites (2D HPs) represent as an emerging class of materials given their tunable optoelectronic properties and long-term stability in perovskite solar cells. However, the ever-growing field of optoelectronic devices using 2D HPs requires fundamental understanding of the influence of the spacer on the physiochemical properties and stability of perovskites as well as establish which cation properties are closely related to suppress the halogen ion mobility. This study focuses on investigating the influence of organic spacers with intrinsic properties (e.g., rigidity and flexibility, special groups) and variations of material dimensions on the stability of halogen ions and inorganic frameworks in 2D HPs. It is found that the perovskite structure composed of rigidity molecules owns better stability of halogen ion and inorganic framework than that of flexible molecules. The stability of ions exhibits a negative correlation with the dimensions of perovskite. More importantly, a simple descriptor for measuring the stability of halogen ions in 2D HPs is constructed. By causal discovery algorithms with more physical and chemical significance, the Kappa shape index, number of rotatable bonds, and aromatic carbocycles in organic spacers are identified as causal and important features for the stability of halogen ions in 2D HPs.
Collapse
Affiliation(s)
- Xinying Gao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Yilei Wu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Yehui Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xinyu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Zhilong Song
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Tingbo Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Qianglong Fang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Qun Ji
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Ming-Gang Ju
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- Suzhou Laboratory, Suzhou, 215125, China
| |
Collapse
|
9
|
Ma T, Xue N, Muhammad A, Fang G, Yan J, Chen R, Sun J, Sun X. Recent Progress in Photodetectors: From Materials to Structures and Applications. MICROMACHINES 2024; 15:1249. [PMID: 39459123 PMCID: PMC11509732 DOI: 10.3390/mi15101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Photodetectors are critical components in a wide range of applications, from imaging and sensing to communications and environmental monitoring. Recent advancements in material science have led to the development of emerging photodetecting materials, such as perovskites, polymers, novel two-dimensional materials, and quantum dots, which offer unique optoelectronic properties and high tunability. This review presents a comprehensive overview of the synthesis methodologies for these cutting-edge materials, highlighting their potential to enhance photodetection performance. Additionally, we explore the design and fabrication of photodetectors with novel structures and physics, emphasizing devices that achieve high figure-of-merit parameters, such as enhanced sensitivity, fast response times, and broad spectral detection. Finally, we discuss the demonstration of new applications enabled by these advanced photodetectors, including flexible and wearable devices, next-generation imaging systems, and environmental sensing technologies. Through this review, we aim to provide insights into the current trends and future directions in the field of photodetection, guiding further research and development in this rapidly evolving area.
Collapse
Affiliation(s)
- Tianjun Ma
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Ning Xue
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Abdul Muhammad
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Gang Fang
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Jinyao Yan
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Rongkun Chen
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Jianhai Sun
- State Key Laboratory of Transducer Technology Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuguang Sun
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| |
Collapse
|
10
|
Goldberg I, Elkhouly K, Annavarapu N, Hamdad S, Gonzalez MC, Genoe J, Gehlhaar R, Heremans P. Toward Thin-Film Laser Diodes with Metal Halide Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314193. [PMID: 39177182 DOI: 10.1002/adma.202314193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Indexed: 08/24/2024]
Abstract
Metal halide perovskite semiconductors hold a strong promise for enabling thin-film laser diodes. Perovskites distinguish themselves from other non-epitaxial media primarily through their ability to maintain performance at high current densities, which is a critical requirement for achieving injection lasing. Coming in a wide range of varieties, numerous perovskites delivered low-threshold optical amplified spontaneous emission and optically pumped lasing when combined with a suitable optical cavity. A progression toward electrically pumped lasing requires the development of efficient light-emitting structures with reduced optical losses and high radiative efficiency at lasing-level current densities. This involves a set of important trade-offs in terms of material choice, stack and waveguide design, as well as resonator integration. In this Perspective, the key milestones are highlighted that have been achieved in the study of passive optical waveguides and light-emitting diodes, and these learnings are translated toward more complex laser diode architectures. Finally, a novel resonator integration route is proposed that is capable of relaxing optical and electrical design constraints.
Collapse
Affiliation(s)
- Iakov Goldberg
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Karim Elkhouly
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Nirav Annavarapu
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Sarah Hamdad
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Maider Calderon Gonzalez
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Jan Genoe
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | | | - Paul Heremans
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| |
Collapse
|
11
|
Li D, Chen Y, Ren H, Tang Y, Zhang S, Wang Y, Xing L, Huang Q, Meng L, Zhu B. An Active-Matrix Synaptic Phototransistor Array for In-Sensor Spectral Processing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406401. [PMID: 39166499 PMCID: PMC11497057 DOI: 10.1002/advs.202406401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Indexed: 08/23/2024]
Abstract
The human retina perceives and preprocesses the spectral information of incident light, enabling fast image recognition and efficient chromatic adaptation. In comparison, it is reluctant to implement parallel spectral preprocessing and temporal information fusion in current complementary metal-oxide-semiconductor (CMOS) image sensors, requiring intricate circuitry, frequent data transmission, and color filters. Herein, an active-matrix synaptic phototransistor array (AMSPA) is developed based on organic/inorganic semiconductor heterostructures. The AMSPA provides wavelength-dependent, bidirectional photoresponses, enabling dynamic imaging and in-sensor spectral preprocessing functions. Specifically, near-infrared light induces inhibitory photoresponse while UV light results in exhibitory photoresponse. With rational structural design of the organic/inorganic hybrid heterostructures, the current dynamic range of phototransistor is improved to over 90 dB. Finally, a 32 × 64 AMSPA (128 pixels per inch) is demonstrated with one-switch-transistor and one-synaptic phototransistor (1-T-1-PT) structure, achieving spatial chromatic enhancement and temporal trajectory imaging. These results reveal the feasibility of AMSPA for constructing artificial vision systems.
Collapse
Affiliation(s)
- Dingwei Li
- Westlake Institute for OptoelectronicsHangzhou311421China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Yitong Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Huihui Ren
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Yingjie Tang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Siyu Zhang
- Westlake Institute for OptoelectronicsHangzhou311421China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
| | - Yan Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Lixiang Xing
- Westlake Institute for OptoelectronicsHangzhou311421China
| | - Qi Huang
- Westlake Institute for OptoelectronicsHangzhou311421China
| | - Lei Meng
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Bowen Zhu
- Westlake Institute for OptoelectronicsHangzhou311421China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhou310024China
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhou310024China
| |
Collapse
|
12
|
Li X, Aftab S, Mukhtar M, Kabir F, Khan MF, Hegazy HH, Akman E. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. NANO-MICRO LETTERS 2024; 17:28. [PMID: 39343866 PMCID: PMC11439866 DOI: 10.1007/s40820-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, Anhui, People's Republic of China
- Anhui Laboratory of Advanced Laser Technology, Hefei, 230037, Anhui, People's Republic of China
- Nanhu Laser Laboratory, Changsha, 410015, Hunan, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, 61413, Abha, Saudi Arabia
| | - Erdi Akman
- Scientific and Technological Research and Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
13
|
Sahu D, Debnath S, Ghosal S, Giri PK. 2D Printed Plasmonic Nanoparticle Array Incorporated Formamidinium-Based High-Performance Self-Biased Perovskite Photodetector. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49544-49555. [PMID: 39231379 DOI: 10.1021/acsami.4c12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Utilizing noble metal nanoparticles through novel technologies is a promising avenue for enhancing the performance of organic/inorganic photodetectors. This study investigates the performance enhancement of Formamidinium-based perovskite (Pe) photodetectors (PDs) through the incorporation of plasmonic silver nanoparticles (Ag NPs) arrays using a 2D printing technique. The incorporation of plasmonic Ag NPs leads to a major improvement in the performance of the planar PD device, which is attributed to increased light absorption, hot electron generation, and more efficient charge extraction and transport. The unique aspect of this study lies in the method of incorporating plasmonic NPs using a two-dimensional printing technology. This approach offers several advantages over traditional methods, including lower cost, nonvacuum operation, and compatibility with room temperature fabrication. The printed plasmon-enhanced optimized perovskite PD exhibits remarkable performance metrics, including a peak responsivity of 1.03 A/W at 5 V external bias, which is significantly high compared to the reported devices. Moreover, the PD demonstrates exceptional detectivity with a peak value of 3.7 × 1012 Jones at 5 V, highlighting its capability to detect ultralow light signals with high precision. The device can be reversibly switched between low and high conductance states, yielding a stable and repeatable Ilight/Idark ratio of 1.06 × 104. In addition, the integration of plasmonic nanoparticles imparts remarkable photovoltaic characteristics to the perovskite photodetector, enabling it to function as a self-biased device. The hybrid device demonstrates a peak responsivity of 15 mA/W, a high detectivity of 2.15 × 1011 Jones, and a significant on-off ratio of 2.23 × 103, all achieved at zero external bias. Overall, this study presents a significant advancement in the field of plasmon-enhanced Pe photodetection technology. By utilizing the benefits of printing technology to incorporate NPs, we have developed a high-performance PD that combines cost-effectiveness with exceptional performance. Thus, we believe that this study will pave the way for the development of a low-cost, high-performance plasmon-enhanced Pe-based PD.
Collapse
Affiliation(s)
- Debabrata Sahu
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Subhankar Debnath
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sirsendu Ghosal
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
14
|
Wang R, Yang X, Chen Q, Su R, Wu W, Cao J, Yu W, Zhou Y, Song B, Li Y. Enhancing the Humidity Stability of Perovskite Films through Interfacial Modification with Differentiated Hydrophilic Organics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45799-45808. [PMID: 39163115 DOI: 10.1021/acsami.4c08204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Preparing high-quality perovskite films is a decisive step toward realizing highly efficient and stable perovskite solar cells (Pero-SCs). Water is a key factor affecting the stability of the Pero-SCs. Here, the widely used water adsorbents chitosan, sorbitol, and sodium hyaluronate (NaHA) were used as hydrophilic layers on the upper interface of the perovskite to form a barrier against water. The water adsorbents also passivated defects on the surface of the perovskite active layer due to their -OH and -COOH functional groups. The NaHA-modified devices showed the best power conversion efficiency (PCE) (PCE = 21.74%). Although the NaHA-modified Pero-SCs showed optimal photovoltaic performance, the stability of the modified devices decreased due to the strong water adsorption ability of NaHA, while with moderate water adsorption ability sorbitol-modified devices exhibited good stability and PCE. The devices were tested in the dark and room temperature at different humidity levels for 800 h. At low humidity (25% ± 5% RH), the PCEs of the sorbitol- and NaHA-modified devices were maintained at 80% and 71% of the initial values, respectively. At high humidity (75% ± 5% RH), the PCE was maintained at 64% and 23% of the initial values, respectively. This work provides an avenue to select adsorbents with suitable water absorption ability as the interface modification layer, thus reducing the water erosion of perovskite films and obtaining highly stable inverted Pero-SCs.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xudong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Qiaoyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Rui Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Wenting Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Ji Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Wei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Yi Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Bo Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yongfang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
15
|
Liu X, Yang Y, Huang Z, Jiang Z, Zhou J, Li B, Ma Z, Zhang Y, Huang Y, Li X. Enhanced Optoelectronic Performance of p-WSe 2/Re 0.12W 0.42Mo 0.46S 2 Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42588-42596. [PMID: 39083669 DOI: 10.1021/acsami.4c05146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Stacking of van der Waals (vdW) heterostructures and chemical element doping have emerged as crucial methods for enhancing the performance of semiconductors. This study proposes a novel strategy for modifying heterostructures by codoping MoS2 with two elements, Re and W, resulting in the construction of a RexWyMo1-x-yS2/WSe2 heterostructure for the preparation of photodetectors. This approach incorporates multiple strategies to enhance the performance, including hybrid stacking of materials, type-II band alignment, and regulation of element doping. As a result, the RexWyMo1-x-yS2/WSe2 devices demonstrate exceptional performance, including high photoresponsivity (1550.22 A/W), high detectivity (8.17 × 1013 Jones), and fast response speed (rise/fall time, 190 ms/1.42 s). Moreover, the ability to tune the band gap through element doping enables spectral response in the ultraviolet (UV), visible light, and near-infrared (NIR) regions. This heterostructure fabrication scheme highlights the high sensitivity and potential applications of vdW heterostructure (vdWH) in optoelectronic devices.
Collapse
Affiliation(s)
- Xinke Liu
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Yongkai Yang
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Zheng Huang
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Zhongwei Jiang
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Jie Zhou
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Bo Li
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Zhengweng Ma
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Yating Zhang
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Yeying Huang
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Xiaohua Li
- College of Materials Science and Engineering, Institute of Microelectronics (IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Gao W, Liu S, Chen Y, Niu K, Lu Z, Li Z, Zeng Z, Xiao Y, Zhai Y, Liu Y, Wang Y. Solid-State Anion Exchange Enabled by Pluggable vdW Assembly for In Situ Halide Manipulation in Perovskite Monocrystalline Film. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402159. [PMID: 38678535 DOI: 10.1002/smll.202402159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Indexed: 05/01/2024]
Abstract
The fabrication of perovskite single crystal-based optoelectronics with improved performance is largely hindered by limited processing techniques. Particularly, the local halide composition manipulation, which dominates the bandgap and thus the formation of heterostructures and emission of multiple-wavelength light, is realized via prevalent liquid- or gas-phase anion exchange with the utilization of lithography, while the monocrystalline nature is sacrificed due to polycrystalline transition in exchange with massive defects emerging, impeding carrier separation and transportation. Thus, a damage-free and lithography-free solid-state anion exchange strategy, aiming at in situ halide manipulation in perovskite monocrystalline film, is developed. Typically, CsPbCl3 working as medium to deliver halide is van der Waals (vdW) assembled to specific spots of CsPbBr3, followed by the removal of CsPbCl3 after anion exchange, with the halide composition in contact area modulated and monocrystalline nature of CsPbBr3 preserved. CsPbBr3-CsPbBrxCl3-x monocrystalline heterostructure has been achieved without lithography. Device based on the heterostructure shows apparent rectification behavior and improved photo-response rate. Heterostructure arrays can also be constructed with customized medium crystal. Furthermore, the halide composition can be accurately tuned to enable full coverage of visible spectra. The solid-state exchange enriches the toolbox for processing vulnerable perovskite and paves the way for the integration of monocrystalline perovskite optoelectronics.
Collapse
Affiliation(s)
- Weiqi Gao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Songlong Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Kaixin Niu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhiwei Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhiyao Zeng
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081, China
| | - Yulong Xiao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering and Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, P. R. China
| | - Yaxin Zhai
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| |
Collapse
|
17
|
Tian J, Wang Z, Hou Y, Yang Y, Chen H, Huang Z. Synthesis of Double Trivalent Perovskite Quantum Dots Cs 3BiSbX 9 (X = Cl, Br, I) for Efficient CO 2 Photoreduction Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401301. [PMID: 38671565 DOI: 10.1002/smll.202401301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Non-toxic Bi halides have great potential in the field of CO2 photoreduction, but strong charge localization limits their charge separation and transfer. In this study, a series of Cs3BiSbX9 (X = Cl, Br, I) perovskite quantum dots (PQDs) are synthesized by antisolvent recrystallization at room temperature, in which Cs3BiSbBr9 PQDs has high selectivity (94.51%) and yield (15.32 µmol g-1 h-1) of CO2 to CO. In situ DRIFTS and theoretical calculations suggest that the surface charge can be tailored by halogen modulation, allowing for the customization of intermediate species. The Bi─Br─Sb symmetric charge distribution induced by the halogen Br promotes the formation of b─HCOO and reduces the reaction energy barrier of the rate-limiting step, while the weak electronegativity of Cl and the high electronegativity of I leads to m─HCOO and ─COOH production, which are detrimental to CO generation. This work provides new insights into the design of halide alloy perovskites for CO2 photoreduction.
Collapse
Affiliation(s)
- Jie Tian
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijian Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
| | - Yaqin Hou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yatao Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haijun Chen
- Tianjin Key Laboratory of Optoelectronic Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China
| | - Zhanggen Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
18
|
Liu S, Gao W, Chen Y, Yang X, Niu K, Li S, Xiao Y, Liu Y, Zhong J, Xia J, Li Z, Hu Y, Chen S, Liu Y, Wang Y. van der Waals Integration of Large-Area Monocrystalline 3D Perovskite Thin Films on Arbitrary Semiconductor Substrates for Heterojunctions. NANO LETTERS 2024; 24:7724-7731. [PMID: 38864413 DOI: 10.1021/acs.nanolett.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Perovskite monocrystalline films are regarded as desirable candidates for the integration of high-performance optoelectronics due to their unique photophysical properties. However, the heterogeneous integration of a perovskite monocrystalline film with other semiconductors is fundamentally limited by the lattice mismatch, which hinders direct epitaxy. Herein, the van der Waals (vdW) integration strategy for 3D perovskites is developed, where perovskite monocrystalline films are epitaxially grown on the mother substrate, followed by its peeling off and transferring to arbitrary semiconductors, forming monocrystalline heterojunctions. The as-achieved CsPbBr3-Nb-doped SrTiO3 (Nb:STO) vdW p-n heterojunction exhibited comparable performance to their directly epitaxial counterpart, demonstrating the feasibility of vdW integration for 3D perovskites. Furthermore, the vdW integration could be extended to silicon substrates, rendering the CsPbBr3-n-Si and CsPbCl3-p-Si p-n heterojunction with apparent rectification behaviors and photoresponse. The vdW integration significantly enriches the selections of semiconductors hybridizing with perovskites and provides opportunities for monocrystalline perovskite optoelectronics with complex configurations and multiple functionalities.
Collapse
Affiliation(s)
- Songlong Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Weiqi Gao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiaokun Yang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Kaixin Niu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Siyu Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yulong Xiao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering and Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Yanfang Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiang Zhong
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiangnan Xia
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zhou Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yuanyuan Hu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Shulin Chen
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
19
|
Luo C, Wu J, Zhang X, Fu Q, Wang W, Yu Y, Zeng P, Ni Z, Zhang J, Lu J. Broadband mid-infrared photodetectors utilizing two-dimensional van der Waals heterostructures with parallel-stacked pn junctions. NANOTECHNOLOGY 2024; 35:365203. [PMID: 38861963 DOI: 10.1088/1361-6528/ad568e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Optimizing the width of depletion region is a key consideration in designing high performance photovoltaic photodetectors, as the electron-hole pairs generated outside the depletion region cannot be effectively separated, leading to a negligible contribution to the overall photocurrent. However, currently reported photovoltaic mid-infrared photodetectors based on two-dimensional heterostructures usually adopt a single pn junction configuration, where the depletion region width is not maximally optimized. Here, we demonstrate the construction of a high performance broadband mid-infrared photodetector based on a MoS2/b-AsP/MoS2npn van der Waals heterostructure. The npn heterojunction can be equivalently represented as two parallel-stacked pn junctions, effectively increasing the thickness of the depletion region. Consequently, the npn device shows a high detectivity of 1.3 × 1010cmHz1/2W-1at the mid-infrared wavelength, which is significantly improved compared with its single pn junction counterpart. Moreover, it exhibits a fast response speed of 12 μs, and a broadband detection capability ranging from visible to mid-infrared wavelengths.
Collapse
Affiliation(s)
- Chen Luo
- School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
| | - Jianfeng Wu
- School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
- School of Integrated Circuits, Southeast University, Nanjing 210096, People's Republic of China
| | - Xinlei Zhang
- School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
| | - Qiang Fu
- School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
| | - Wenhui Wang
- School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
| | - Yuanfang Yu
- State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Peiyu Zeng
- School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhenhua Ni
- School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Jialin Zhang
- School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
| | - Junpeng Lu
- School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
20
|
Huang SH, Yang SH, Tsai WC, Hsu HC. Enhancing Optical and Thermal Stability of Blue-Emitting Perovskite Nanocrystals through Surface Passivation with Sulfonate or Sulfonic Acid Ligands. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1049. [PMID: 38921925 PMCID: PMC11206382 DOI: 10.3390/nano14121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
This study aims to enhance the optical and thermal properties of cesium-based perovskite nanocrystals (NCs) through surface passivation with organic sulfonate (or sulfonic acid) ligands. Four different phenylated ligands, including sodium β-styrenesulfonate (SbSS), sodium benzenesulfonate (SBS), sodium p-toluenesulfonate (SPTS), and 4-dodecylbenzenesulfonic acid (DBSA), were employed to modify blue-emitting CsPbBr1.5Cl1.5 perovskite NCs, resulting in improved size uniformity and surface functionalization. Transmission electron microscopy and X-ray photoelectron spectroscopy confirmed the successful anchoring of sulfonate or sulfonic acid ligands on the surface of perovskite NCs. Moreover, the photoluminescence quantum yield increased from 32% of the original perovskite NCs to 63% of the SPTS-modified ones due to effective surface passivation. Time-resolved photoluminescence decay measurements revealed extended PL lifetimes for ligand-modified NCs, indicative of reduced nonradiative recombination. Thermal stability studies demonstrated that the SPTS-modified NCs retained nearly 80% of the initial PL intensity when heated at 60 °C for 10 min, surpassing the performance of the original NCs. These findings emphasize the optical and thermal stability enhancement of cesium-based perovskite NCs through surface passivation with suitable sulfonate ligands.
Collapse
Affiliation(s)
- Shu-Han Huang
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, Tainan 711010, Taiwan;
| | - Sheng-Hsiung Yang
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, Tainan 711010, Taiwan;
| | - Wen-Cheng Tsai
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan; (W.-C.T.); (H.-C.H.)
| | - Hsu-Cheng Hsu
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan; (W.-C.T.); (H.-C.H.)
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
21
|
Wei C, Wang J, Wang L, Zhao J, Yin Z, Tang A. Highly Efficient Flexible Photodetectors Based on Pb-Free CsBi 3I 10 Perovskites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28845-28852. [PMID: 38776522 DOI: 10.1021/acsami.4c03662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Perovskites have made remarkable advancements in optoelectronics owing to their high light absorption coefficient, tunable bandgap, and long charge diffusion. Nonetheless, the practical applications of Pb-based perovskites have been hindered by the instability and toxicity of Pb, especially in flexible electronics, which require high biosecurity and low toxicity. Hence, the development of stable Pb-free perovskite materials has gained increasing attention. In this study, we synthesized stable CsBi3I10 Pb-free perovskites outside the glovebox and improved the optoelectronic and mechanical performances of the CsBi3I10-based flexible devices through polyvinylcarbazole (PVK) doping. Flexible photodetectors with the device structure of PET/ITO/PEDOT:PSS/CsBi3I10:PVK/Au was fabricated. The results indicated that the introduction of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) reduced the surface roughness of the flexible PET substrate, while PVK doping further improved the surface smoothness of CsBi3I10 thin films, thereby enhancing the interfacial charge transportation. Moreover, PEDOT:PSS and PVK acted as stepwise hole transport layers in the photodetectors. The device demonstrated a maximum responsivity of 0.3 A/W, detectivity of 2.6 × 1011 Jones, and a response time of 102 μs at 650 nm. After subjecting it to 1000 bending tests, the light current retained 80% of its initial value. This study presents a universally applicable method for controlling the surface morphology of a flexible perovskite thin film.
Collapse
Affiliation(s)
- Chuangchuang Wei
- Department of Material Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jihui Wang
- Department of Material Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lijin Wang
- Department of Material Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinxing Zhao
- Department of Material Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Zhe Yin
- Department of Material Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Aiwei Tang
- Department of Material Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
22
|
Liao C, Bernardi S, Bailey CG, Chao IH, Chien SY, Wang G, Sun YH, Tang S, Zheng J, Yi J, Yu MH, Russo SP, Yen HW, McCamey DR, Kennedy BJ, Widmer-Cooper A, Chueh CC, Ho-Baillie AWY. Piperidine and Pyridine Series Lead-Free Dion-Jacobson Phase Tin Perovskite Single Crystals and Their Applications for Field-Effect Transistors. ACS NANO 2024; 18:14176-14186. [PMID: 38768371 DOI: 10.1021/acsnano.3c11125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Two-dimensional (2D) organic-inorganic metal halide perovskites have gained immense attention as alternatives to three-dimensional (3D) perovskites in recent years. The hydrophobic spacers in the layered structure of 2D perovskites make them more moisture-resistant than 3D perovskites. Moreover, they exhibit unique anisotropic electrical transport properties due to a structural confinement effect. In this study, four lead-free Dion-Jacobson (DJ) Sn-based phase perovskite single crystals, 3AMPSnI4, 4AMPSnI4, 3AMPYSnI4, and 4AMPYSnI4 [AMP = (aminomethyl)-piperidinium, AMPY = (aminomethyl)pyridinium] are reported. Results reveal structural differences between them impacting the resulting optical properties. Namely, higher octahedron distortion results in a higher absorption edge. Density functional theory (DFT) is also performed to determine the trends in energy band diagrams, exciton binding energies, and formation energies due to structural differences among the four single crystals. Finally, a field-effect transistor (FET) based on 4AMPSnI4 is demonstrated with a respectable hole mobility of 0.57 cm2 V-1 s-1 requiring a low threshold voltage of only -2.5 V at a drain voltage of -40 V. To the best of our knowledge, this is the third DJ-phase perovskite FET reported to date.
Collapse
Affiliation(s)
- Chwenhaw Liao
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stefano Bernardi
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christopher G Bailey
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
- ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - I Hsiang Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| | - Guoliang Wang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yi-Hsuan Sun
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Shi Tang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jianghui Zheng
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jianpeng Yi
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ming-Hsuan Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Hung-Wei Yen
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Brendan James Kennedy
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Asaph Widmer-Cooper
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Anita W Y Ho-Baillie
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
23
|
Qiao WC, Qiao H, Wang XL, Xu H, Xu F, Sun Z, Gao H, Yao YF. Ferroelectricity and Thermochromism in a 2D Dion-Jacobson Organic-Inorganic Hybrid Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310529. [PMID: 38148294 DOI: 10.1002/smll.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Indexed: 12/28/2023]
Abstract
2D organic-inorganic hybrid perovskites (OIHPs) have become one of the hottest research topics due to their excellent environmental stability and unique optoelectronic properties. Recently, the ferroelectricity and thermochromism of 2D OIHPs have attracted increasing interests. Integrating ferroelectricity and thermochromism into perovskites can significantly promote the development of multichannel intelligent devices. Here, a novel 2D Dion-Jacobson OIHP of the formula (3AMP)PbI4 (where 3AMP is 3-(aminomethyl)pyridinium) is reported, which has a remarkable spontaneous polarization value (Ps) of 15.6 µC cm-2 and interesting thermochromism. As far it is known, such a large Ps value is the highest for 2D OIHPs recorded so far. These findings will inspire further exploration and application of multifunctional perovskites.
Collapse
Affiliation(s)
- Wen-Cheng Qiao
- Oujiang Laboratory, Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Hongwei Qiao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, P. R. China
| | - Xue Lu Wang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, P. R. China
| | - Haojie Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Fanchen Xu
- Institute of Metabonomics and Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hongchang Gao
- Oujiang Laboratory, Innovation Academy of Testing Technology, Scientific Research Center, Wenzhou Medical University, Wenzhou, 325035, P. R. China
- Institute of Metabonomics and Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Ye-Feng Yao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
24
|
Ji Z, Liu Y, Wang T, Liu G, Teng B, Ji S. A Double Perovskite Single Crystal CsCuAgI 3. Inorg Chem 2024; 63:7422-7429. [PMID: 38598689 DOI: 10.1021/acs.inorgchem.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Eco-friendly halide double perovskites are attracting significant attention as potential substitutes for traditional lead-based halide perovskites. However, their typically wide or indirect band gap limits further technological advancement. This study presents a new, eco-friendly, all-inorganic millimeter-scale CsCuAgI3 single crystal (SC). The crystal exhibits a direct band gap of 2.02 eV at the G-point, markedly superior to that of traditional double perovskites. The absorption and photoluminescence spectra further corroborate its band gap attributes. Owing to the B-site Cu-Ag disorder, the crystal possesses a higher Urbach energy (119 meV), indicative of structural disorder. CsCuAgI3 exhibits a wide Stokes shift of 230 nm, a wide full width at half-maximum (fwhm) of 152 nm, a long fluorescence lifetime of 7.29 μs, and excellent stability. In addition, a photoelectric detection prototype was prepared using a CsCuAgI3 single crystal. Using a 375 nm laser as the excitation source, the device showed a very sensitive photoelectric response, clocking in at (0.37/0.21) seconds. This work offers new insights into developing novel lead-free double perovskite single crystals and exploring their potential applications.
Collapse
Affiliation(s)
- Zongshuai Ji
- College of Physics, Qingdao University, Ningxia Road No. 308, Qingdao 266071, China
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center, Qingdao University, Qingdao 266071, China
| | - Yaoyu Liu
- College of Physics, Qingdao University, Ningxia Road No. 308, Qingdao 266071, China
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center, Qingdao University, Qingdao 266071, China
| | - Tianyu Wang
- College of Physics, Qingdao University, Ningxia Road No. 308, Qingdao 266071, China
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center, Qingdao University, Qingdao 266071, China
| | - Guanfeng Liu
- College of Physics, Qingdao University, Ningxia Road No. 308, Qingdao 266071, China
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center, Qingdao University, Qingdao 266071, China
| | - Bing Teng
- College of Physics, Qingdao University, Ningxia Road No. 308, Qingdao 266071, China
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center, Qingdao University, Qingdao 266071, China
| | - Shaohua Ji
- College of Physics, Qingdao University, Ningxia Road No. 308, Qingdao 266071, China
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center, Qingdao University, Qingdao 266071, China
| |
Collapse
|
25
|
Sheng Y, Chen P, Gao Y, He Y, Li J, Muhammad, Xie X, Cheng C, Yang J, Chang Y, Tong G, Jiang Y. Tuneable Efficient White Emission of Sb 3+/Mn 2+ Co-Doped Lead-Free Perovskites for Single-Component White Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19175-19183. [PMID: 38573052 DOI: 10.1021/acsami.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Inorganic lead-free perovskite nanocrystals (NCs) with broadband self-trapped exciton (STEs) emission and low toxicity have shown enormous application prospects in the field of display and lighting. However, white light-emitting diodes (WLEDs) based on a single-component material with high photoluminescence quantum yield (PLQY) remain challenging. Here, we demonstrate a novel codoping strategy by introducing Sb3+/Mn2+ ions to achieve the tuneable dual emission in lead-free perovskite Cs3InCl6 NCs. The PLQY increases to 59.64% after doping with Sb3+. The codoped Cs3InCl6 NCs exhibit efficient white light emission due to the energy transfer channel from STEs to Mn2+ ions with PLQY of 51.38%. Density functional theory (DFT) calculations have been used to verify deeply the effects of Sb3+/Mn2+ doping. WLEDs based on Sb3+/Mn2+-codoped Cs3InCl6 NCs are explored with color rendering index of 85.5 and color coordinate of (0.398, 0.445), which have been successfully applied as photodetector lighting sources. This work provides a new perspective for designing novel lead-free perovskites to achieve single-component WLEDs.
Collapse
Affiliation(s)
- Yuanyuan Sheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ping Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yanpeng Gao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yong He
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junchun Li
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Muhammad
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang Xie
- Jianghuai Advance Technology Center, Hefei 230000, People's Republic of China
| | - Chen Cheng
- School of Microelectronics, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jingting Yang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajing Chang
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, People's Republic of China
| | - Guoqing Tong
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Jiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
26
|
Liu J, Su L, Zhang X, Shtansky DV, Fang X. Ferroelectric-Optoelectronic Hybrid System for Photodetection. SMALL METHODS 2024; 8:e2300319. [PMID: 37312397 DOI: 10.1002/smtd.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Indexed: 06/15/2023]
Abstract
Photodetectors (PDs), as functional devices based on photon-to-electron conversion, are an indispensable component for the next-generation Internet of Things system. The research of advanced and efficient PDs that meet the diverse demands is becoming a major task. Ferroelectric materials can develop a unique spontaneous polarization due to the symmetry-breaking of the unit cell, which is switchable under an external electric field. Ferroelectric polarization field has the intrinsic characteristics of non-volatilization and rewritability. Introducing ferroelectrics to effectively manipulate the band bending and carrier transport can be non-destructive and controllable in the ferroelectric-optoelectronic hybrid systems. Hence, ferroelectric integration offers a promising strategy for high-performance photoelectric detection. This paper reviews the fundamentals of optoelectronic and ferroelectric materials, and their interactions in hybrid photodetection systems. The first section introduces the characteristics and applications of typical optoelectronic and ferroelectric materials. Then, the interplay mechanisms, modulation effects, and typical device structures of ferroelectric-optoelectronic hybrid systems are discussed. Finally, in summary and perspective section, the progress of ferroelectrics integrated PDs is summed up and the challenges of ferroelectrics in the field of optoelectronics are considered.
Collapse
Affiliation(s)
- Jie Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Li Su
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Xinglong Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
27
|
Li Y, Zhou J, Tian Y, Wei Z, Shen G. 2D Ruddlesden-Popper Sn-Based Perovskite Weak Light Detector for Image Transmission and Reflection Imaging. SMALL METHODS 2024; 8:e2300026. [PMID: 37035949 DOI: 10.1002/smtd.202300026] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
2D Ruddlesden-Popper Sn-based perovskite has excellent optoelectronic properties and weak halide ion migration characteristics, making it an ideal candidate for weak light detection, which has great potential in light communication, and medical applications. Although Sn-based perovskite photodetectors are developed, weak light detection is not demonstrated yet. Herein, a high-performance self-powered photodetector with the capability to detect ultra-weak light signals is designed based on vertical PEA2 SnI4 /Si nanowires heterojunction. Due to the low dark current and high light absorption efficiency, the devices present a remarkable responsivity of 42.4 mA W-1 , a high detectivity of 8 × 1011 Jones, and an ultralow noise current of 2.47 × 10-13 A Hz-1/2 . Especially, the device exhibits a high on-off current ratio of 18.6 at light signals as low as 4.60 nW cm-2 , revealing the capacity to detect ultra-weak light. The device is applied as a signal receiver and realized image transmission in light communication system. Moreover, high-resolution reflection imaging and multispectral imaging are obtained using the device as the sensor in the imaging system. These results reveal that 2D PEA2 SnI4 -based self-powered photodetectors with low-noise current possess enormous potential in future weak light detection.
Collapse
Affiliation(s)
- Ying Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jingshu Zhou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Yongzhi Tian
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongming Wei
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
28
|
Ahmed A, Zahir Iqbal M, Dahshan A, Aftab S, Hegazy HH, Yousef ES. Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review. NANOSCALE 2024; 16:2097-2120. [PMID: 38204422 DOI: 10.1039/d3nr04994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD-TMD heterostructures, TMD-graphene (Gr) hybrids, TMD-MXene composites, TMD-perovskite heterostructures, and TMD-quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.
Collapse
Affiliation(s)
- Anique Ahmed
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan.
| | - Alaa Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - El Sayed Yousef
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
29
|
Yao Z, Xiong Y, Kang H, Xu X, Guo J, Li W, Xu X. Tunable Periodic Nanopillar Array for MAPbI 3 Perovskite Photodetectors with Improved Light Absorption. ACS OMEGA 2024; 9:2606-2614. [PMID: 38250387 PMCID: PMC10795138 DOI: 10.1021/acsomega.3c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
In the field of optoelectronic applications, the vigorous development of organic-inorganic hybrid perovskite materials, such as methylammonium lead triiodide (MAPbI3), has spurred continuous research on methods to enhance the photodetection performance. Periodic nanoarrays can effectively improve the light absorption of perovskite thin films. However, there are still challenges in fabricating tunable periodic patterned and large-area perovskite nanoarrays. In this study, we present a cost-effective and facile approach utilizing nanosphere lithography and dry etching techniques to create a large-area Si nanopillar array, which is employed for patterning MAPbI3 thin films. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results reveal that the introduction of nanopillar structures did not have a significant adverse effect on the crystallinity of the MAPbI3 thin film. Light absorption tests and optical simulations indicate that the nanopillar array enhances the light intensity within the perovskite films, leading to photodetectors with a responsivity of 11.2 A/W and a detectivity of 7.3 × 1010 Jones at 450 nm in wavelength. Compared with photodetectors without nanostructures, these photodetectors exhibit better visible light absorption. Finally, we demonstrate the application of these photodetector arrays in a prototype image sensor.
Collapse
Affiliation(s)
- Zhengtong Yao
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Yuting Xiong
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Hanyue Kang
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiuzhen Xu
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Jianhe Guo
- Guangdong
Provincial Key Laboratory of Sensing Technology and Biomedical
Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Wen Li
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiaobin Xu
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
30
|
Ding J, Liu X, Zhou S, Huang J, Li Y, Gao Y, Dong C, Yue G, Tan F. In-situ free-standing inorganic 2D Cs 2PbI 2Cl 2 nanosheets for efficient self-powered photodetectors with carbon electrode. J Colloid Interface Sci 2024; 654:1356-1364. [PMID: 37918095 DOI: 10.1016/j.jcis.2023.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Inorganic two-dimensional (2D) perovskites possess excellent thermal stability and high charge mobility, making them an attractive choice for stable optoelectronic devices such as photodetectors (PDs). The formation of an appropriate inorganic 2D perovskite structure is of great importance to efficient PDs, especially to that of planar self-powered photovoltaic PDs featuring perpendicular charge transport channels. Herein, we implemented morphological engineering on wide bandgap inorganic 2D perovskite, Cs2PbI2Cl2, demonstrating a successful preparation of in-situ free-standing nanosheets structure with proper charge channels for photovoltaic type self-powered PDs. Compared with its counterpart with a nanoblock morphology, the 2D nanosheet Cs2PbI2Cl2 film exhibits enhanced charge mobility and purified Ruddlesden-Popper phase that can withstand high-energy electron beam radiation, accelerated thermal aging and long-term shelf storage. Sandwiching Cs2PbI2Cl2 nanosheet film in between tin oxide (SnO2) and polythiophene (P3HT) as electron and hole acceptors, respectively, the constructed photovoltaic type structure exhibits effective dissociation of excitons at the cascade type-II interface. The nanosheets enable lower dark current and more efficient charge collection than the nanoblock structure. As a result, the self-powered photodetectors with 2D Cs2PbI2Cl2 nanosheets deliver an outstanding responsivity of 698 mW/cm2 and a detectivity of 8.6×1012 Jones. The stable PDs can be applied to monitor ultraviolet irradiation in real outdoor conditions. Our work demonstrates the significant role of morphology tuning of 2D inorganic perovskite in stable, cost-effective and efficient photodetectors.
Collapse
Affiliation(s)
- Jianfeng Ding
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Xinying Liu
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Shun Zhou
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Junyi Huang
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Yaqing Li
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Yueyue Gao
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Chen Dong
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Gentian Yue
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China
| | - Furui Tan
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
31
|
Xing R, Li Z, Zhao W, Wang D, Xie R, Chen Y, Wu L, Fang X. Waterproof and Flexible Perovskite Photodetector Enabled By P-type Organic Molecular Rubrene with High Moisture and Mechanical Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310248. [PMID: 38118456 DOI: 10.1002/adma.202310248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Indexed: 12/22/2023]
Abstract
Metal halide perovskite films have gained significant attention because of their remarkable optoelectronic performances. However, their poor stability upon the severe environment appears to be one of the main facets that impedes their further commercial applications. Herein, a method to improve the stability of flexible photodetectors under water and humidity environment without encapsulation is reported. The devices are fabricated using the physical vapor deposition method (Pulse Laser Deposition & Thermal Evaporation) under high-vacuum conditions. An amorphous organic Rubrene film with low molecular polarity and high elastic modulus serves as both a protective layer and hole transport layer. After immersed in water for 6000 min, the photoluminescence intensity attenuation of films only decreased by a maximum of 10%. The demonstrator device, based on Rubrene/CsPbBr3 /ZnO heterojunction confirms that the strategy not only enhances device moisture and mechanical stability but also achieves high sensitivity in optoelectronic detection. In self-powered mode, it has a fast response time of 79.4 µs /207.6 µs and a responsivity 124 mA W-1 . Additionally, the absence of encapsulation simplifies the fabrication of complex electrodes, making it suitable for various applications. This study highlights the potential use of amorphous organic films in improving the stability of perovskite-based flexible devices.
Collapse
Affiliation(s)
- Ruofei Xing
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Wenxiao Zhao
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Dong Wang
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ranran Xie
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yanxue Chen
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- College of Chemistry and Chemical Engineering Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
32
|
Xia Z, Liu B, Xiao Y, Hu W, Deng M, Lü C. Integrating Hybrid Perovskite Nanocrystals into Metal-Organic Framework as Efficient S-Scheme Heterojunction Photocatalyst for Synergistically Boosting Controlled Radical Photopolymerization under 980 nm NIR Light. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38032100 DOI: 10.1021/acsami.3c13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
S-scheme heterojunction photocatalyst MAPbI3@PCN-222 with light absorption extending to the NIR region is constructed by embedding organic-inorganic hybrid perovskite (MAPbI3) into porphyrinic Zr-MOF (PCN-222). Both in situ X-ray photoelectron spectroscopy, ultraviolet photoelectron spectral characterization, and photocatalytic polymerization experiment prove the formation of S-scheme heterojunction. MAPbI3@PCN-222 with a low dosage (90 ppm) displays an impressive photocatalytic ability for 980 nm light-mediated photoinduced electron/energy-transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization in air. The well-defined controllable-molecular weight polymers including block copolymers and ultrahigh-molecular weight polymers can be achieved with narrow distributions (Mw/Mn < 1.20) via rapid photopolymerization. The industrial application potential of the photocatalyst also has been proved by scale-up synthesis of polymers with low polydispersity under NIR light-induced photopolymerization in a large-volume reaction system (200 mL) with high monomer conversion up to 99%. The penetration photopolymerization through the 5 mm polytetrafluoroethylene plate and excellent photocontrollable behavior illustrate the existence of long-term photogenerated electron transfer of heterojunction and abundant free radicals in photopolymerization. The photocatalyst still retains high catalytic activity after 10 cycles of photopolymerization in air. It is revealed for the first time that the special PET-RAFT polymerization pathway is initiated by the aldehyde-bearing α-aminoalkyl radical derived from the oxidization of triethanolamine (TEOA) by the heterojunction photocatalyst. This research offers a new insight into understanding the NIR-light-activated PET-RAFT polymerization mechanism in the presence of TEOA.
Collapse
Affiliation(s)
- Zhinan Xia
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Bei Liu
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yang Xiao
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Wanchao Hu
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Mingxiao Deng
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
33
|
Wang S, Qi L, Xia Z, Wang W, Yue D, Wang S, Su S. Polarization-Sensitive Detector Based on MoTe 2/WTe 2 Heterojunction for Broadband Optoelectronic Imaging. J Phys Chem Lett 2023; 14:10509-10516. [PMID: 37970815 DOI: 10.1021/acs.jpclett.3c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polarization-sensitive detectors have significant applications in modern communication and information processing. In this study. We present a polarization-sensitive detector based on a MoTe2/WTe2 heterojunction, where WTe2 forms a favorable bandgap structure with MoTe2 after forming the heterojunction. This enhances the carrier separation efficiency and photoelectric response. We successfully achieved wide spectral detection ranging from visible to near-infrared light. Specifically, under zero bias, our photodetector exhibits a responsivity (R) of 0.6 A/W and a detectivity (D*) of 3.6 × 1013 Jones for 635 nm laser illumination. Moreover, the photoswitching ratio can approach approximately 6.3 × 105. Importantly, the polarization sensitivity can reach 3.5 (5.2) at 635 (1310) nm polarized light at zero bias. This study both unveils potential for utilizing MoTe2/WTe2 heterojunctions as polarization-sensitive detectors and provides novel insights for developing high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Sujuan Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, 999078 Macao SAR, P.R. China
| | - Ligan Qi
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Zhonghui Xia
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Wenhai Wang
- College of Electrical Engineering, Hebei University of Architecture, Zhangjiakou 075000, P.R. China
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, P.R. China
| | - Shuangpeng Wang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, P.R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, 999078 Macao SAR, P.R. China
| | - Shichen Su
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Guangzhou 510631, P.R. China
| |
Collapse
|
34
|
Xiong J, Zhang ZH, Li Z, Zheng P, Li J, Zhang X, Gao Z, Wei Z, Zheng G, Wang SP, Liu HC. Perovskite single-pixel detector for dual-color metasurface imaging recognition in complex environment. LIGHT, SCIENCE & APPLICATIONS 2023; 12:286. [PMID: 38008796 PMCID: PMC10679139 DOI: 10.1038/s41377-023-01311-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Highly efficient multi-dimensional data storage and extraction are two primary ends for the design and fabrication of emerging optical materials. Although metasurfaces show great potential in information storage due to their modulation for different degrees of freedom of light, a compact and efficient detector for relevant multi-dimensional data retrieval is still a challenge, especially in complex environments. Here, we demonstrate a multi-dimensional image storage and retrieval process by using a dual-color metasurface and a double-layer integrated perovskite single-pixel detector (DIP-SPD). Benefitting from the photoelectric response characteristics of the FAPbBr2.4I0.6 and FAPbI3 films and their stacked structure, our filter-free DIP-SPD can accurately reconstruct different colorful images stored in a metasurface within a single-round measurement, even in complex environments with scattering media or strong background noise. Our work not only provides a compact, filter-free, and noise-robust detector for colorful image extraction in a metasurface, but also paves the way for color imaging application of perovskite-like bandgap tunable materials.
Collapse
Affiliation(s)
- Jiahao Xiong
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China
| | - Zhi-Hong Zhang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, China
| | - Zile Li
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Peixia Zheng
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China
| | - Jiaxin Li
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, China
| | - Xuan Zhang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China
| | - Zihan Gao
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China
| | - Zhipeng Wei
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, China
| | - Guoxing Zheng
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, China.
- Peng Cheng Laboratory, Shenzhen, China.
| | - Shuang-Peng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China.
| | - Hong-Chao Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
35
|
Wang H, Yin Y, Xu J, Li J, Bao Y, An M, Tang L, Jin S, Tian W, Yang Y. Field-Induced Transport Anisotropy in Single-Crystalline All-Inorganic Lead-Halide Perovskite Nanowires. ACS NANO 2023. [PMID: 37975813 DOI: 10.1021/acsnano.3c06944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The dynamic crystal lattice of halide perovskites facilitates the coupled transport of ions and electrons, offering innovative concepts in semiconductor iontronic devices that surpass solar cell applications. However, a comprehensive understanding of the intricacies of coupled ionic and electronic transport at the microscale remains ambiguous, owing to the inhomogeneity in ploy-crystalline perovskite thin films. In this work, we employed one-dimensional (1D) single-crystalline CsPbBr3 nanowires (NWs) to investigate the electric field induced ionic transport. Upon poling by an external bias, the previously uniform NW exhibits highly anisotropic ionic transport, which is identified as the origin of the giant switchable photovoltaic effect by spatially resolved scanning photocurrent microscopy. The subsequent ultrafast scanning photoluminescence (PL) microscopy measurements demonstrate significant localization of photocarriers near one terminal of the device, which is attributed to the accumulation of halogen vacancies. In addition, thanks to the enhancement of the local electric field, the poled device shows a 10-fold increase of photoresponse speed. Our findings favor the scale-down of perovskite devices to the submicrometer scale, extending their applications in self-powered iontronic and optoelectronic devices.
Collapse
Affiliation(s)
- Hengshan Wang
- School of Integrated Circuits, Dalian University of Technology, No. 321 Tuqiang Road, Dalian 116620, China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiao Xu
- School of Integrated Circuits, Dalian University of Technology, No. 321 Tuqiang Road, Dalian 116620, China
| | - Jing Li
- School of Integrated Circuits, Dalian University of Technology, No. 321 Tuqiang Road, Dalian 116620, China
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Yanan Bao
- School of Integrated Circuits, Dalian University of Technology, No. 321 Tuqiang Road, Dalian 116620, China
| | - Meiqi An
- School of Integrated Circuits, Dalian University of Technology, No. 321 Tuqiang Road, Dalian 116620, China
| | - Lingzhi Tang
- School of Integrated Circuits, Dalian University of Technology, No. 321 Tuqiang Road, Dalian 116620, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yiming Yang
- School of Integrated Circuits, Dalian University of Technology, No. 321 Tuqiang Road, Dalian 116620, China
| |
Collapse
|
36
|
Su X, Hou X, Zhang Q, Xie Z, Wei Z, Liu L. 3D-Heterojunction Based on Embedded Perovskite Micro-Sized Single Crystals for Fast Photomultiplier Photodetectors with Broad/Narrowband Dual-Mode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303964. [PMID: 37377121 DOI: 10.1002/adma.202303964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Indexed: 06/29/2023]
Abstract
A fast photomultiplier photodetector with a broad/narrowband dual mode is implemented using a new 3D heterostructure based on embedded perovskite micro-sized single crystals. Because the single-crystal size is smaller than the electrode size, the active layer can be divided into a perovskite microcrystalline part for charge transport and a polymer-embedded part for charge storage. This induces an additional radial interface in the 3D heterojunction structure, and allows a photogenerated built-in electric field in the radial direction, especially when the energy levels between the perovskite and embedding polymer are similar. This type of heterojunction has a small radial capacitance that can effectively reduce carrier quenching and accelerate the carrier response. By controlling the applied bias direction, up to 300-1000% external quantum efficiency (EQE) and microsecond response can be achieved not only in the wide range of ultraviolet to visible light from 320 to 550 nm, but also in the narrow-band response with a full width at half minimum (FWHM) of 20 nm. This shows great potential for applications in integrated multifunctional photodetectors.
Collapse
Affiliation(s)
- Xiaojun Su
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, P. R. China
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xuehua Hou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qinglei Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhipeng Wei
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
37
|
Huang F, Liao G, Peng Y, Liu G. Facile Vertical Structure Broadband Photodetectors Enabled by Polyvinylpyrrolidone-Regulated Perovskite and Near-Infrared-Sensitive Lead Phthalocyanine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41634-41646. [PMID: 37602865 DOI: 10.1021/acsami.3c05813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Broadband photodetectors have drawn tremendous attention in many application areas such as imaging, optical communication, and biochemical sensing. Perovskite is a star material with broad spectral absorption, but it is challenging to develop ultraviolet-visible-near-infrared (UV-Vis-NIR) ultra-broadband photodetectors due to the insufficient absorption in the near-infrared region. Moreover, it is difficult to construct a diode-type photodetector with a simple vertical structure based only on perovskite materials. Here, facile vertical structure broadband photodetectors were fabricated based on heterojunctions that were composed of perovskite MAPbI3 films with UV-Vis absorption spectrum and small organic molecule lead phthalocyanine (PbPc) with strong NIR optical absorption, resulting in UV-Vis-NIR ultra-broadband photodetection. The quality of MAPbI3 films was improved by introducing polyvinylpyrrolidone (PVP) modification, and subsequently, the corresponding MAPbI3/PbPc heterojunction-based photodetectors exhibited rectification characteristics and reduced reverse dark currents. When the PVP mass ratio is 1 wt%, the photodetector achieved the best performance that the spectral response uniformity factor was as high as 0.77, the photoresponsivity exceeded 10 A/W, and the photoresponse time was less than 0.5 ms under a light intensity of 0.013 mW/cm2 in the UV-Vis to NIR spectral range. These results are comparable or superior to those of some inorganic, organic, and perovskite photodetectors reported previously. This study would provide an effective strategy to construct high-performance perovskite photodetectors based on a simple vertical structure, paving the way to the realization of UV-Vis-NIR broadband photodetection.
Collapse
Affiliation(s)
- Fobao Huang
- Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
- Yangtze River Delta Research Institute of NPU, Northwestern Polytechnical University, Taicang 215400, China
| | - Guangmeng Liao
- Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Yingquan Peng
- Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
- College of Optical and Electronic Technology, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China
| | - Guohan Liu
- Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
- Institute of Sensor Technology, Gansu Academy of Sciences, 229 South Dingxi Road, Lanzhou 730000, China
| |
Collapse
|
38
|
Li Y, Du H. Engineering graphitic carbon nitride for next-generation photodetectors: a mini review. RSC Adv 2023; 13:25968-25977. [PMID: 37664204 PMCID: PMC10472343 DOI: 10.1039/d3ra04051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Semiconductor photodetectors, as photoelectric devices using optical-electrical signal conversion for detection, are widely used in various fields such as optical communication, medical imaging, environmental monitoring, military tracking, remote sensing, etc. Compared to the conventional photodetector materials including silicon, III-V semiconductors and metal sulfides, graphitic carbon nitride (g-C3N4) as a metal-free polymeric semiconductor, has many advantages such as low-price, easy preparation, efficient visible light response, and relatively good thermal stability. In the meantime, the polymer characteristics also endow the g-C3N4 with good mechanical properties. Apart from being used for photo(electro)catalysts during the past decades, the potential use of g-C3N4 in photodetectors has attracted great research interests very recently. In this review, we first briefly introduce the structure and properties of g-C3N4 and the key performance parameters of photodetectors. Then, combining the very recent progress, the review focuses on the active materials, fabrication methods and performance enhancement strategies for g-C3N4 based photodetectors. The existing challenges are discussed and the future development of g-C3N4 based photodetectors is also forecasted.
Collapse
Affiliation(s)
- Yuan Li
- School of Telecommunications Engineering, Hubei Science and Technology College Wuhan 430074 China
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology Wuhan 430074 China
| | - Haiwei Du
- School of Materials Science and Engineering, Anhui University Hefei 230601 China
| |
Collapse
|
39
|
Zhao Y, Yin X, Li P, Ren Z, Gu Z, Zhang Y, Song Y. Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation. NANO-MICRO LETTERS 2023; 15:187. [PMID: 37515723 PMCID: PMC10387041 DOI: 10.1007/s40820-023-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/02/2023] [Indexed: 07/31/2023]
Abstract
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
Collapse
Affiliation(s)
- Yingjie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xing Yin
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Pengwei Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Ziqiu Ren
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhenkun Gu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Yiqiang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yanlin Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, People's Republic of China.
| |
Collapse
|
40
|
Zhang D, Zhu Y, Jiao R, Zhou J, Zhang Q, Poddar S, Ren B, Qiu X, Cao B, Zhou Y, Wang C, Wang KF, Zi Y, Zeng H, Li MG, Yu H, Zhou Q, Fan Z. Metal seeding growth of three-dimensional perovskite nanowire forests for high-performance stretchable photodetectors. NANO ENERGY 2023; 111:108386. [DOI: 10.1016/j.nanoen.2023.108386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Chiu FB, Wu YW, Yang SH. Surface Modification of ZnO Nanocrystals with Conjugated Polyelectrolytes Carrying Different Counterions for Inverted Perovskite Light-Emitting Diodes. ACS OMEGA 2023; 8:19109-19118. [PMID: 37273598 PMCID: PMC10233845 DOI: 10.1021/acsomega.3c02593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
In this work, bromide ions (Br-) on the conjugated polyelectrolytes (CPEs) were converted to tetrafluoroborate (BF4-) or hexafluorophosphate (PF6-) ions through anion exchange. The three CPEs (PFN-Br, PFN-BF4, and PFN-PF6) were utilized solely for surface modification of zinc oxide nanocrystals (ZnO NCs). The ionic groups on CPEs can form permanent dipoles to facilitate charge injection from ZnO NCs to cesium lead bromide (CsPbBr3) NC emitters, therefore promoting luminescent properties of inverted perovskite light-emitting diodes (PeLEDs). The experimental results reveal that ZnO NC films were smoothened by CPEs that allowed flat deposition of the perovskite active layers; moreover, the improved contact between ZnO and perovskite layers was beneficial for reducing leakage current, as verified in the dark current measurement of devices. In addition, the incorporation of CPEs helped to passivate the defects of ZnO NC films and prolong the carrier lifetime of CsPbBr3 NCs. PeLEDs based on different CPEs were then constructed and evaluated. The device based on PFN-Br showed the highest brightness and current efficiency, and the one based on PFN-BF4 exhibited better current efficiency over PFN-Br under the low current density below 160 mA/cm2. This is the first report using fluorene-based CPEs with Br-, BF4-, or PF6- groups to modify the properties of ZnO and CsPbBr3 NCs for the construction of inverted PeLEDs so far. Our experiments explored new kinds of CPEs on the surface modification of ZnO NCs and device performance of PeLEDs.
Collapse
|
42
|
Wu W, Liu Y, Yao J, Ouyang X. Mixed-Cation Halide Perovskite Doped with Rb + for Highly Efficient Photodetector. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103796. [PMID: 37241422 DOI: 10.3390/ma16103796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Photodetectors are widely employed as fundamental devices in optical communication, automatic control, image sensors, night vision, missile guidance, and many other industrial or military fields. Mixed-cation perovskites have emerged as promising optoelectronic materials for application in photodetectors due to their superior compositional flexibility and photovoltaic performance. However, their application involves obstacles such as phase segregation and poor-quality crystallization, which introduce defects in perovskite films and adversely affect devices' optoelectronic performance. The application prospects of mixed-cation perovskite technology are significantly constrained by these challenges. Therefore, it is necessary to investigate strategies that combine crystallinity control and defect passivation to obtain high-quality thin films. In this study, we incorporated different Rb+ ratios in triple-cation (CsMAFA) perovskite precursor solutions and studied their effects on crystal growth. Our results show that a small amount of Rb+ was enough to induce the crystallization of the α-FAPbI3 phase and suppress the formation of the yellow non-photoactive phase; the grain size increased, and the product of the carrier mobility and the lifetime (μτ) improved. As a result, the fabricated photodetector exhibited a broad photo-response region, from ultraviolet to near-infrared, with maximum responsivity (R) up to 11.8 mA W-1 and excellent detectivity (D*) values up to 5.33 × 1011 Jones. This work provides a feasible strategy to improve photodetectors' performance via additive engineering.
Collapse
Affiliation(s)
- Wei Wu
- School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yang Liu
- School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| | - Jianxi Yao
- School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Xiaoping Ouyang
- School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Xi'an 710024, China
| |
Collapse
|
43
|
Tang Q, Zhong F, Li Q, Weng J, Li J, Lu H, Wu H, Liu S, Wang J, Deng K, Xiao Y, Wang Z, He T. Infrared Photodetection from 2D/3D van der Waals Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1169. [PMID: 37049263 PMCID: PMC10096675 DOI: 10.3390/nano13071169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
An infrared photodetector is a critical component that detects, identifies, and tracks complex targets in a detection system. Infrared photodetectors based on 3D bulk materials are widely applied in national defense, military, communications, and astronomy fields. The complex application environment requires higher performance and multi-dimensional capability. The emergence of 2D materials has brought new possibilities to develop next-generation infrared detectors. However, the inherent thickness limitations and the immature preparation of 2D materials still lead to low quantum efficiency and slow response speeds. This review summarizes 2D/3D hybrid van der Waals heterojunctions for infrared photodetection. First, the physical properties of 2D and 3D materials related to detection capability, including thickness, band gap, absorption band, quantum efficiency, and carrier mobility, are summarized. Then, the primary research progress of 2D/3D infrared detectors is reviewed from performance improvement (broadband, high-responsivity, fast response) and new functional devices (two-color detectors, polarization detectors). Importantly, combining low-doped 3D and flexible 2D materials can effectively improve the responsivity and detection speed due to a significant depletion region width. Furthermore, combining the anisotropic 2D lattice structure and high absorbance of 3D materials provides a new strategy in high-performance polarization detectors. This paper offers prospects for developing 2D/3D high-performance infrared detection technology.
Collapse
Affiliation(s)
- Qianying Tang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Qing Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Jialu Weng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhe Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangyu Lu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuning Liu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Deng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yunlong Xiao
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Zhen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Ting He
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| |
Collapse
|
44
|
Zhang Q, Yao L, Li B, Fang D, Wang D, Li J, Wang X, Han P, Qiu M, Fang X. Defect recombination suppression and carrier extraction improvement for efficient CsPbBr 3/SnO 2heterojunction photodetectors. NANOTECHNOLOGY 2023; 34:235706. [PMID: 36716478 DOI: 10.1088/1361-6528/acb713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Perovskite materials with excellent optical and electronic properties have huge potential in the research field of photodetectors. Constructing heterojunctions and promoting carrier transportation are significant for the development of perovskite-based optoelectronics devices with high performances. Herein, we demonstrated a CsPbBr3/SnO2heterojunction photodetector and improved the device performances through post-annealing treatment of SnO2film. The results indicated that the electrical properties of SnO2films will make an important impact on carrier extraction, especially for type-II heterojunction. As the electrons transfer layer in CsPbBr3/SnO2type-II heterojunction, defects related to oxygen vacancy should be the key factor to affect carrier concentration, induce carriers' limitation and recombination rate. Under proper annealing temperature for SnO2layer, the recombination rate can decrease to 1.37 × 1021cm3s and the spectral responsivity will be highly increased. This work can enhance the understanding on the photoresponse of perovskite photodetectors, and will be helpful for the further optimization and design of optoelectronic devices based on the perovskite heterojunction.
Collapse
Affiliation(s)
- Qianwen Zhang
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Lijuan Yao
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Bobo Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, People's Republic of China
| | - Dan Fang
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Dengkui Wang
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Jinhua Li
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Xiaohua Wang
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
| | - Peigang Han
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, People's Republic of China
| | - Mingxia Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, People's Republic of China
| | - Xuan Fang
- State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, People's Republic of China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| |
Collapse
|
45
|
Liu B, He D, Zhou Q, Chen Y, He P, Han X, Ma D, He Y, Li Y, Zhao P, Xu ZX, Lu S, Zang Z, Chen J. 1-Adamantanamine Hydrochloride Resists Environmental Corrosion to Obtain Highly Efficient and Stable Perovskite Solar Cells. J Phys Chem Lett 2023; 14:2501-2508. [PMID: 36867844 DOI: 10.1021/acs.jpclett.3c00298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Passivating the defective surface of perovskite film is a promising strategy to improve the stability and efficiency of perovskite solar cells (PSCs). Herein, 1-adamantanamine hydrochloride (ATH) is introduced to the upper surface of the perovskite film to heal the defects of the perovskite surface. The best-performance ATH-modified device has a higher efficiency (23.45%) than the champion control device (21.53%). The defects are passivated, interfacial nonradiative recombination is suppressed, and interface stress is released by the ATH deposited on the perovskite film, leading to longer carrier lifetimes and enhancement in open-circuit voltage (VOC) and fill factor (FF) of the PSCs. With obvious improvement, VOC and FF of 1.159 V and 0.796 for the control device are raised to 1.178 V and 0.826 for the ATH-modified device, respectively. Finally, during an operational stability measurement of more than 1000 h, the ATH-treated PSC exhibited better moisture resistance, thermal persistence, and light stability.
Collapse
Affiliation(s)
- Baibai Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Dongmei He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Zhou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yu Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Peng He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiao Han
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Danqing Ma
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yong He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yuelong Li
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center of Nankai University, Tianjin 300350, China
| | - Pengjun Zhao
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou 318000, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Jiangzhao Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
46
|
Zhao R, Huang J, Liu M, Tan F, Zhang P, Chen Z, Yao X, Li S. Highly efficient and stable near-infrared photodetectors enabled from passivated tin-lead hybrid perovskites. NANOTECHNOLOGY 2023; 34:215702. [PMID: 36801855 DOI: 10.1088/1361-6528/acbcda] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Tin-lead perovskite-based photodetectors have a wide light-absorption wavelength range, which spans 1000 nm. However, the preparation of the mixed tin-lead perovskite films faces two great obstacles, namely easy oxidation of Sn2+to Sn4+and fast crystallization from tin-lead perovskite precursor solutions, thus further resulting in poor morphology and high density of defects in tin-lead perovskite films. In this study, we demonstrated a high-performance of near-infrared photodetectors prepared from a stable low-bandgap (MAPbI3)0.5(FASnI3)0.5film modified with 2-fluorophenethylammonium iodide (2-F-PEAI). The addition engineering can efficiently improve the crystallization of (MAPbI3)0.5(FASnI3)0.5films through the coordination binding between Pb2+and N atom in 2-F-PEAI, and resulting in a uniform and dense (MAPbI3)0.5(FASnI3)0.5film. Moreover, 2-F-PEAI suppressed Sn2+oxidation and effectively passivated defects in the (MAPbI3)0.5(FASnI3)0.5film, thereby significantly reducing the dark current in the PDs. Consequently, the near-infrared photodetectors showed a high responsivity with a specific detectivity of over 1012Jones at 800 to near-1000 nm. Additionally, the stability of PDs incorporated with 2-F-PEAI has been significantly improved under air conditions, and the device with the 2-F-PEAI ratio of 400:1 retained 80% of its initial efficiency after 450 h storage in air without encapsulation. Finally, 5 × 5 cm2photodetector arrays were fabricated to demonstrate the potential utility of the Sn-Pb perovskite photodetector in optical imaging and optoelectronic applications.
Collapse
Affiliation(s)
- Ru Zhao
- Henan University, Kaifeng Henan, People's Republic of China
| | - Junyi Huang
- Henan University, Kaifeng Henan, People's Republic of China
| | - Meiyue Liu
- Henan University, Kaifeng Henan, People's Republic of China
| | - Furui Tan
- Henan University, Kaifeng Henan, People's Republic of China
| | - Putao Zhang
- Henan University, Kaifeng Henan, People's Republic of China
| | - Zeng Chen
- Henan University, Kaifeng Henan, People's Republic of China
| | - Xiang Yao
- Tianjin University, Tianjin, People's Republic of China
| | - Shengjun Li
- Henan University, Kaifeng Henan, People's Republic of China
| |
Collapse
|
47
|
Wu J, Zhang X, Wang Z, Liang L, Niu X, Guan Q, You S, Luo J. Near-infrared polarization-sensitive photodetection via interfacial symmetry engineering of an Si/MAPbI 3 heterostructural single crystal. MATERIALS HORIZONS 2023; 10:952-959. [PMID: 36602385 DOI: 10.1039/d2mh01287a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Methylammonium lead iodide (MAPbI3) single crystals (SCs) have drawn particular attention in the optoelectronics field, due to their outstanding photoelectric performance. However, the structures of those MAPbI3 SCs are isotropic, which limits the further application of the materials for polarization-sensitive photodetection. Here, we propose a strategy of symmetry modulation by heterogeneously integrating large-sized MAPbI3 SCs with silicon (Si) wafers and we give the first demonstration of self-powered near-infrared (NIR) polarization-sensitive photodetection using MAPbI3 SCs. Created via a delicate solution method, the MAPbI3/Si heterostructures show a high crystalline quality and a solid interfacial connection. More importantly, the built-in electric field resulting from the band bending at the MAPbI3/Si heterostructure interface generates polar symmetry, which enables directional transport of photogenerated carriers, making the MAPbI3/Si heterostructures highly polarization-sensitive. Consequently, in the self-powered mode, NIR photodetectors of MAPbI3/Si heterostructures exhibit large polarization ratios of 3.3 at 785 nm and 2.8 at 940 nm. Moreover, a high detectivity of 7.35 × 1012 Jones of the present devices is also achieved. Our work gives the first demonstration of self-powered polarization-sensitive photodetection of MAPbI3 SCs and provides a strategy to design polarization-sensitive materials beyond the conventional limitations induced by isotropic structures.
Collapse
Affiliation(s)
- Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Ziyang Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Lishan Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Xinyi Niu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Qianwen Guan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Shihai You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
48
|
Shin J, Yoo H. Photogating Effect-Driven Photodetectors and Their Emerging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:882. [PMID: 36903759 PMCID: PMC10005329 DOI: 10.3390/nano13050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Rather than generating a photocurrent through photo-excited carriers by the photoelectric effect, the photogating effect enables us to detect sub-bandgap rays. The photogating effect is caused by trapped photo-induced charges that modulate the potential energy of the semiconductor/dielectric interface, where these trapped charges contribute an additional electrical gating-field, resulting in a shift in the threshold voltage. This approach clearly separates the drain current in dark versus bright exposures. In this review, we discuss the photogating effect-driven photodetectors with respect to emerging optoelectrical materials, device structures, and mechanisms. Representative examples that reported the photogating effect-based sub-bandgap photodetection are revisited. Furthermore, emerging applications using these photogating effects are highlighted. The potential and challenging aspects of next-generation photodetector devices are presented with an emphasis on the photogating effect.
Collapse
|
49
|
Yang B, Gao W, Li H, Gao P, Yang M, Pan Y, Wang C, Yang Y, Huo N, Zheng Z, Li J. Visible and infrared photodiode based on γ-InSe/Ge van der Waals heterojunction for polarized detection and imaging. NANOSCALE 2023; 15:3520-3531. [PMID: 36723020 DOI: 10.1039/d2nr06642d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Broadband photodetectors are a category of optoelectronic devices that have important applications in modern communication information. γ-InSe is a newly developed two-dimensional (2D) layered semiconductor with an air-stable and low-symmetry crystal structure that is suitable for polarization-sensitive photodetection. Herein, we report a P-N photodiode based on 3D Ge/2D γ-InSe van der Waals heterojunction (vdWH). A built-in electric field is introduced at the p-Ge/n-InSe interface to suppress the dark current and accelerate the separation of photogenerated carriers. Moreover, the heterojunction belongs to the accumulation mode with a well-designed type-II band arrangement, which is suitable for the fast separation of photogenerated carriers. Driven by these advantages, the device exhibits excellent photovoltaic performance within the detection range of 400 to 1600 nm and shows a double photocurrent peak at around 405 and 1550 nm. In particular, the responsivity (R) is up to 9.78 A W-1 and the specific detectivity (D*) reaches 5.38 × 1011 Jones with a fast response speed of 46/32 μs under a 1550 nm laser. Under blackbody radiation, the room temperature R and D* in the mid-wavelength infrared region are 0.203 A W-1 and 5.6 × 108 Jones, respectively. Moreover, polarization-sensitive light detection from 405-1550 nm was achieved, with the dichroism ratios of 1.44, 3.01, 1.71, 1.41 and 1.34 at 405, 635, 808, 1310 and 1550 nm, respectively. In addition, high-resolution single-pixel imaging capability is demonstrated at visible and near-infrared wavelengths. This work reveals the great potential of the γ-InSe/Ge photodiode for high-performance, broadband, air-stable and polarization-sensitive photodetection.
Collapse
Affiliation(s)
- Baoxiang Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Wei Gao
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Hengyi Li
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Peng Gao
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Mengmeng Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Yuan Pan
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Chuanglei Wang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Yani Yang
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Nengjie Huo
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Jingbo Li
- School of Semiconductor Science and Technology, Guangdong Provincial Key Laboratory of Chip and Integration Technology, South China Normal University, Guangzhou 528225, P. R. China.
| |
Collapse
|
50
|
Xue M, Peng W, Tang X, Cai Y, Li F, He Y. Pyro-Phototronic Effect Enhanced Pyramid Structured p-Si/n-ZnO Nanowires Heterojunction Photodetector. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4677-4689. [PMID: 36625530 DOI: 10.1021/acsami.2c18011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The emergence of nanomaterials has brought about the development of miniature photodetectors into a new stage, and ZnO nanomaterials are currently one of the most popular research objects. Here, the performance of a photodetector consisting of micropyramid structured p-Si/n-ZnO NWs heterojunction constructed by an anisotropic chemical etching and hydrothermal method is optimized by using the pyro-phototronic effect, and the photoresponses of the device to 405 and 648 nm lasers are investigated. The results show that, with the introduction of pyro-phototronic effect, the photoresponsivity Rpyro increases to 208 times that of Rphoto when the wavelength is 405 nm and the optical power density is 0.0693 mW/cm2. Moreover, with the increase of the chopper frequency, the photocurrent increases by more than 3 times, and the photoresponsivity is also increased by a factor of 4.5, making it possible to detect ultrafast pulsed light. In addition, in order to increase the current collection efficiency, a thin film Al layer was deposited as the back electrode on the basis of the device, and the photocurrent and photoresponsivity are significantly improved. Finally, the coupling between the pyro-phototronic effect and the piezo-phototronic effect is analyzed by applying compressive strain to the photodetector. When the compressive strain is -1.02%, the photocurrent decreases by 31.4% and the photoresponsivity decreases by 27.9% due to the opposite direction between laser illumination induced pyroelectric polarization charges and compressive strain induced piezoelectric polarization charges. This work not only demonstrates the great potential of pyro-phototronic effect in enhancing the silicon-based heterojunction photodetectors for high-performance photodetection and ultrafast pulsed light detection but also provides assistance for a better understanding of the coupling mechanism between pyro-phototronic and piezo-phototronic effects.
Collapse
Affiliation(s)
- Mingyan Xue
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Xuefeng Tang
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Yahui Cai
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Fangpei Li
- State Key Laboratory of Solidification Processing, Key Laboratory of Radiation Detection Materials and Devices, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongning He
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| |
Collapse
|