1
|
Górski K, Shelton S, Lingagouder J, Data P, Jacquemin D, Gryko DT. 1,4-Dihydropyrrolo[3,2- b]pyrrole modified with dibenzoxazepine: a highly efficient core for charge-transfer-based OLED emitters. Chem Sci 2025; 16:5223-5233. [PMID: 39991555 PMCID: PMC11843259 DOI: 10.1039/d4sc04272g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025] Open
Abstract
The present work is focused on designing novel heteroaromatic systems, formally a hybrid of dibenzo[b,f]oxazepines and 1,4-dihydropyrrolo[3,2-b]pyrroles (DHPPs). Straightforward synthesis affords a family of rigid, centrosymmetric, π-expanded aromatic heterocycles amenable to facile post-functionalization. The rigidified molecular architecture is responsible for several key photophysical features including (1) the excellent blue colour purity (full width at half maximum parameter = 0.435 eV) and (2) stronger emission compared to analogous DHPPs capable of free rotation. Comparison of dyes possessing nitro groups at various positions reveals that if NO2 groups are located at distant positions the quadrupolar dye shows strong yellow fluorescence in non-polar solvents, whereas the same group at position 3 versus the DHPP core leads to a poorly emitting dye. Computational studies suggest that the key difference lies in relative energies of dark and bright excited states. It was shown that the DHPP core offers unique advantages as a high-emission energy system, serving as a foundation for charge-transfer (CT)-based efficient emitters. These features, combined with the ability to modulate electronic properties via peripheral functionalization, highlight the potential of the DHPP core in advanced optoelectronic devices, including new-generation OLEDs.
Collapse
Affiliation(s)
- Krzysztof Górski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Steve Shelton
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | - Przemyslaw Data
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology 90-543 Lodz Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230 F-44000 Nantes France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
2
|
He W, Sun Q, Jin ZY, Zheng HF, Sun SQ, Zhou JG, Hou SC, Xie YM, Kang F, Wei G, Fung MK. Narrowband emission and enhanced stability in top-emitting OLEDs with dual resonant cavities. MATERIALS HORIZONS 2025; 12:1845-1854. [PMID: 39663805 DOI: 10.1039/d4mh01561d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Capping layers (CPLs) are commonly employed in top-emitting organic light-emitting diodes (TEOLEDs) due to their ability to optimize color purity, enhance external light out-coupling efficiency, and improve device stability. However, the mismatch in refractive index between CPLs and thin film encapsulation (TFE) often induces light trapping. This study introduces a novel approach by combining a low refractive index material, lithium fluoride (LiF), with the traditional TFE material, silicon nitride (SiNx), to form a combined CPL (LiF/SiNx), resulting in improved light outcoupling and light reflection properties. The significant refractive index contrast between LiF and SiNx can facilitate enhanced light extraction by redirecting internally reflected light through evanescent waves. Moreover, the LiF/SiNx CPLs function as a secondary resonant cavity, leading to reduced emission spectral bandwidth and enhanced light extraction compared to the control TEOLEDs that only incorporate the primary cavity of organic active layers. As a result, incorporating the LiF/SiNx CPLs significantly increases current efficiency from 125.0 cd A-1 to 163.6 cd A-1 for green devices, from 71.2 cd A-1 to 110.1 cd A-1 for red devices, and from 43.1 cd A-1 to 53.1 cd A-1 for blue devices, with the corresponding full width at half maximum decreased from 20 nm to 10 nm, 26 nm to 14 nm, and 21 nm to 12 nm, respectively, demonstrating the compatibility of the CPLs with different color devices. Notably, an LT95 lifetime of 51 300 hours for green devices was achieved when tested at 1000 cd m-2. Utilizing narrow-band light emission without spectral overlap of each color enables the generation of purer and more vivid colors for display.
Collapse
Affiliation(s)
- Wei He
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | - Qi Sun
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Zi-Yi Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, P. R. China
| | - Hao-Feng Zheng
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Shuang-Qiao Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, P. R. China
| | - Jun-Gui Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | - Shao-Cong Hou
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.
| | - Guodan Wei
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.
| | - Man-Keung Fung
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa 999078, Macau, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, P. R. China
| |
Collapse
|
3
|
Yang YJ, Ari D, Yu ZH, Letellier K, Jeannin O, Zheng Q, Khan A, Quinton C, Zhou DY, Jiang ZQ, Poriel C. Pure Hydrocarbon Hosts Enabling Efficient Multi-Resonance TADF Blue-Emitting Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2025:e202501895. [PMID: 40008831 DOI: 10.1002/anie.202501895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 02/27/2025]
Abstract
Pure hydrocarbon (PHC) materials are a class of highly efficient and stable host materials for organic light-emitting diodes (OLEDs), composed solely of carbon and hydrogen atoms. Despite recent great advancements in PHC research, their applications are still mainly limited to phosphorescent OLEDs (PHOLEDs). High-performance blue OLEDs still pose a considerable challenge. Thus, expanding PHC materials into other types of OLEDs is critical for advancing organic electronic technologies. In this study, we designed a series of original high-triplet PHC materials based on a multi-substitution approach of the 9,9'-spirobifluorene (SBF) backbone and used them, for the first time, as a host in phosphorescence-sensitized multi-resonance thermally activated delayed fluorescence (MR-TADF) OLEDs. Devices based on the 2,6-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)boron (DtBuCzB) emitter, using FIrpic or fac-Ir(tpz)3 as the sensitizer, achieved high maximum external quantum efficiency (EQEmax) values ranging from 29.1 % to 33.9 %. Additionally, blue MR-TADF OLED devices based on v-DABNA with a phosphorescent sensitizer (CN-Ir), demonstrated outstanding electroluminescent performance, with an EQEmax of approximately 31 % due to an excellent molecular orientation induced by the PHC hosts. All devices exhibited narrow full-width at half-maximum spectra and minimal efficiency roll-off. This study marks the first application of PHC materials as hosts in phosphorescence-sensitized MR-TADF OLEDs, highlighting their potential as promising candidates for next-generation blue OLEDs and offering a viable pathway to achieve high-performance devices.
Collapse
Affiliation(s)
- Yue-Jian Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Denis Ari
- Univ Rennes, CNRS, ISCR-UMR CNRS 6226, F-35000, Rennes
| | - Zhe-Hong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | | | | | - Qi Zheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Aziz Khan
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | | | - Dong-Ying Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Cyril Poriel
- Univ Rennes, CNRS, ISCR-UMR CNRS 6226, F-35000, Rennes
| |
Collapse
|
4
|
Jo U, Cheong K, Kim JM, Lee JY. Design Rule of Tetradentate Ligand-Based Pt(II) Complex for Efficient Singlet Exciton Harvesting in Fluorescent Organic Light-Emitting Diodes. J Phys Chem Lett 2025; 16:991-1000. [PMID: 39840512 DOI: 10.1021/acs.jpclett.4c03103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Controlling intermolecular interactions, such as triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA), is crucial for achieving high quantum efficiency in organic light-emitting diodes (OLEDs) by suppressing exciton loss. This study investigates the molecular design of tetradentate Pt(II) complexes used for singlet exciton harvesting in fluorescent OLEDs to elucidate the relationship between the chemical structure of the ligands and exciton quenching mechanisms. It was discovered that the bulkiness of substituents is pivotal for maximizing quantum efficiency in these devices. An exciton dynamics study conducted during device operation quantitatively analyzed the contribution of substituents to the OLED operation mechanism, demonstrating that complexes with bulky 2,6-diisopropylphenyl and tert-butyl substituents enhance singlet exciton harvesting by suppressing TTA and TPA, thereby facilitating Förster energy transfer.
Collapse
Affiliation(s)
- Unhyeok Jo
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jae-Min Kim
- Department of Advanced Materials Engineering, Chung-Ang University 4726, Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| |
Collapse
|
5
|
Xu Y, Pan T, Ren G, Wang J, Yang H, Wang L, Zhang D, Sun Y, Deng R, Zhou S, Tian L, Qiao X, Zhou L. Efficient Organic Light-Emitting Diodes Obtained by Introducing Gadolinium (Gd) Complexes Based on Pyrazolone Derivative Ligands as Hole Trappers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65100-65107. [PMID: 39546616 DOI: 10.1021/acsami.4c14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The utilization of lanthanide (Ln) complexes in the realm of organic light-emitting diodes (OLEDs) has garnered extensive interest, particularly in their role as luminescent materials or electron trappers. A series of gadolinium (Gd) complexes with energy levels of high HOMO/LUMO and different triplet state energies were designed and synthesized by introducing substituents with different electronic effects onto the pyrazolone derivative ligands. Subsequently, these complexes were precisely purified by vacuum sublimation and codoped into the light-emitting layer (EML) of the OLEDs. This process was facilitated through the well-matched HOMO/LUMO levels and triplet energies among various functional materials. Consequently, the maximum external quantum efficiencies of blue, red, and green OLEDs were simultaneously enhanced with the ratios of 119%, 28%, and 71%, respectively. This improvement can be credited to the introduction of Gd(III) complex molecules within EMLs, which helps to capture excess holes and improve carriers' balance.
Collapse
Affiliation(s)
- Yue Xu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Tingyu Pan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Guozhu Ren
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jingyu Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Haoran Yang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Lingdong Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Danyang Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Yitong Sun
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Shihong Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Long Tian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xin Qiao
- Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China
| | - Liang Zhou
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
6
|
Lee H, Park B, Han GR, Mun MS, Kang S, Hong WP, Oh HY, Kim T. Superbly Efficient and Stable Ultrapure Blue Phosphorescent Organic Light-Emitting Diodes with Tetradentate Pt(II) Complex with Vibration Suppression Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409394. [PMID: 39263757 DOI: 10.1002/adma.202409394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Blue phosphorescent organic light-emitting diodes (PHOLEDs) are on the brink of commercialization for decades. However, the external quantum efficiency (EQE) and operational lifetime of PHOLEDs are not yet reached industrial standards. Here, a novel tetradentate Pt(II) emitter with a spirofluorene onto the carbazole unit that minimizes the vibration modes, corresponding to the structural relaxation during the de-excitation, called the vibration suppression effect is reported. This modification reduces the intensity of the second peak in the spectrum and Shockley-Read-Hall recombination by blocking direct hole injection into the emitter while enhancing Förster resonance energy transfer, resulting in 451 h of LT50 (the time until a 50% decrease in initial luminance at 1000 cd m-2) and 25.1% of the maximum EQE (EQEmax). Thanks to the vibration suppression effect, an extremely narrow full width at half a maximum of 22 nm is obtained. In phosphor-sensitized thermally activated delayed fluorescent OLED, ultra-pure blue emission with Commission internationale de l'Eclairage (CIE) coordinates of (0.136, 0.096) is obtained with 28.1% of EQEmax. Furthermore, 50.3% of the EQEmax and 589 h of LT70 are simultaneously recorded with the two-stack tandem PHOLED, which is the highest EQEmax among 2-tandem and bottom-emission PHOLEDs with CIEy < 0.15.
Collapse
Affiliation(s)
- Hakjun Lee
- Department of Information Display, Hongik University, Seoul, 04066, Republic of Korea
| | - Bubae Park
- Department of Information Display, Hongik University, Seoul, 04066, Republic of Korea
| | - Ga Ram Han
- LORDIN, 614 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Min Sik Mun
- LORDIN, 614 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Sunwoo Kang
- Department of Chemistry, Dankook University, Cheonan, Chungnam, 31116, Republic of Korea
| | - Wan Pyo Hong
- Department of Chemistry, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Hyoung Yun Oh
- LORDIN, 614 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Taekyung Kim
- Department of Information Display, Hongik University, Seoul, 04066, Republic of Korea
- Department of Materials Science and Engineering, Hongik University, Sejong, 30016, Republic of Korea
| |
Collapse
|
7
|
Sun YF, Chen XL, Zhang DH, Huo P, Liu Z, Zhou L, Lin FL, Lu CZ. Efficient Deep-Blue Organic Light-Emitting Diodes Employing Doublet Sensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408118. [PMID: 39252676 DOI: 10.1002/adma.202408118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Fast and efficient exciton utilization is a crucial solution and highly desirable for achieving high-performance blue organic light-emitting diodes (OLEDs). However, the rate and efficiency of exciton utilization in traditional OLEDs, which employ fully closed-shell materials as emitters, are inevitably limited by spin statistical limitations and transition prohibition. Herein, a new sensitization strategy, namely doublet-sensitized fluorescence (DSF), is proposed to realize high-performance deep-blue electroluminescence. In the DSF-OLED, a doublet-emitting cerium(III) complex, Ce-2, is utilized as sensitizer for multi-resonance thermally activated delayed fluorescence emitter ν-DABNA. Experimental results reveal that holes and electrons predominantly recombine on Ce-2 to form doublet excitons, which subsequently transfer energy to the singlet state of ν-DABNA via exceptionally fast (over 108 s-1) and efficient (≈100%) Förster resonance energy transfer for deep-blue emission. Due to the circumvention of spin-flip in the DSF mechanism, near-unit exciton utilization efficiency and remarkably short exciton residence time of 1.36 µs are achieved in the proof-of-concept deep-blue DSF-OLED, which achieves a Commission Internationale de l'Eclairage coordinate of (0.13, 0.14), a high external quantum efficiency of 30.0%, and small efficiency roll-off of 14.7% at a luminance of 1000 cd m-2. The DSF device exhibits significantly improved operational stability compared with unsensitized reference device.
Collapse
Affiliation(s)
- Yu-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, China
- School of Rare Earths, University of Science and Technology of China, Hefei, 230026, China
| | - Xu-Lin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Dong-Hai Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Peihao Huo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fu-Lin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, China
- School of Rare Earths, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Cheong K, Han SW, Lee JY. Tetradentate Pt(II) Complexes with Bulky Carbazole Moieties for High-Efficiency and Narrow-Emitting Blue Organic Light-Emitting Devices. SMALL METHODS 2024; 8:e2301710. [PMID: 38368260 DOI: 10.1002/smtd.202301710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Blue tetradentate Pt(II) complexes, Pt-tBuCz and Pt-dipCz, are synthesized by introducing carbazoles with bulky substituents for improving the rigidity and inhibiting intermolecular interactions of phosphorescent emitter. tert-Butyl and 2,6-diisopropylphenyl groups are substituted as the blocking groups at 3 position of the carbazole in Pt-tBuCz and Pt-dipCz, respectively. These new phosphorescent emitters exhibit a narrow full width at half maximum (FWHM) and a high horizontal emitting dipole orientation ratio. Pt-dipCz demonstrates a small FWHM of 24 nm, a high emitting dipole orientation ratio of 81%, and a high photoluminescence quantum yield value of 94%. As a result, the Pt-tBuCz and Pt-dipCz devices exhibited external quantum efficiencies (EQEs) of 23.7% and 25.0% with small FWHMs of 25 and 22 nm, respectively. For the Pt-dipCz device, the small FWHM and high EQE of >20% are maintained even at a doping concentration of 20 wt%. Furthermore, phosphor-sensitized organic light-emitting diodes fabricated using Pt-dipCz as a sensitizer achieved a high EQE of 31.4% with an FWHM of 18 nm. This result indicates that the 2,6-diisopropylphenyl group is a effective blocking group for Pt(II) complexes to develop highly efficient, color stable, doping concentration resistant, and efficiently sensitizing blue phosphors.
Collapse
Affiliation(s)
- Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seung Won Han
- Department of Display Convergence Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Department of Display Convergence Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
9
|
Zhang Q, Zhang D, Cao B, Poddar S, Mo X, Fan Z. Improving the Operational Lifetime of Metal-Halide Perovskite Light-Emitting Diodes with Dimension Control and Ligand Engineering. ACS NANO 2024; 18:8557-8570. [PMID: 38482819 DOI: 10.1021/acsnano.3c13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Perovskite light-emitting diodes (LEDs) have emerged as one of the most propitious candidates for next-generation lighting and displays, with the highest external quantum efficiency (EQE) of perovskite LEDs already surpassing the 20% milestone. However, the further development of perovskite LEDs primarily relies on addressing operational instability issues. This Perspective examines some of the key factors that impact the lifetime of perovskite LED devices and some representative reports on recent advancements aimed at improving the lifetime. Our analysis underscores the significance of "nano" strategies in achieving long-term stable perovskite LEDs. Significant efforts must be directed toward proper device encapsulation, perovskite material passivation, interfacial treatment to address environment-induced material instability, bias-induced phase separation, and ion migration issues.
Collapse
Affiliation(s)
- Qianpeng Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bryan Cao
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiaoliang Mo
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Cheong K, Jo U, Hong WP, Lee JY. Fused Cycloalkyl Unit-Functionalized Tetradentate Pt(II) Complexes for Efficient and Narrow-Emitting Deep Blue Organic Light-Emitting Diodes. SMALL METHODS 2024; 8:e2300862. [PMID: 37926779 DOI: 10.1002/smtd.202300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Indexed: 11/07/2023]
Abstract
A blue tetradentate Pt(II) complex named Pt-tmCyCz is developed by introducing a cycloalkyl unit fused to carbazole to improve the rigidity and bulkiness of the complex. The introduction of the tetramethylcyclohexyl (tmCy) group results in a narrow full width at half maximum (FWHM), a high horizontal emitting dipole orientation, doping concentration resistant stable spectrum, and extremely small efficiency roll-off, and little concentration quenching effect. Phosphorescent organic light-emitting diodes (OLEDs) doped with Pt-tmCyCz achieve a high external quantum efficiency (EQE) of 21.5%, with a small EQE roll-off of 3.8% up to 1000 cd m-2 , a small FWHM of 24 nm, and a color coordinate of (0.132, 0.138). Moreover, Pt-tmCyCz is investigated as a sensitizer in phosphor-sensitized OLEDs using N7 ,N7 ,N13 ,N13 ,5,9,11,15-octaphenyl-5,9,11,15-tetrahydro-5,9,11,15-tetraaza-19b,20b-diboradinaphtho[3,2,1-de:1',2',3'-jk]pentacene-7,13-diamine (νDABNA) as a terminal emitter. The Pt-tmCyCz:νDABNA device achieves a high EQE of 33.9%, with a small EQE roll-off of only 8.0% up to 1 000 cd m-2 . The results demonstrate that fused tmCy group in carbazole can be an effective building block for the development of high-performance Pt(II) complexes, which can be utilized as efficient phosphors or sensitizers in OLEDs.
Collapse
Affiliation(s)
- Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Unhyeok Jo
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Wan Pyo Hong
- Department of Chemistry, Gachon University, 1342, Seongnam-daero,Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
11
|
Tankelevičiūtė E, Samuel IDW, Zysman-Colman E. The Blue Problem: OLED Stability and Degradation Mechanisms. J Phys Chem Lett 2024; 15:1034-1047. [PMID: 38259039 PMCID: PMC10839906 DOI: 10.1021/acs.jpclett.3c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
OLED technology has revolutionized the display industry and is promising for lighting. Despite its maturity, there remain outstanding device and materials challenges to address. Particularly, achieving stable and highly efficient blue OLEDs is still proving to be difficult; the vast array of degradation mechanisms at play, coupled with the precise balance of device parameters needed for blue high-performance OLEDs, creates a unique set of challenges in the quest for a suitably stable yet high-performance device. Here, we discuss recent progress in the understanding of device degradation pathways and provide an overview of possible strategies to increase device lifetimes without a significant efficiency trade-off. Only careful consideration of all variables that go into OLED development, from the choice of materials to a deep understanding of which degradation mechanisms need to be suppressed for the particular structure, can lead to a meaningful positive change toward commercializable blue devices.
Collapse
Affiliation(s)
- Eglė Tankelevičiūtė
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
- Organic
Semiconductor Centre, School of Physics & Astronomy, University of St Andrews, St Andrews, U.K., KY16 9SS
| | - Ifor D. W. Samuel
- Organic
Semiconductor Centre, School of Physics & Astronomy, University of St Andrews, St Andrews, U.K., KY16 9SS
| | - Eli Zysman-Colman
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
| |
Collapse
|
12
|
Mu T, Ji Y, Gong S, Zhang Y, Chen W, Ran F. Duty ratio drive prediction model of lifetime degradation for organic light emitting diode-on-silicon microdisplay. LUMINESCENCE 2024; 39:e4614. [PMID: 37961940 DOI: 10.1002/bio.4614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
A duty ratio drive prediction (DRDP) model of luminance degradation for organic light emitting diodes (OLED) microdisplay is proposed in this paper. The traditional stretched exponential decay (SED) model is not applicable for OLED driven by duty ratio. The DRDP model introduces the duty ratio as the variables affecting the lifetime of OLED. By fitting the undetermined coefficients with the measured luminance data, the quantitative relationships among the initial luminance, duty ratio, and OLED lifetime are obtained. Meanwhile, the model quantifies the phenomenon of spontaneous luminance recovery, which occurs when OLED switches from bright to dark. Finally, the DRDP model is used to compensate the luminance degradation of OLED driven by duty ratio. The experimental results show that the average prediction accuracy of DRDP model for white, red, green, and blue (W/R/G/B) OLED degradation trend is 0.9623. The average prediction accuracy of W/R/G/B OLED lifetime is 0.6119, which is greater than that of SED model. The lifetime is extended by 89.83% after compensation.
Collapse
Affiliation(s)
- Tingzhou Mu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Yuan Ji
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Microelectronic Research and Development Center, Shanghai University, Shanghai, China
| | - Shuping Gong
- Microelectronic Research and Development Center, Shanghai University, Shanghai, China
| | - Yin Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Wendong Chen
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Feng Ran
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Microelectronic Research and Development Center, Shanghai University, Shanghai, China
| |
Collapse
|
13
|
Zhang W, Wang S, Ye W, Zhu Y, Li CA, Wang H, Dong C, Ma H, Yan M, An Z, Huang W, Deng R. Organic Excitonic State Management by Surface Metallic Coupling of Inorganic Lanthanide Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202312151. [PMID: 37909102 DOI: 10.1002/anie.202312151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
The ability to harness charges and spins for control of organic excitonic states is critical in developing high-performance organic luminophores and optoelectronic devices. Here we report a facile strategy to efficiently manipulate the electronic energy states of various organic phosphors by coupling them with inorganic lanthanide nanocrystals. We show that the metallic atoms exposed on the nanocrystal surface can introduce strong coupling effects to 9-(4-ethoxy-6-phenyl-1,3,5-triazin-2-yl)-9H-carbazole (OCzT) and some organic chromophores with carbazole functional groups when the organics are approaching the nanocrystals. This unconventional organic-inorganic hybridization enables a nearly 100 % conversion of the singlet excitation to fast charge transfer luminescence that does not exist in pristine organics, which broadens the utility of organic phosphors in hybrid systems.
Collapse
Affiliation(s)
- Wenxing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shan Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wenpeng Ye
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yiyuan Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Cheng-Ao Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - He Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Chaomin Dong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
14
|
Hao XL, Ren AM, Zhou L, Zhang H. Theoretical Research and Photodynamic Simulation of Aggregation-Induced Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. J Phys Chem A 2023; 127:9771-9780. [PMID: 37948560 DOI: 10.1021/acs.jpca.3c06145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The discovery and utilization of pure organic thermally activated delayed fluorescence (TADF) materials provide a major breakthrough in obtaining high-performance and low-cost organic light-emitting diodes (OLEDs). In spite of recent research progress in TADF emitters, highly efficient and stable TADF emitters in high-concentration solutions and in the solid state have been rarely reported, and most of them suffer from aggregation-induced quenching (ACQ). To resolve this issue, the aggregation-induced delayed fluorescence (AIDF) mechanism was studied in depth by the simulation of excited-state dynamic processes, and the effect of geometric modifications on optical properties was minutely investigated based on molecular modeling. TD-DFT calculations demonstrate that it is the key point for the transformation between prompt fluorescence and TADF to effectively regulate singlet-triplet energy difference and electron-vibration coupling by the aggregation effect. Then, excellent green and red TADF materials with very small singlet-triplet energy differences of 0.05 and 0.06 eV, high TADF quantum yields up to 57.53% and 39.19%, and suitable fluorescence lifetimes of 0.99 and 1.67 us, respectively, were designed and obtained, which demonstrate the potential application of these two TADF materials in OLEDs.
Collapse
Affiliation(s)
- Xue-Li Hao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
15
|
Zhang K, Wang X, Chang Y, Wu Y, Wang S, Wang L. Carbazole-Decorated Organoboron Emitters with Low-Lying HOMO Levels for Solution-Processed Narrowband Blue Hyperfluorescence OLED Devices. Angew Chem Int Ed Engl 2023; 62:e202313084. [PMID: 37775994 DOI: 10.1002/anie.202313084] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
The hyperfluorescence has drawn great attention in achieving efficient narrowband emitting devices based on multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters. However, achieving efficient solution-processed pure blue hyperfluorescence devices is still a challenge, due to the unbalanced charge transport and serious exciton quenching caused by that the holes are easily trapped on the high-lying HOMO (the highest occupied molecular orbital) level of traditional diphenylamine-decorated emitters. Here, we developed two narrowband blue organoboron emitters with low-lying HOMO levels by decorating the MR-TADF core with weakly electron-donating carbazoles, which could suppress the hole trapping effect by reducing the hole traps between host and MR-TADF emitter from deep (0.40 eV) to shallow (0.14/0.20 eV) ones for facilitating hole transport and exciton formation, as well as avoiding exciton quenching. And the large dihedral angle between the carbazole and MR-TADF core makes the carbazole act as a steric hindrance to inhibit molecular aggregation. Accordingly, the optimized solution-processed pure blue hyperfluorescence devices simultaneously realize record external quantum efficiency of 29.2 %, narrowband emission with a full-width at half-maximum of 16.6 nm, and pure blue color with CIE coordinates of (0.139, 0.189), which is the best result for the solution-processed organic light-emitting diodes based on MR-TADF emitters.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Yufei Chang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Yuliang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
| |
Collapse
|
16
|
Kim J, Kim J, Kim Y, Son Y, Shin Y, Bae HJ, Kim JW, Nam S, Jung Y, Kim H, Kang S, Jung Y, Lee K, Choi H, Kim WY. Critical role of electrons in the short lifetime of blue OLEDs. Nat Commun 2023; 14:7508. [PMID: 37980350 PMCID: PMC10657374 DOI: 10.1038/s41467-023-43408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Designing robust blue organic light-emitting diodes is a long-standing challenge in the display industry. The highly energetic states of blue emitters cause various degradation paths, leading to collective luminance drops in a competitive manner. However, a key mechanism of the operational degradation of organic light-emitting diodes has yet to be elucidated. Here, we show that electron-induced degradation reactions play a critical role in the short lifetime of blue organic light-emitting diodes. Our control experiments demonstrate that the operational lifetime of a whole device can only be explained when excitons and electrons exist together. We examine the atomistic mechanisms of the electron-induced degradation reactions by analyzing their energetic profiles using computational methods. Mass spectrometric analysis of aged devices further confirm the key mechanisms. These results provide new insight into rational design of robust blue organic light-emitting diodes.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Joonghyuk Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Yongjun Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngmok Son
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Youngsik Shin
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hye Jin Bae
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Ji Whan Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sungho Nam
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Yongsik Jung
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hyeonsu Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sungwoo Kang
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Innovation Center, Samsung Electronics Co., Ltd., 1 Samsungjeonja-ro, Hwasung-si, Gyeonggi-do, 18448, Republic of Korea
| | - Yoonsoo Jung
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyunghoon Lee
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeonho Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
17
|
Naveen KR, Konidena RK, Keerthika P. Neoteric Advances in Oxygen Bridged Triaryl Boron-based Delayed Fluorescent Materials for Organic Light Emitting Diodes. CHEM REC 2023; 23:e202300208. [PMID: 37555789 DOI: 10.1002/tcr.202300208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Since their first demonstration, thermally activated delayed fluorescence (TADF) materials have been emerged as the most promising emitters because of their promising applications in optoelectronics, typified by organic light-emitting diodes (OLEDs). In which, the rigid oxygen bridged boron acceptor-featured (DOBNA) emitters have gained tremendous impetus for OLEDs, which is ascribed to their excellent external quantum efficiency (EQE). However, these materials often displayed severe efficiency roll-off and poor operational stability. Therefore, there needs to be a comprehensive understanding of the aspect of the molecular design and structure-property relationship. To the best of our knowledge, there is no detailed review on the structure-function outlook of DOBNA-based emitters emphasizing the effect of the nature of donor units, their number density, and substitution pattern on the physicochemical properties, excited state dynamics and OLED performance were reported. To fill this gap, herein we presented the recent advancements in DOBNA-based acceptor featured TADF materials by classifying them into several subgroups based on the molecular design i. e. donor-acceptor (D-A), D-A-D, A-D-A, and multi-resonant TADF (MR-TADF) emitters. The detailed design concepts, along with their respective physicochemical and OLED performances were summarized. Finally, the prospective of this class of materials in forthcoming OLED displays is also discussed.
Collapse
Affiliation(s)
- Kenkera Rayappa Naveen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rajendra Kumar Konidena
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur campus, Chennai, Tamil Nadu, 603203, India
| | - P Keerthika
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur campus, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
18
|
Yan J, Zhou DY, Liao LS, Kuhn M, Zhou X, Yiu SM, Chi Y. Electroluminescence and hyperphosphorescence from stable blue Ir(III) carbene complexes with suppressed efficiency roll-off. Nat Commun 2023; 14:6419. [PMID: 37828017 PMCID: PMC10570383 DOI: 10.1038/s41467-023-42090-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Efficient Förster energy transfer from a phosphorescent sensitizer to a thermally activated delayed fluorescent terminal emitter constitutes a potential solution for achieving superb blue emissive organic light-emitting diodes, which are urgently needed for high-performance displays. Herein, we report the design of four Ir(III) metal complexes, f-ct1a ‒ d, that exhibit efficient true-blue emissions and fast radiative decay lifetimes. More importantly, they also undergo facile isomerization in the presence of catalysts (sodium acetate and p-toluenesulfonic acid) at elevated temperature and, hence, allow for the mass production of either emitter without decomposition. In this work, the resulting hyper-OLED exhibits a true-blue color (Commission Internationale de I'Eclairage coordinate CIEy = 0.11), a full width at half maximum of 18 nm, a maximum external quantum efficiency of 35.5% and a high external quantum efficiency 20.3% at 5000 cd m‒2, paving the way for innovative blue OLED technology.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Science and Engineering, City University of Hong Kong, 999077, Hong Kong, SAR, China
| | - Dong-Ying Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China.
| | - Martin Kuhn
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiuwen Zhou
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, SAR, China
| | - Yun Chi
- Department of Materials Science and Engineering, City University of Hong Kong, 999077, Hong Kong, SAR, China.
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, SAR, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 999077, Hong Kong, SAR, China.
| |
Collapse
|
19
|
Wu C, Tong K, Shi K, Jin Z, Wu Y, Mu Y, Huo Y, Tang M, Yang C, Meng H, Kang F, Wei G. New [3+2+1] Iridium Complexes as Effective Phosphorescent Sensitizers for Efficient Narrowband Saturated-Blue Hyper-OLEDs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301112. [PMID: 37653609 PMCID: PMC10582407 DOI: 10.1002/advs.202301112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Indexed: 09/02/2023]
Abstract
Two newly designed and synthesized [3+2+1] iridium complexes through introducing bulky trimethylsiliyl (TMS) groups are doped with a terminal emitter of v-DABNA to form an coincident overlapping spectra between the emission of these two phosphors and the absorption of v-DABNA, creating cascade resonant energy transfer for efficient triplet harvesting. To boost the color quality and efficiency, the fabricated hyper-OLEDs have been optimized to achieve a high external quantum efficiency of 31.06%, which has been among the highest efficiency results reported for phosphor sensitized saturated-blue hyper-OLEDs, and pure blue emission peak at 467 nm with the full width at half maxima (FWHM) as narrow as 18 nm and the CIEy values down to 0.097, satisfying the National Institute of Standards and Technology (NIST) requirement for saturated blue OLEDs display. Surprisingly, such hyper-OLEDs have obtained the converted lifetime (LT50 ) up to 4552 h at the brightness of 100 cd m-2 , demonstrating effective Förster resonance energy transfer (FRET) process. Therefore, employing these new bulky TMS substituent [3+2+1] iridium(III) complexes for effective sensitizers can greatly pave the way for further development of high efficiency and stable blue OLEDs in display and lighting applications.
Collapse
Affiliation(s)
- Chengcheng Wu
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kai‐Ning Tong
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kefei Shi
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Zhaoyun Jin
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Yuan Wu
- PURI Materials, IncShenzhen518133China
| | - Yingxiao Mu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Yanping Huo
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Man‐Chung Tang
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Chen Yang
- PURI Materials, IncShenzhen518133China
| | - Hong Meng
- School of Advanced MaterialsShenzhen Graduate SchoolPeking UniversityShenzhen518055China
| | - Feiyu Kang
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Guodan Wei
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| |
Collapse
|
20
|
Siddiqui I, Kumar S, Tsai YF, Gautam P, Shahnawaz, Kesavan K, Lin JT, Khai L, Chou KH, Choudhury A, Grigalevicius S, Jou JH. Status and Challenges of Blue OLEDs: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2521. [PMID: 37764550 PMCID: PMC10536903 DOI: 10.3390/nano13182521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Organic light-emitting diodes (OLEDs) have outperformed conventional display technologies in smartphones, smartwatches, tablets, and televisions while gradually growing to cover a sizable fraction of the solid-state lighting industry. Blue emission is a crucial chromatic component for realizing high-quality red, green, blue, and yellow (RGBY) and RGB white display technologies and solid-state lighting sources. For consumer products with desirable lifetimes and efficiency, deep blue emissions with much higher power efficiency and operation time are necessary prerequisites. This article reviews over 700 papers covering various factors, namely, the crucial role of blue emission for full-color displays and solid-state lighting, the performance status of blue OLEDs, and the systematic development of fluorescent, phosphorescent, and thermally activated delayed fluorescence blue emitters. In addition, various challenges concerning deep blue efficiency, lifetime, and approaches to realizing deeper blue emission and higher efficacy for blue OLED devices are also described.
Collapse
Affiliation(s)
- Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Yi-Fang Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Prakalp Gautam
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shahnawaz
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kiran Kesavan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jin-Ting Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Luke Khai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuo-Hsien Chou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Abhijeet Choudhury
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, LT-50254 Kaunas, Lithuania
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
21
|
Kang J, Jeon SO, Kim I, Lee HL, Lim J, Lee JY. Color Stable Deep Blue Multi-Resonance Organic Emitters with Narrow Emission and High Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302619. [PMID: 37424040 PMCID: PMC10502835 DOI: 10.1002/advs.202302619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/19/2023] [Indexed: 07/11/2023]
Abstract
The development of highly efficient and deep blue emitters satisfying the color specification of the commercial products has been a challenging hurdle in the organic light-emitting diodes (OLEDs). Here, deep blue OLEDs with a narrow emission spectrum with good color stability and spin-vibronic coupling assisted thermally activated delayed fluorescence are reported using a novel multi-resonance (MR) emitter built on a pure organic-based molecular platform of fused indolo[3,2,1-jk]carbazole structure. Two emitters derived from 2,5,11,14-tetrakis(1,1-dimethylethyl)indolo[3,2,1-jk]indolo[1',2',3':1,7]indolo[3,2-b]carbazole (tBisICz) core are synthesized as the MR type thermally activated delayed fluorescence emitters realizing a very narrow emission spectrum with a full-width-at-half-maximum (FWHM) of 16 nm with suppressed broadening at high doping concentration. The tBisICz core is substituted with a diphenylamine or 9-phenylcarbazole blocking group to manage the intermolecular interaction for high efficiency and narrow emission. The deep blue OLEDs achieve high external quantum efficiency (EQE) of 24.9%, small FWHM of 19 nm, and deep blue color coordinate of (0.16, 0.04) with good color stability with increase in doping concentration. To the authors' knowledge, the EQE in this work is one of the highest values reported for the deep blue OLEDs that achieve the BT.2020 standard.
Collapse
Affiliation(s)
- Jihoon Kang
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Soon Ok Jeon
- Material Research Center, Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd.130 Samsung‐ro, Yeongtong‐guSuwonGyeonggi16678Republic of Korea
| | - Inkoo Kim
- Innovation CenterSamsung Electronics Co., Ltd.HwaseongGyeonggi18448Republic of Korea
| | - Ha Lim Lee
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Junseop Lim
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Jun Yeob Lee
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- SKKU Advanced Institute of Nano TechnologySungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- SKKU Institute of Energy Science and TechnologySungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| |
Collapse
|
22
|
Gu J, Shi W, Zheng H, Chen G, Wei B, Wong WY. The Novel Organic Emitters for High-Performance Narrow-Band Deep Blue OLEDs. Top Curr Chem (Cham) 2023; 381:26. [PMID: 37632653 DOI: 10.1007/s41061-023-00436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Narrow-band deep-blue organic light-emitting diodes (OLEDs) have played a key role in the field of high-quality full-color displays. However, because of the considerable challenges of inherent band gaps, unbalanced carrier injection and the lack of molecular structures, narrow-band deep-blue emitters develop slowly compared with red- and green-emitting materials. Encouragingly, with the continuous efforts of scientists in recent years, great progress has been made in the molecule design and material synthesis of highly efficient narrow-band deep-blue emitters. The typical deep-blue emitters which exhibit narrow emission with a full width at half maximum of < 50 nm are summarized in this article. They are divided into the three categories: fluorescence, phosphorescence and thermally activated delayed fluorescence. The methods of molecular design for realizing narrow-band deep-blue emission are described in detail and future research directions are also discussed in this article.
Collapse
Affiliation(s)
- Jialu Gu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Wei Shi
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Haixia Zheng
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Guo Chen
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Bin Wei
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
23
|
Lee H, Nam H, Yeo HJ, Yang H, Kim T. High Efficiency over 15% by Breaking the Theoretical Efficiency Limit of Fluorescent Organic Light-Emitting Diodes with Localized Surface Plasmon Resonance Effects. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35290-35301. [PMID: 37458705 DOI: 10.1021/acsami.3c07064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The theoretical efficiency limit of fluorescence organic light-emitting diodes (OLEDs) was successfully surpassed by utilizing the localized surface plasmon resonance (LSPR) effect with conventional emissive materials. The interaction between polaritons and plexcitons generated during the LSPR process was also analyzed experimentally. As a result, the external quantum efficiency (EQE) increased dramatically from 6.01 to 15.43%, significantly exceeding the theoretical efficiency limit of fluorescent OLEDs. Additionally, we introduced a new concept of the LSPR effect, called "LSPR sensitizer", which allowed for simultaneous improvement in color conversion and efficiency through cascade transfer of the LSPR effect. To the best of our knowledge, the EQE and the current efficiency of our LSPR-OLED are the highest among LSPR-based fluorescent OLEDs to date.
Collapse
Affiliation(s)
- Hakjun Lee
- Department of Information Display, Hongik University, Seoul 04066, Korea
| | - Hyewon Nam
- Department of Information Display, Hongik University, Seoul 04066, Korea
| | - Hyo-Jin Yeo
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea
| | - Heesun Yang
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Korea
| | - Taekyung Kim
- Department of Information Display, Hongik University, Seoul 04066, Korea
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Korea
| |
Collapse
|
24
|
Jayabharathi J, Thanikachalam V, Thilagavathy S. Phosphorescent organic light-emitting devices: Iridium based emitter materials – An overview. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
25
|
Yan J, Wang SF, Hsu CH, Shi EHC, Wu CC, Chou PT, Yiu SM, Chi Y, You C, Peng IC, Hung WY. Engineering of Cyano Functionalized Benzo[ d]imidazol-2-ylidene Ir(III) Phosphors for Blue Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21333-21343. [PMID: 37074734 DOI: 10.1021/acsami.3c02671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, we designed and synthesized three series of blue emitting homoleptic iridium(III) phosphors bearing 4-cyano-3-methyl-1-phenyl-6-(trifluoromethyl)-benzo[d]imidazol-2-ylidene (mfcp), 5-cyano-1-methyl-3-phenyl-6-(trifluoromethyl)-benzo[d]imidazol-2-ylidene (ofcp), and 1-(3-(tert-butyl)phenyl)-6-cyano-3-methyl-4-(trifluoromethyl)-benzo[d]imidazol-2-ylidene (5-mfcp) cyclometalates, respectively. These iridium complexes exhibit intense phosphorescence in the high energy region of 435-513 nm in the solution state at RT, to which the relatively large T1 → S0 transition dipole moment is beneficial for serving as a pure emitter and an energy donor to the multiresonance thermally activated delayed fluorescence (MR-TADF) terminal emitters via Förster resonance energy transfer (FRET). The resulting OLEDs achieved true blue, narrow bandwidth EL with a max EQE of 16-19% and great suppression of efficiency roll-off with ν-DABNA and t-DABNA. We obtained the FRET efficiency up to 85% using titled Ir(III) phosphors f-Ir(mfcp)3 and f-Ir(5-mfcp)3 to achieve true blue narrow bandwidth emission. Importantly, we also provide analysis on the kinetic parameters involved in the energy transfer processes and, accordingly, propose feasible ways to improve the efficiency roll-off caused by the shortened radiative lifetime of hyperphosphorescence.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Sciences and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong 999077 Hong Kong SAR, China
| | - Sheng Fu Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Emily Hsue-Chi Shi
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Chi Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shek-Man Yiu
- Department of Materials Sciences and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong 999077 Hong Kong SAR, China
| | - Yun Chi
- Department of Materials Sciences and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong 999077 Hong Kong SAR, China
| | - Caifa You
- Department of Materials Sciences and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong 999077 Hong Kong SAR, China
| | - I-Che Peng
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Yi Hung
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
26
|
Naveen KR, Palanisamy P, Chae MY, Kwon JH. Multiresonant TADF materials: triggering the reverse intersystem crossing to alleviate the efficiency roll-off in OLEDs. Chem Commun (Camb) 2023; 59:3685-3702. [PMID: 36857643 DOI: 10.1039/d2cc06802h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The hunt for narrow-band emissive pure organic molecules capable of harvesting both singlet and triplet excitons for light emission has garnered enormous attention to promote the advancement of organic light-emitting diodes (OLEDs). Over the past decade, organic thermally activated delayed fluorescence (TADF) materials based on donor (D)/acceptor (A) combinations have been researched for OLEDs in wide color gamut (RGB) regions. However, due to the strong intramolecular charge-transfer (CT) state, they exhibit broad emission with full-width-at-half maximum (FWHM) > 70 nm, which deviates from being detrimental to achieving high color purity for future high-end display electronics such as high-definition TVs and ultra-high-definition TVs (UHDTVs). Recently, the new development in the sub-class of TADF emitters called multi-resonant TADF (MR-TADF) emitters based on boron/nitrogen atoms has attracted much interest in ultra-high definition OLEDs. Consequently, MR-TADF emitters are appeal to their potentiality as promising candidates in fabricating the high-efficient OLEDs due to their numerous advantages such as high photoluminescence quantum yield (PLQY), unprecedented color purity, and narrow bandwidth (FWHM ≤ 40 nm). Until now many MR-TADF materials have been developed for ultra-gamut regions with different design concepts. However, most MR-TADF-OLEDs showed ruthless external quantum efficiency (EQE) roll-off characteristics at high brightness. Such EQE roll-off characteristics were derived mainly from the low reverse intersystem crossing (kRISC) rate values. This feature article primarily focuses on the design strategies to improve kRISC for MR-TADF materials with some supportive strategies including extending charge delocalization, heavy atom introduction, multi-donor/acceptor utilization, and a hyperfluorescence system approach. Furthermore, the outlook and prospects for future developments in MR-TADF skeletons are described.
Collapse
Affiliation(s)
- Kenkera Rayappa Naveen
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Paramasivam Palanisamy
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Mi Young Chae
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jang Hyuk Kwon
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
27
|
Su R, Huang Z. A Series of Singlet‐Triplet InVerted TADF Fluorescent Probes with High Stability, Low Molecular Weight, and Synthesis Accessibility. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Rongchuan Su
- Department of Pharmacology North Sichuan Medical College Nanchong 637100 China
| | - Zhenmei Huang
- College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
28
|
Meng G, Dai H, Zhou J, Huang T, Zeng X, Wang Q, Wang X, Zhang Y, Fan T, Yang D, Ma D, Zhang D, Duan L. Wide-range color-tunable polycyclo-heteraborin multi-resonance emitters containing B-N covalent bonds. Chem Sci 2023; 14:979-986. [PMID: 36755724 PMCID: PMC9890539 DOI: 10.1039/d2sc06343c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022] Open
Abstract
Boron- and nitrogen (BN)-fused polycyclic aromatic frameworks with amine-directed formation of B-N covalent bonds have the potential to form a new family of facile-synthesis multi-resonance luminophores, which, however, still face imperative challenges in diversifying the molecular design to narrow the emission bandwidth and tune the emission colors. Here, we demonstrate a strategic implementation of B-N bond containing polycyclo-heteraborin multi-resonance emitters with wide-range colors from deep-blue to yellow-green (442-552 nm), small full-width at half-maxima of only 19-28 nm and high photoluminescence efficiencies, by stepwise modifying the basic para B-π-B structures with heteroatoms. The corresponding electroluminescent devices show superior maximum external quantum efficiencies with an exceptional low-efficiency roll-off, retaining 21.0%, 23.6% and 22.1% for the sky-blue, green and yellow-green devices at a high luminance of 5000 cd m-2, respectively.
Collapse
Affiliation(s)
- Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Hengyi Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Jianping Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Xuan Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Qi Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Xiang Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Tianjiao Fan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyGuangzhou510640P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyGuangzhou510640P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China .,Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
29
|
Yiu TC, Gnanasekaran P, Chen WL, Lin WH, Lin MJ, Wang DY, Lu CW, Chang CH, Chang YJ. Multifaceted Sulfone-Carbazole-Based D-A-D Materials: A Blue Fluorescent Emitter as a Host for Phosphorescent OLEDs and Triplet-Triplet Annihilation Up-Conversion Electroluminescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1748-1761. [PMID: 36576167 DOI: 10.1021/acsami.2c21294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electroluminescence (EL) from the singlet-excited (S1) state is the ideal choice for stable, high-performing deep-blue organic light-emitting diodes (OLEDs) owing to the advantages of an adequately short radiative lifetime, improved device durability, and low cost, which are the most important criteria for their commercialization. Herein, we present the design and synthesis of three donor-acceptor-donor (D-A-D)-configured deep-blue fluorescent materials (denoted as TC-1, TC-2, and TC-3) composed of a thioxanthone or diphenyl sulfonyl acceptor and phenyl carbazolyl donor. These systems exhibit strong deep-blue photoluminescence (422-432 nm) in solutions and redshifted emission (472-486 nm) in thin films. The solid-state photoluminescence quantum yield (PLQY) was estimated to be 78 and 94% for TC-2 and TC-3, respectively. TC-2 and TC-3 possess good molecular packing and large molecular cross-sectional areas, which not only improves the PLQY but enhances the triplet-triplet annihilation up-conversion (TTAUC) efficiency of fluorescent emitters. Furthermore, both compounds were applied as an acceptor for confirming their TTAUC property using bis(2-methyldibenzo[f,h]quinoxaline)(acetylacetonate)iridium(III) (Ir(MDQ)2acac) as the sensitizer. Non-doped OLEDs based on TC-2 and TC-3 exhibit blue EL in the 461-476 nm range. In particular, TC-3 exhibits a maximum external quantum efficiency (EQEmax) of 5.1%, and its EL maximum is 476 nm. In addition, the three emitters were employed as hosts in red OLEDs using bis(1-phenylisoquinoline)(acetylacetonate)iridium(III) (Ir(piq)2acac) as the phosphorescent dopant. The red phosphorescent OLEDs based on TC-1, TC-2, and TC-3 achieve excellent EQEmax values of 21.6, 22.9, and 21.9%, respectively, and peak luminance efficiencies of 12.0, 14.0, and 12.3 cd A-1. These results highlight these fluorophores' versatility and promising prospects in practical OLED applications.
Collapse
Affiliation(s)
- Tsz Chung Yiu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | | | - Wei-Ling Chen
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Wei-Han Lin
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Jun Lin
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Chih-Hao Chang
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
30
|
Cai S, Tong GSM, Du L, So GKM, Hung FF, Lam TL, Cheng G, Xiao H, Chang X, Xu ZX, Che CM. Gold(I) Multi-Resonance Thermally Activated Delayed Fluorescent Emitters for Highly Efficient Ultrapure-Green Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2022; 61:e202213392. [PMID: 36288083 DOI: 10.1002/anie.202213392] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 11/06/2022]
Abstract
Acceleration of singlet-triplet intersystem crossings (ISC) is instrumental in bolstering triplet exciton harvesting of multi-resonance thermally activated delayed fluorescent (MR-TADF) emitters. This work describes a simple gold(I) coordination strategy to enhance the spin-orbit coupling of green and blue BN(O)-based MR-TADF emitters, which results in a notable increase in rate constants of the spectroscopically observed ISC process to 3×109 s-1 with nearly unitary ISC quantum yields. Accordingly, the resultant thermally-stable AuI emitters attained large values of delayed fluorescence radiative rate constant up to 1.3×105 /1.7×105 s-1 in THF/PMMA film while preserving narrowband emissions (FWHM=30-37 nm) and high emission quantum yields (ca. 0.9). The vapor-deposited ultrapure-green OLEDs fabricated with these AuI emitters delivered high luminance of up to 2.53×105 cd m-2 as well as external quantum efficiencies of up to 30.3 % with roll-offs as low as 0.8 % and long device lifetimes (LT60 ) of 1210 h at 1000 cd m-2 .
Collapse
Affiliation(s)
- Siyuan Cai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Department of Chemistry, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, P. R. China
| | - Glenna So Ming Tong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, P. R. China
| | - Lili Du
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,School of Life Science, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Gary Kwok-Ming So
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Faan-Fung Hung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, P. R. China
| | - Tsz-Lung Lam
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, P. R. China
| | - Gang Cheng
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, P. R. China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, P. R. China
| | - Hui Xiao
- Department of Chemistry, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, P. R. China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.,Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong, P. R. China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
31
|
Naveen KR, Yang HI, Kwon JH. Double boron-embedded multiresonant thermally activated delayed fluorescent materials for organic light-emitting diodes. Commun Chem 2022; 5:149. [PMID: 36698018 PMCID: PMC9814903 DOI: 10.1038/s42004-022-00766-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
The subclass of multi resonant thermally activated delayed fluorescent emitters (MR-TADF) containing boron atoms has garnered significant attention in the field of organic light emitting diode (OLED) research. Among boron-based MR-TADF emitters, double boron-embedded MR-TADF (DB-MR-TADF) emitters show excellent electroluminescence performances with high photoluminescence quantum yields, narrow band emission, and beneficially small singlet-triplet energy levels in all the full-color gamut regions. This article reviews recent progress in DB-MR-TADF emitters, with particular attention to molecular design concepts, synthetic routes, optoelectronic properties, and OLED performance, giving future prospects for real-world applications.
Collapse
Affiliation(s)
- Kenkera Rayappa Naveen
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hye In Yang
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jang Hyuk Kwon
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
32
|
Kim E, Park J, Jun M, Shin H, Baek J, Kim T, Kim S, Lee J, Ahn H, Sun J, Ko SB, Hwang SH, Lee JY, Chu C, Kim S. Highly efficient and stable deep-blue organic light-emitting diode using phosphor-sensitized thermally activated delayed fluorescence. SCIENCE ADVANCES 2022; 8:eabq1641. [PMID: 36240272 PMCID: PMC9565789 DOI: 10.1126/sciadv.abq1641] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Phosphorescent and thermally activated delayed fluorescence (TADF) blue organic light-emitting diodes (OLEDs) have been developed to overcome the low efficiency of fluorescent OLEDs. However, device instability, originating from triplet excitons and polarons, limits blue OLED applications. Here, we develop a phosphor-sensitized TADF emission system with TADF emitters to achieve high efficiency and long operational lifetime. Peripheral carbazole moieties are introduced in conventional multi-resonance-type emitters containing one boron atom. The triplet exciton density of the TADF emitter is reduced by facilitating reverse intersystem crossing, and the Förster resonant energy transfer rate from phosphor sensitizer is enhanced by high absorption coefficient of the emitters. The emitter exhibited an operational lifetime of 72.9 hours with Commission Internationale de L'Eclairage chromaticity coordinate y = 0.165, which was 6.6 times longer than those of devices using conventional TADF emitters.
Collapse
Affiliation(s)
- Eungdo Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Junha Park
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Mieun Jun
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Hyosup Shin
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jangyeol Baek
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Taeil Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Seran Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jiyoung Lee
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Heechoon Ahn
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jinwon Sun
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Soo-Byung Ko
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Seok-Hwan Hwang
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Changwoong Chu
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| | - Sunghan Kim
- Materials Research Team, Display Research Center, Samsung Display, Giheung, Gyeonggi 17113, Republic of Korea
| |
Collapse
|
33
|
Meng G, Dai H, Huang T, Wei J, Zhou J, Li X, Wang X, Hong X, Yin C, Zeng X, Zhang Y, Yang D, Ma D, Li G, Zhang D, Duan L. Amine‐Directed Formation of B−N Bonds for BN‐Fused Polycyclic Aromatic Multiple Resonance Emitters with Narrowband Emission. Angew Chem Int Ed Engl 2022; 61:e202207293. [DOI: 10.1002/anie.202207293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Hengyi Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianping Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiao Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiang Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiangchen Hong
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Chen Yin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xuan Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
34
|
Yang X, Zhou X, Zhang Y, Li D, Li C, You C, Chou T, Su S, Chou P, Chi Y. Blue Phosphorescence and Hyperluminescence Generated from Imidazo[4,5-b]pyridin-2-ylidene-Based Iridium(III) Phosphors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201150. [PMID: 35822668 PMCID: PMC9443441 DOI: 10.1002/advs.202201150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/02/2022] [Indexed: 05/19/2023]
Abstract
Four isomeric, homoleptic iridium(III) metal complexes bearing 5-(trifluoromethyl)imidazo[4,5-b]pyridin-2-ylidene and 6-(trifluoromethyl)imidazo[4,5-b]pyridin-2-ylidene-based cyclometalating chelates are successfully synthesized. The meridional isomers can be converted to facial isomers through acid induced isomerization. The m-isomers display a relatively broadened and red-shifted emission, while f-isomers exhibit narrowed blue emission band, together with higher photoluminescent quantum yields and reduced radiative lifetime relative to the mer-counterparts. Maximum external quantum efficiencies of 13.5% and 22.8% are achieved for the electrophosphorescent devices based on f-tpb1 and m-tpb1 as dopant emitter together with CIE coordinates of (0.15, 0.23) and (0.22, 0.45), respectively. By using f-tpb1 as the sensitizing phosphor and t-DABNA as thermally activated delayed fluorescence (TADF) terminal emitter, hyperluminescent OLEDs are successfully fabricated, giving high efficiency of 29.6%, full width at half maximum (FWHM) of 30 nm, and CIE coordinates of (0.13, 0.11), confirming the efficient Förster resonance energy transfer (FRET) process.
Collapse
Affiliation(s)
- Xilin Yang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Xiuwen Zhou
- School of Mathematics and PhysicsThe University of QueenslandBrisbaneQueensland4072Australia
| | - Ye‐Xin Zhang
- Suzhou Joysun Advanced Materials Co., Ltd. SuzhouJiangsu215126China
| | - Deli Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Chensen Li
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| | - Caifa You
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| | - Tai‐Che Chou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Pi‐Tai Chou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Yun Chi
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| |
Collapse
|
35
|
Park HJ, Jang JH, Lee JH, Hwang DH. Highly Efficient Deep-Blue Phosphorescent OLEDs Based on a Trimethylsilyl-Substituted Tetradentate Pt(II) Complex. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34901-34908. [PMID: 35867806 DOI: 10.1021/acsami.2c06891] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Compared to Ir(III) complexes with octahedral geometries, Pt(II) complexes with square planar geometries show superior optical properties because their flat shapes lead to an orientation that enhances the outcoupling of organic light-emitting diodes (OLEDs). However, the flat shapes of Pt(II) complexes typically induce a bathochromic shift, limiting their application in high-performance deep-blue phosphorescent OLEDs with high color purity. In this study, bulky trimethylsilyl (TMS)-substituted blue phosphorescent Pt(II) complex (PtON7-TMS) is successfully synthesized to improve color purity. The TMS substituent containing Si atom effectively suppresses intermolecular interaction and aggregation even when the complex concentration in the film state is higher than 30 wt %. As a result, the PtON7-TMS-based OLEDs exhibit a maximum external quantum efficiency of 21.4%, along with a pure-blue color of CIE (0.14, 0.09) at 20 wt % doping concentration and a full-width at half maximum of 30 nm. The pure blue color is maintained at a higher doping concentration (>30 wt %).
Collapse
Affiliation(s)
- Hea Jung Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jee-Hun Jang
- Department of Materials Science and Engineering, 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- Department of Materials Science and Engineering, 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Do-Hoon Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
36
|
Oda S, Sugitani T, Tanaka H, Tabata K, Kawasumi R, Hatakeyama T. Development of Pure Green Thermally Activated Delayed Fluorescence Material by Cyano Substitution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201778. [PMID: 35726390 DOI: 10.1002/adma.202201778] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Multiple resonance (MR)-effect-induced thermally activated delayed fluorescence (TADF) materials have garnered significant attention because they can achieve both high color purity and high external quantum efficiency (EQE). However, the reported green-emitting MR-TADF materials exhibit broader emission compared to those of blue-emitting ones and suffer from severe efficiency roll-off due to insufficient rate constants of reverse intersystem crossing process (kRISC ). Herein, a pure green MR-TADF material (ν-DABNA-CN-Me) with high kRISC of 105 s-1 is reported. The key to success is introduction of cyano groups into a blue-emitting MR-TADF material (ν-DABNA), which causes remarkable bathochromic shift without a loss of color purity. The organic light-emitting diode employing it as an emitter exhibits green emission at 504 nm with a small full-width at half-maximum of 23 nm, corresponding to Commission Internationale d'Éclairage coordinates of (0.13, 0.65). The device achieves a high maximum EQE of 31.9% and successfully suppresses the efficiency roll-off at a high luminance.
Collapse
Affiliation(s)
- Susumu Oda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Takumi Sugitani
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Hiroyuki Tanaka
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Keita Tabata
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Ryosuke Kawasumi
- SK JNC Japan Co., Ltd., 25-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
37
|
Li G, Wen J, Zhan F, Lou W, Yang YF, Hu Y, She Y. Fused 6/5/6 Metallocycle-Based Tetradentate Pt(II) Emitters for Efficient Green Phosphorescent OLEDs. Inorg Chem 2022; 61:11218-11231. [PMID: 35834800 DOI: 10.1021/acs.inorgchem.2c01202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pt(II) complexes are promising phosphorescent materials for organic light-emitting diode (OLED) applications in the fields of display, lighting, healthcare, aerospace, and so on. A series of novel biphenyl (bp)-based tetradentate 6/5/6 Pt(II) emitters using oxygen or carbon as a linking atom was designed and developed. The intermolecular interactions in crystal packing, electrochemical, and photophysical properties of the bp-based Pt(II) emitters and also their excited-state properties were systematically studied, which could be effectively regulated by ligand modification through linking group control; however, their emission spectra nearly showed no change. All the bp-based Pt(II) emitters exhibited vibronically featured emission spectra with dominant peaks at 502-505 nm and photoluminescent quantum yields of 24-34% in dichloromethane solution. Green OLED using Pt(bp-12) as an emitter achieved a maximum brightness (Lmax) of 16,644 cd/m2.
Collapse
Affiliation(s)
- Guijie Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jianfeng Wen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Feng Zhan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiwei Lou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ying Hu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
38
|
Meng G, Dai H, Huang T, Wei J, Zhou J, Li X, Wang X, Hong X, Yin C, Zeng X, Zhang Y, Yang D, Ma D, Li G, Zhang D, Duan L. Amine‐directed Formation of B–N Bonds for BN‐fused Polycyclic Aromatic Multiple Resonance Emitters with Narrowband Emission. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guoyun Meng
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Hengyi Dai
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Tianyu Huang
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Jinbei Wei
- Chinese Academy of Sciences Institute of Chemistry 2 North First Street, Zhongguancun CHINA
| | - Jianping Zhou
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Xiao Li
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Xiang Wang
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Xiangchen Hong
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Chen Yin
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Xuan Zeng
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Yuewei Zhang
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Dezhi Yang
- South China University of Technology Institute of Polymer Optoelectronic Materials and Devices CHINA
| | - Dongge Ma
- South China University of Technology Institute of Polymer Optoelectronic Materials and Devices CHINA
| | - Guomeng Li
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Dongdong Zhang
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Lian Duan
- Tsinghua University Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China 100084 Beijing CHINA
| |
Collapse
|
39
|
Yan J, Xue Q, Yang H, Yiu SM, Zhang YX, Xie G, Chi Y. Regioselective Syntheses of Imidazo[4,5- b]pyrazin-2-ylidene-Based Chelates and Blue Emissive Iridium(III) Phosphors for Solution-Processed OLEDs. Inorg Chem 2022; 61:8797-8805. [PMID: 35652376 DOI: 10.1021/acs.inorgchem.2c00750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Six homoleptic Ir(III) complexes bearing imidazo[4,5-b]pyrazin-2-ylidene chelates were successfully designed and synthesized. Narrowband blue emission (λmax = 466-485 nm) and broadened green emission (λmax = 518-532 nm) in degassed toluene solution with high photoluminescent quantum yields in the range of 75-81 and 45-48% were observed for f-timpz, t2impz, and t2empz as well as m-timpz, t2impz, and t2empz, respectively. In addition, the tert-butylphenyl cyclometalate is more electron donating than N-phenyl cyclometalate and, hence, all tert-butylphenyl-substituted derivatives, that is, m- and f-t2impz and m- and f-t2empz, give more red-shifted emission in comparison to that of m- and f-timpz. Moreover, solution-processed OLED with f-t2empz (20 wt %) as the dopant gave electrophosphorescence at 474 nm with maximum external quantum efficiency (max. EQE) of 5.1%, while hyper-OLED with assistant sensitizer f-t2empz (10 wt %) and the multi-resonance thermally activated delayed fluorescence emitter BCzBN (0.5 wt %) afforded narrowband emission centered at 485 nm and max. EQE up to 17.4%, confirming the high potential of this class of Ir(III) metal phosphors.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Qin Xue
- Department of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Hui Yang
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Shek-Man Yiu
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Ye-Xin Zhang
- Suzhou Joysun Advanced Materials Co., Ltd., Suzhou 215126, Jiangsu, China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
40
|
Meng G, Zhang D, Wei J, Zhang Y, Huang T, Liu Z, Yin C, Hong X, Wang X, Zeng X, Yang D, Ma D, Li G, Duan L. Highly efficient and stable deep-blue OLEDs based on narrowband emitters featuring an orthogonal spiro-configured indolo[3,2,1- de]acridine structure. Chem Sci 2022; 13:5622-5630. [PMID: 35694343 PMCID: PMC9116299 DOI: 10.1039/d2sc01543a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
High-efficiency and stable deep-blue bottom-emitting organic light-emitting diodes with Commission Internationale de l'Eclairage y coordinates (CIE y s) < 0.08 remain exclusive in the literature owing to the high excited-state energy of the emitters. Here, we propose the utilization of narrowband emitters to lower the excited-state energy for stable deep-blue devices by taking advantage of their high color purity. Two proof-of-concept deep-blue emitters with nitrogen-containing spiro-configured polycyclic frameworks are thereafter developed to introduce a multi-resonance effect for narrow emissions and sterically orthogonal configurations for alleviated molecular interactions. Both emitters show bright ultrapure deep-blue emissions with an extremely small full-width-at-half-maxima of only 18-19 nm, which can be maintained even in heavily doped films. Small CIE y s of 0.054 and 0.066 are therefore measured from the corresponding electroluminescence devices with peak energies of only 2.77 eV (448 nm) and 2.74 eV (453 nm), accounting for the remarkably long LT80s (lifetime to 80% of the initial luminance) of 18 900 and 43 470 hours at 100 cd m-2, respectively. Furthermore, by adopting a thermally activated delayed fluorescence sensitizer, impressive maximum external quantum efficiencies of 25% and 31% are recorded respectively, representing state-of-the-art performances for deep-blue devices.
Collapse
Affiliation(s)
- Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Ziyang Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Chen Yin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Xiangchen Hong
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Xiang Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Xuan Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
- Center for Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
41
|
Tan HJ, Yang GX, Deng YL, Cao C, Tan JH, Zhu ZL, Chen WC, Xiong Y, Jian JX, Lee CS, Tong QX. Deep-Blue OLEDs with Rec.2020 Blue Gamut Compliance and EQE Over 22% Achieved by Conformation Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200537. [PMID: 35236007 DOI: 10.1002/adma.202200537] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
To achieve high-efficiency deep-blue electroluminescence satisfying Rec.2020 standard blue gamut, two thermally activated delayed fluorescent (TADF) emitters are developed: 5-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-10,10-diphenyl-5,10-dihydrodibenzo[b,e][1,4]azasiline (TDBA-PAS) and 10-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-9,9-diphenyl-9,10-dihydroacridine (TDBA-DPAC). Inheriting from their parented organoboron multi-resonance core, both emitters show very promising deep-blue emissions with relatively narrow full width at half-maximum (FWHM, ≈50 nm in solution), high photoluminescence quantum yield (up to 92.3%), and short emission lifetime (≤2.49 µs) with fast reverse intersystem crossing (>106 s-1 ) in doped films. More importantly, replacing the spiro-centered sp3 C atom (TDBA-DPAC) with the larger-radius sp3 Si atom (TDBA-PAS), enhanced conformational heterogeneities in bulky-group-shielded TADF molecules are observed in solution, doped film, and device. Consequently, OLEDs based on TDBA-PAS retain high maximum external quantum efficiencies ≈20% with suppressed efficiency roll-off and color index close to Rec.2020 blue gamut over a wide doping range of 10-50 wt%. This study highlights a new strategy to restrain spectral broadening and redshifting and efficiency roll-off in the design of deep-blue TADF emitters.
Collapse
Affiliation(s)
- Hong-Ji Tan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Guo-Xi Yang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Ying-Lan Deng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Ji-Hua Tan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Xiong
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Jing-Xin Jian
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| |
Collapse
|
42
|
Liu F, Cheng Z, Jiang Y, Gao L, Liu H, Liu H, Feng Z, Lu P, Yang W. Highly Efficient Asymmetric Multiple Resonance Thermally Activated Delayed Fluorescence Emitter with EQE of 32.8 % and Extremely Low Efficiency Roll-Off. Angew Chem Int Ed Engl 2022; 61:e202116927. [PMID: 35104385 DOI: 10.1002/anie.202116927] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 01/01/2023]
Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show great potentials for high color purity organic light-emitting diodes (OLEDs). However, the simultaneous realization of high photoluminescence quantum yield (PLQY) and high reverse intersystem crossing rate (kRISC ) is still a formidable challenge. Herein, a novel asymmetric MR-TADF emitter (2Cz-PTZ-BN) is designed that fully inherits the high PLQY and large kRISC values of the properly selected parent molecules. The resonating extended π-skeleton with peripheral protection can achieve a high PLQY of 96 % and a fast kRISC of above 1.0×105 s-1 , and boost the performance of corresponding pure green devices with an outstanding external quantum efficiency (EQE) of up to 32.8 % without utilizing any sensitizing hosts. Remarkably, the device sufficiently maintains a high EQE exceeding 23 % at a high luminance of 1000 cd m-2 , representing the highest value for reported green MR-TADF materials at the same luminescence.
Collapse
Affiliation(s)
- Futong Liu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Zhuang Cheng
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Yixuan Jiang
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Lei Gao
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Hanxuan Liu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Hui Liu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Zijun Feng
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Ping Lu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Changchun, 130012, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
43
|
Yang L, Chua XW, Yang Z, Ding X, Yu Y, Suwardi A, Zhao M, Ke KL, Ehrler B, Di D. Photon-upconverters for blue organic light-emitting diodes: a low-cost, sky-blue example. NANOSCALE ADVANCES 2022; 4:1318-1323. [PMID: 35342862 PMCID: PMC8886671 DOI: 10.1039/d1na00803j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
In the research ecosystem's quest towards having deployable organic light-emitting diodes with higher-energy emission (e.g., blue light), we advocate focusing on fluorescent emitters, due to their relative stability and colour purity, and developing design strategies to significantly improve their efficiencies. We propose that all triplet-triplet annihilation upconversion (TTA-UC) emitters would make good candidates for triplet fusion-enhanced OLEDs ("FuLEDs"), due to the energetically uphill nature of the photophysical process, and their common requirements. We demonstrate this with the low-cost sky-blue 1,3-diphenylisobenzofuran (DPBF). Having satisfied the criteria for TTA-UC, we show DPBF as a photon upconverter (I th 92 mW cm-2), and henceforth demonstrate it as a bright emitter for FuLEDs. Notably, the devices achieved 6.5% external quantum efficiency (above the ∼5% threshold without triplet contribution), and triplet-exciton-fusion-generated fluorescence contributes up to 44% of the electroluminescence, as shown by transient measurements. Here, triplet fusion translates to a quantum yield (Φ TTA-UC) of 19%, at an electrical excitation of ∼0.01 mW cm-2. The enhancement is meaningful for commercial blue OLED displays. We also found DPBF to have decent hole mobilities of ∼0.08 cm2 V-1 s-1. This additional finding can lead to DPBF being used in other capacities in various printable electronics.
Collapse
Affiliation(s)
- Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138634 Singapore
- Department of Materials Science and Engineering, National University of Singapore Singapore 117575 Singapore
| | - Xian Wei Chua
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138634 Singapore
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB30HE UK
| | - Zhihong Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138634 Singapore
| | - Xiangpeng Ding
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138634 Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138634 Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138634 Singapore
| | - Meng Zhao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138634 Singapore
| | - Karen Lin Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138634 Singapore
| | - Bruno Ehrler
- Center for Nanophotonics, AMOLF Science Park 104 1098 XG Amsterdam The Netherlands
| | - Dawei Di
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
44
|
Liu F, Cheng Z, Jiang Y, Gao L, Liu H, Liu H, Feng Z, Lu P, Yang W. Highly Efficient Asymmetric Multiple Resonance Thermally Activated Delayed Fluorescence Emitter with EQE of 32.8 % and Extremely Low Efficiency Roll‐Off. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Futong Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Zhuang Cheng
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Yixuan Jiang
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Lei Gao
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Hanxuan Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Hui Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Zijun Feng
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Ping Lu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials Department of Chemistry Changchun 130012 P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
45
|
Lo K, Tong GSM, Cheng G, Low K, Che C. Dinuclear Pt
II
Complexes with Strong Blue Phosphorescence for Operationally Stable Organic Light‐Emitting Diodes with EQE up to 23 % at 1000 cd m
−2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kar‐Wai Lo
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Hong Kong Quantum AI Lab Limited 17 Science Park West Avenue Pak Shek Kok, Hong Kong P. R. China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Hong Kong Quantum AI Lab Limited 17 Science Park West Avenue Pak Shek Kok, Hong Kong P. R. China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 P. R. China
| | - Kam‐Hung Low
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Hong Kong Quantum AI Lab Limited 17 Science Park West Avenue Pak Shek Kok, Hong Kong P. R. China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 P. R. China
| |
Collapse
|
46
|
Zhang Y, Wei J, Zhang D, Yin C, Li G, Liu Z, Jia X, Qiao J, Duan L. Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Chen Yin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Ziyang Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaoqin Jia
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
47
|
Lo KW, Tong GSM, Cheng G, Low KH, Che CM. Dinuclear PtII Complexes with Strong Blue Phosphorescence for Operational Stable Organic Light-Emitting Diodes with EQE up to 23% at 1000 cd m-2. Angew Chem Int Ed Engl 2021; 61:e202115515. [PMID: 34939273 DOI: 10.1002/anie.202115515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Here we describe the synthesis and characterization of a new class of dinuclear PtII complexes with blue phosphorescence. Bulky N-heterocyclic carbene and tethered bridging ligands were employed to suppress photo-induced structural changes and to improve thermal stability of the complexes. These complexes show mixed 3IL/3MLCT blue emission (~460 nm) with emission quantum yields of up to 0.95, emission lifetimes of as low as 1.3 µs and radiative decay rate constants of up to 7.3 × 105 s-1 in 4 wt% doped PMMA films; the latter is attributed to a 1MLCT excited state having high metal character (resulting in large SOC) and a large transition dipole moment, based on DFT calculations. Phosphor-sensitized blue hyperOLEDs with Commission Internationale de L'Eclairage (CIE) coordinates of (0.13, 0.12) showed maximum EQE of 23.4% with full-width-at-half-maximum of 18 nm and LT50 > 250 h at an L0 of 1000 cd m-2.
Collapse
Affiliation(s)
- Kar-Wai Lo
- The University of Hong Kong, Chemistry, HONG KONG
| | | | - Gang Cheng
- The University of Hong Kong, Chemistry, HONG KONG
| | - Kam-Hung Low
- The University of Hong Kong, Chemistry, HONG KONG
| | - Chi-Ming Che
- The University of Hong Kong, Pokfulam Road, -, Hong Kong, HONG KONG
| |
Collapse
|
48
|
You C, Wang XQ, Zhou X, Yuan Y, Liao LS, Liao YC, Chou PT, Chi Y. Homoleptic Ir(III) Phosphors with 2-Phenyl-1,2,4-triazol-3-ylidene Chelates for Efficient Blue Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59023-59034. [PMID: 34865484 DOI: 10.1021/acsami.1c17308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this report, we synthesized two series of deep-blue-emitting homoleptic iridium(III) phosphors bearing 1,2,4-triazol-3-ylidene and 5-(trifluoromethyl)-1,2,4-triazol-3-ylidene cyclometalate. Compared with reported synthetic routes using Ag2O as the promoter, herein, we adopted a different strategy to furnish these complexes in high yields. Also, the meridional to facial isomerization was executed in the presence of trifluoroacetic acid. These phosphors were examined using NMR spectroscopies, single-crystal X-ray diffraction studies, and photophysical methods. The results revealed that electron-withdrawing trifluoromethyl substitution on the N-heterocyclic carbene fragment only gave a minor variation of photoluminescence peak wavelengths and a decrease in radiative lifetime but notable reduction in thermal stabilities. The parent 1,2,4-triazol-3-ylidene complexes have been demonstrated to be suitable for use as deep-blue phosphors, with structured emission with the peak max. located at ∼420 nm and with photoluminescence quantum yields in a range of 34.8-42.5% in degassed THF solution at RT. Fabrication of both the phosphorescent organic light-emitting diodes (OLEDs) and phosphor-sensitized OLEDs (or hyperphosphorescence) was successfully conducted, from which the OLED device based on m-tz1 showed a max. external quantum efficiency (EQE) of 10% with CIEx,y coordinates of 0.15, 0.06, while the corresponding hyperphosphorescent OLED using m-tz2 as a sensitizer and t-DABNA as a terminal emitter afforded a significantly improved max. EQE of 19.7%, EL λmax of 468 nm, and FWHM of 31 nm with CIEx,y coordinates of 0.12, 0.13.
Collapse
Affiliation(s)
- Caifa You
- Department of Materials Sciences and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| | - Xue-Qi Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiuwen Zhou
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yi Yuan
- Department of Materials Sciences and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu-Chan Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yun Chi
- Department of Materials Sciences and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
49
|
Zhang Y, Wei J, Zhang D, Yin C, Li G, Liu Z, Jia X, Qiao J, Duan L. Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening. Angew Chem Int Ed Engl 2021; 61:e202113206. [PMID: 34636127 DOI: 10.1002/anie.202113206] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/07/2022]
Abstract
Multiple resonance (MR) emitters are promising for highly efficient organic light-emitting diodes (OLEDs) with narrowband emission; however, they still face intractable challenges with concentration-caused emission quenching, exciton annihilation, and spectral broadening. In this study, sterically wrapped MR dopants with a fluorescent MR core sandwiched by bulk substituents were developed to address the intractable challenges by reducing intermolecular interactions. Consequently, high photo-luminance quantum yields of ≥90 % and small full width at half maximums (FWHMs) of ≤25 nm over a wide range of dopant concentrations (1-20 wt %) were recorded. In addition, we demonstrated that the sandwiched MR emitter can effectively suppress Dexter interaction when doped in a thermally activated delayed fluorescence sensitizer, eliminating exciton loss through dopant triplet. Within the above dopant concentration range, the optimal emitter realizes remarkably high maximum external quantum efficiencies of 36.3-37.2 %, identical small FWHMs of 24 nm, and alleviated efficiency roll-offs in OLEDs.
Collapse
Affiliation(s)
- Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chen Yin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ziyang Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoqin Jia
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|