1
|
Huang J, Zhang J, Song P, Huang J, Yang Z, Han J, Wu L, Guo X. p38α-eIF6-Nsun2 axis promotes ILC3's rapid response to protect host from intestinal inflammation. J Exp Med 2025; 222:e20240624. [PMID: 39589554 PMCID: PMC11602552 DOI: 10.1084/jem.20240624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/01/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are important for maintaining gut homeostasis. Upon stimulation, ILC3s can rapidly produce cytokines to protect against infections and colitis. However, the regulation of ILC3 quick response is still unclear. Here, we find that eIF6 aggregates with Nsun2 and cytokine mRNA in ILC3s at steady state, which inhibits the methyltransferase activity of Nsun2 and the nuclear export of cytokine mRNA, resulting in the nuclear reservation of cytokine mRNA. Upon stimulation, phosphorylated p38α phosphorylates eIF6, which in turn releases Nsun2 activity, and promotes the nuclear export of cytokine mRNA and rapid cytokine production. Genetic disruption of p38α, Nsun2, or eIF6 in ILC3s influences the mRNA nuclear export and protein expression of the protective cytokines, thus leading to increased susceptibility to colitis. Together, our data identify a crucial role of the p38α-eIF6-Nsun2 axis in regulating rapid ILC3 immune response at the posttranscriptional level, which is critical for gut homeostasis maintenance and protection against gut inflammation.
Collapse
Affiliation(s)
- Jida Huang
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jing Zhang
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Panwei Song
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jiaoyan Huang
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Zi Yang
- Protein Preparation and Identification Facilities at Technology Center for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Li Wu
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Yang Z, Liu Y, Xiang Y, Chen R, Chen L, Wang S, Lv L, Zang M, Zhou N, Li S, Shi B, Li Y. ILC2-derived CGRP triggers acute inflammation and nociceptive responses in bacterial cystitis. Cell Rep 2024; 43:114859. [PMID: 39412984 DOI: 10.1016/j.celrep.2024.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP), a neuropeptide involved in nociceptor neuronal function, plays a critical role in mediating neuroinflammation and pain. In this study, we find that bladder group 2 innate lymphoid cells (ILC2s) function as primary producers of CGRP in the early phase of bacterial cystitis, contributing to increased inflammation, altered voiding behavior, and heightened pelvic allodynia. Furthermore, we demonstrate that interleukin (IL)-33, a cytokine secreted by urothelial cells, upregulates CGRP production by ILC2s in the bladder during uropathogenic Escherichia coli (UPEC) infection. Moreover, our research reveals that monocytes expressing high levels of receptor activity-modifying protein 1 (RAMP1), a CGRP receptor, mediate the pro-inflammatory effects of CGRP-producing ILC2s. In summary, our results underscore the significance of the immune cell-derived neuropeptides in the pathology of UPEC infection, suggesting a promising therapeutic approach targeting the IL-33-ILC2-CGRP axis for managing lower urinary tract symptoms in bacterial cystitis.
Collapse
Affiliation(s)
- Zizhuo Yang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yinrui Xiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Rui Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Shuai Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Linchen Lv
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Maolin Zang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| | - Yan Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| |
Collapse
|
3
|
Hou Z, Ren X, Sun Z, An R, Huang M, Gao C, Yin M, Liu G, He D, Du H, Tang R. Trash into Treasure: Nano-coating of Catheter Utilizes Urine to Deprive H 2S Against Persister and Rip Biofilm Matrix. Adv Healthc Mater 2024; 13:e2401067. [PMID: 39030869 DOI: 10.1002/adhm.202401067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Bacteria-derived hydrogen sulfide (H2S) often contributes to the emergence of antibiotic-recalcitrant bacteria, especially persister (a sub-population of dormant bacteria), thus causing the treatment failure of Catheter-associated urinary tract infection (CAUTI). Here, an H2S harvester nanosystem to prevent the generation of persister bacteria and disrupt the dense biofilm matrix by the self-adaptive ability of shape-morphing is prepared. The nanosystem possesses a core-shell structure that is composed of liquid metal nanoparticle (LM NP), AgNPs, and immobilized urease. The nanosystem decomposes urea contained in urine to generate ammonia for eliminating bacteria-derived H2S. Depending on the oxidative layer of liquid metal, the nanosystem also constitutes a long-lasting reservoir for temporarily storing bacteria-derived H2S, when urease transiently overloads or in the absence of urine in a catheter. Depriving H2S can prevent the emergence of persistent bacteria, enhancing the bacteria-killing efficiency of Ga3+ and Ag+ ions. Even when the biofilm has formed, the urine flow provides heat to trigger shape morphing of the LM NP, tearing the biofilm matrix. Collectively, this strategy can turn trash (urea) into treasure (H2S scavengers and biofilm rippers), and provides a new direction for the antibacterial materials application in the medical field.
Collapse
Affiliation(s)
- Zhiming Hou
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Xinyu Ren
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Zhuangzhuang Sun
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Ruoqi An
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Mingzhi Huang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Cen Gao
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Mengying Yin
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Guangxiu Liu
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Dengqi He
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hongliang Du
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Rongbing Tang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
4
|
Naskar M, Choi HW. A Dynamic Interplay of Innate Immune Responses During Urinary Tract Infection. Immune Netw 2024; 24:e31. [PMID: 39246616 PMCID: PMC11377947 DOI: 10.4110/in.2024.24.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections globally, manifesting in diverse clinical phenotypes with varying degrees of severity and complications. The mechanisms underlying UTIs are gradually being elucidated, leading to an enhanced understanding of the immune responses involved. Innate immune cells play a crucial defensive role against uropathogenic bacteria through various mechanisms. Despite their significant contributions to host defense, these cells often fail to achieve complete clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI patients. However, the persistence of infections and related pathological symptoms in the absence of innate immune cells in animal models underscore the importance of innate immunity in UTIs. Therefore, the host protective functions of innate immune cells, including neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are delicately coordinated and timely regulated by a variety of cytokines to ensure successful pathogen clearance.
Collapse
Affiliation(s)
- Manisha Naskar
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
5
|
Yuan Z, Wang W, Song S, Ling Y, Xu J, Tao Z. IGFBP1 stabilizes Umod expression through m6A modification to inhibit the occurrence and development of cystitis by blocking NF-κB and ERK signaling pathways. Int Immunopharmacol 2024; 134:111997. [PMID: 38759370 DOI: 10.1016/j.intimp.2024.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/07/2023] [Accepted: 03/31/2024] [Indexed: 05/19/2024]
Abstract
Cystitis is a common disease closely associated with urinary tract infections, and the specific mechanisms underlying its occurrence and development remain largely unknown. In this study, we discovered that IGFBP1 suppresses the occurrence and development of cystitis by stabilizing the expression of Umod through m6A modification, inhibiting the NF-κB and ERK signaling pathways. Initially, we obtained a bladder cystitis-related transcriptome dataset from the GEO database and identified the characteristic genes Umod and IGFBP1. Further exploration revealed that IGFBP1 in primary cells of cystitis can stabilize the expression of Umod through m6A modification. Overexpression of both IGFBP1 and Umod significantly inhibited cell apoptosis and the NF-κB and ERK signaling pathways, ultimately suppressing the production of pro-inflammatory factors. Finally, using a rat model of cystitis, we demonstrated that overexpression of IGFBP1 stabilizes the expression of Umod, inhibits the NF-κB and ERK signaling pathways, reduces the production of pro-inflammatory factors, and thus prevents the occurrence and development of cystitis. Our study elucidates the crucial role of IGFBP1 and Umod in cystitis and reveals the molecular mechanisms that inhibit the occurrence and development of cystitis. This research holds promise for offering new insights into the treatment of cystitis in the future.
Collapse
Affiliation(s)
- Zuliang Yuan
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, PR China
| | - Wenjing Wang
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, PR China
| | - Shuang Song
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, PR China
| | - Yuntao Ling
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, PR China
| | - Jing Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, PR China.
| | - Zhen Tao
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, PR China.
| |
Collapse
|
6
|
Peroumal D, Biswas PS. Kidney-Specific Interleukin-17 Responses During Infection and Injury. Annu Rev Immunol 2024; 42:35-55. [PMID: 37906942 DOI: 10.1146/annurev-immunol-052523-015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The kidneys are life-sustaining organs that are vital to removing waste from our bodies. Because of their anatomic position and high blood flow, the kidneys are vulnerable to damage due to infections and autoinflammatory conditions. Even now, our knowledge of immune responses in the kidney is surprisingly rudimentary. Studying kidney-specific immune events is challenging because of the poor regenerative capacity of the nephrons, accumulation of uremic toxins, and hypoxia- and arterial blood pressure-mediated changes, all of which have unexpected positive or negative impacts on the immune response in the kidney. Kidney-specific defense confers protection against pathogens. On the other hand, unresolved inflammation leads to kidney damage and fibrosis. Interleukin-17 is a proinflammatory cytokine that has been linked to immunity against pathogens and pathogenesis of autoinflammatory diseases. In this review, we discuss current knowledge of IL-17 activities in the kidney in the context of infections, autoinflammatory diseases, and renal fibrosis.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Noel OD, Hassouneh Z, Svatek RS, Mukherjee N. Innate Lymphoid Cells in Bladder Cancer: From Mechanisms of Action to Immune Therapies. Cancer Immunol Res 2024; 12:149-160. [PMID: 38060011 PMCID: PMC11492724 DOI: 10.1158/2326-6066.cir-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Bladder tumors have a high mutational burden and tend to be responsive to immune therapies; however, response rates remain modest. To date, immunotherapy in bladder cancer has largely focused on enhancing T-cell immune responses in the bladder tumor microenvironment. It is anticipated that other immune cells, including innate lymphoid cells (ILC), which play an important role in bladder oncogenesis and tumor suppression, could be targeted to improve response to existing therapies. ILCs are classified into five groups: natural killer cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer cells. ILCs are pleiotropic and play dual and sometimes paradoxical roles in cancer development and progression. Here, a comprehensive discussion of the current knowledge and recent advancements in understanding the role of ILCs in bladder cancer is provided. We discuss the multifaceted roles that ILCs play in bladder immune surveillance, tumor protection, and immunopathology of bladder cancer. This review provides a rationale for targeting ILCs in bladder cancer, which is relevant for other solid tumors.
Collapse
Affiliation(s)
- Onika D.V. Noel
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Zaineb Hassouneh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas
| | - Robert S. Svatek
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
8
|
Schneider AK, Domingos-Pereira S, Cesson V, Polak L, Fallon PG, Zhu J, Roth B, Nardelli-Haefliger D, Derré L. Type 2 innate lymphoid cells are not involved in mouse bladder tumor development. Front Immunol 2024; 14:1335326. [PMID: 38283350 PMCID: PMC10820705 DOI: 10.3389/fimmu.2023.1335326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
Therapies for bladder cancer patients are limited by side effects and failures, highlighting the need for novel targets to improve disease management. Given the emerging evidence highlighting the key role of innate lymphoid cell subsets, especially type 2 innate lymphoid cells (ILC2s), in shaping the tumor microenvironment and immune responses, we investigated the contribution of ILC2s in bladder tumor development. Using the orthotopic murine MB49 bladder tumor model, we found a strong enrichment of ILC2s in the bladder under steady-state conditions, comparable to that in the lung. However, as tumors grew, we observed an increase in ILC1s but no changes in ILC2s. Targeting ILC2s by blocking IL-4/IL-13 signaling pathways, IL-5, or IL-33 receptor, or using IL-33-deficient or ILC2-deficient mice, did not affect mice survival following bladder tumor implantation. Overall, these results suggest that ILC2s do not contribute significantly to bladder tumor development, yet further investigations are required to confirm these results in bladder cancer patients.
Collapse
Affiliation(s)
- Anna K. Schneider
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sonia Domingos-Pereira
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Valérie Cesson
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lenka Polak
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Beat Roth
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Denise Nardelli-Haefliger
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laurent Derré
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
9
|
Peng R, Xu C, Zhang L, Liu X, Peng D, Chen X, Liu D, Li R. M2 macrophages participate in ILC2 activation induced by Helicobacter pylori infection. Gut Microbes 2024; 16:2347025. [PMID: 38693666 PMCID: PMC11067991 DOI: 10.1080/19490976.2024.2347025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Helicobacter pylori (H. pylori) causes a diversity of gastric diseases. The host immune response evoked by H. pylori infection is complicated and can influence the development and progression of diseases. We have reported that the Group 2 innate lymphocytes (ILC2) were promoted and took part in building type-2 immunity in H. pylori infection-related gastric diseases. Therefore, in the present study, we aim to clarify how H. pylori infection induces the activation of ILC2. It was found that macrophages were necessary for activating ILC2 in H. pylori infection. Mechanistically, H. pylori infection up-regulated the expression of indoleamine 2,3-dioxygenase (IDO) in macrophages to induce M2 polarization, and the latter secreted the alarmin cytokine Thymic Stromal Lymphopoietin (TSLP) to arouse ILC2.
Collapse
Affiliation(s)
- Ruyi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan Province, China
| | - Linfang Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan Province, China
| | - Dongzi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Xingcen Chen
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Deliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Rong Li
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| |
Collapse
|
10
|
Hassouneh Z, Huang G, Zhang N, Rao M, Mukherjee N. Commentary: On the Emerging Role of Innate Lymphoid Cells in Bladder Cancer. JOURNAL OF CANCER IMMUNOLOGY 2024; 6:125-134. [PMID: 39574565 PMCID: PMC11580033 DOI: 10.33696/cancerimmunol.6.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Affiliation(s)
- Zaineb Hassouneh
- Department of Urology, University of Texas Health San Antonio (UTHSA), USA
- Department of Microbiology, Immunology & Molecular Genetics, UTHSA, USA
| | - Gang Huang
- Department of Cell Systems and Anatomy, UTHSA, USA
| | - Nu Zhang
- Department of Microbiology, Immunology & Molecular Genetics, UTHSA, USA
| | - Manjeet Rao
- Department of Cell Systems and Anatomy, UTHSA, USA
- Greehey Children’s Cancer Research Institute, UTHSA, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio (UTHSA), USA
| |
Collapse
|
11
|
Hawas S, Vagenas D, Haque A, Totsika M. Bladder-draining lymph nodes support germinal center B cell responses during urinary tract infection in mice. Infect Immun 2023; 91:e0031723. [PMID: 37882531 PMCID: PMC10652902 DOI: 10.1128/iai.00317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Bacterial urinary tract infections (UTIs) are both common and exhibit high recurrence rates in women. UTI healthcare costs are increasing due to the rise of multidrug-resistant (MDR) bacteria, necessitating alternative approaches for infection control. Here, we directly observed host adaptive immune responses in acute UTI. We employed a mouse model in which wild-type C57BL/6J mice were transurethrally inoculated with a clinically relevant MDR UTI strain of uropathogenic Escherichia coli (UPEC). Firstly, we noted that rag1-/- C57BL/6J mice harbored larger bacterial burdens than wild-type counterparts, consistent with a role for adaptive immunity in UTI control. Consistent with this, UTI triggered in the bladders of wild-type mice early increases of myeloid cells, including CD11chi conventional dendritic cells, suggesting possible involvement of these professional antigen-presenting cells. Importantly, germinal center B cell responses developed by 4 weeks post-infection in bladder-draining lymph nodes of wild-type mice and, although modest in magnitude and transient in nature, could not be boosted with a second UTI. Thus, our data reveal for the first time in a mouse model that UPEC UTI induces local B cell immune responses in bladder-draining lymph nodes, which could potentially serve to control infection.
Collapse
Affiliation(s)
- Sophia Hawas
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dimitrios Vagenas
- Research Methods Group, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ashraful Haque
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Ma B, Zhou Y, Hu Y, Duan H, Sun Z, Wang P, Li W, Han W, Qi H. Mapping Resident Immune Cells in the Murine Ocular Surface and Lacrimal Gland by Flow Cytometry. Ocul Immunol Inflamm 2023; 31:748-759. [PMID: 36867079 DOI: 10.1080/09273948.2023.2182327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND The ocular surface and lacrimal gland have a frontline position in mucosal immunology. However, there have been few updates to the immune cell atlas of these tissues in recent years. PURPOSE To map the immune cells in murine ocular surface tissues and lacrimal gland. METHODS Central and peripheral corneas, conjunctiva, and lacrimal gland were dissociated into single cell suspensions, followed by flow cytometry. Discrepancy of immune cells between the central and peripheral corneas was compared. In the conjunctiva and lacrimal gland, myeloid cells were clustered by tSNE and FlowSOM based on the expression of F4/80, Ly6C, Ly6G, and MHC II. ILCs, type 1 immune cells, and type 3 immune cells were analyzed. RESULTS The number of immune cells in peripheral corneas was about 16 folds of that in central corneas. B cells accounted for 8.74% of immune cells in murine peripheral corneas. In the conjunctiva and lacrimal gland, most myeloid cells tended out to be monocytes, macrophages, and classical dendritic cells (cDCs). ILC3 were 6.28% and 3.63% of ILCs in the conjunctiva and lacrimal gland, respectively. Th1, Tc1, and NK cells were predominant type 1 immune cells. γδ T17 cells and ILC3 outnumbered Th17 cells among type 3 T cells. CONCLUSION B cells resident in murine corneas were reported for the first time. Additionally, we proposed a strategy of clustering myeloid cells to better understand their heterogeneity in the conjunctiva and lacrimal gland based on tSNE and FlowSOM. Furthermore, we identified the ILC3 in the conjunctiva and lacrimal gland for the first time. Compositions of type 1 and type 3 immune cells were summarized. Our study provides a fundamental reference and novel insights for ocular surface immune homeostasis and diseases.
Collapse
Affiliation(s)
- Baikai Ma
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Yifan Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Yuzhe Hu
- Department of Immunology, Peking University Health Science Center, Beijing, China.,NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Hongyu Duan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Zhengze Sun
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, Peking University Health Science Center, Beijing, China.,NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Wei Li
- Eye Institute of Xiamen University, Xiamen, China.,Xiang'an Hospital of Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Wenling Han
- Department of Immunology, Peking University Health Science Center, Beijing, China.,NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Hong Qi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| |
Collapse
|
14
|
The impact of biological sex on diseases of the urinary tract. Mucosal Immunol 2022; 15:857-866. [PMID: 35869147 PMCID: PMC9305688 DOI: 10.1038/s41385-022-00549-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
Biological sex, being female or male, broadly influences diverse immune phenotypes, including immune responses to diseases at mucosal surfaces. Sex hormones, sex chromosomes, sexual dimorphism, and gender differences all contribute to how an organism will respond to diseases of the urinary tract, such as bladder infection or cancer. Although the incidence of urinary tract infection is strongly sex biased, rates of infection change over a lifetime in women and men, suggesting that accompanying changes in the levels of sex hormones may play a role in the response to infection. Bladder cancer is also sex biased in that 75% of newly diagnosed patients are men. Bladder cancer development is shaped by contributions from both sex hormones and sex chromosomes, demonstrating that the influence of sex on disease can be complex. With a better understanding of how sex influences disease and immunity, we can envision sex-specific therapies to better treat diseases of the urinary tract and potentially diseases of other mucosal tissues.
Collapse
|