1
|
Min S, Xu Z, Huang Y, Wu X, Zhan T, Yu X, Wang H, Xu B. 3D Wetting Gradient Janus Sports Bras for Efficient Sweat Removal: A Strategy to Improve Women's Sports Comfort and Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404137. [PMID: 38990076 DOI: 10.1002/smll.202404137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Developing Janus fabrics with excellent one-way sweat transport capacity is an attractive way for providing comfort sensation and protecting the health during exercise. In this work, a 3D wetting gradient Janus fabric (3DWGJF) is first proposed to address the issue of excessive sweat accumulation in women's breasts, followed by integration with a sponge pad to form a 3D wetting gradient Janus sports bra (3DWGJSB). The 3D wetting gradient enables the prepared fabric to control the horizontal migration of sweat in one-way mode (x/y directions) and then unidirectionally penetrate downward (z direction), finally keeping the water content on the inner side of 3DWGJF (skin side) at ≈0%. In addition, the prepared 3DWGJF has good water vapor transmittance rate (WVTR: 0.0409 g cm-2 h-1) and an excellent water evaporation rate (0.4704 g h-1). Due to the high adhesion of transfer prints to the fabrics and their excellent mechanical properties, the 3DWGJF is remarkably durable and capable of withstanding over 500 laundering cycles and 400 abrasion cycles. This work may inspire the design and fabrication of next-generation moisture management fabrics with an effective sweat-removal function for women's health.
Collapse
Affiliation(s)
- Shuqiang Min
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zixuan Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yange Huang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xianchang Wu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tonghuan Zhan
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaohua Yu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - He Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bing Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
2
|
Liang Y, Wang W, Qi K, Wei Y, Zhao W, Xie H, Zhao C. Exudate Unidirectional Pump to Promote Glucose Catabolism Triggering Fenton-Like Reaction for Chronic Diabetic Wounds Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404652. [PMID: 39120461 PMCID: PMC11481212 DOI: 10.1002/advs.202404652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The massive accumulation of exudate containing high concentrations of glucose causes wound infection and triggers the release of inflammatory factors, which in turn delays the closure of diabetic wounds. In this study, a Janus membrane is constructed by combining glucose oxidase (GOx) and copper ions (Cu2+) for the treatment of diabetic wounds, which is named as Janus@GOx/Cu2+. It consists of hydrophobic, transitional, and superhydrophilic layers in a three-layer structure with gradient hydrophilicity for self-pumping properties. The Janus@GOx/Cu2+ membrane triggers a series of cascading reactions while pumping out diabetic wound exudates. First, glucose oxidase loaded onto the hydrophilic layer of the Janus@GOx/Cu2+ membrane decomposes glucose into hydrogen peroxide (H2O2) and glucuronic acid, reducing the local glucose level. The generated glucuronic acid neutralizes the local alkaline environment of chronic wounds. Simultaneously, the H2O2 interacts with the Cu2+ contained in the hydrophobic layers of the Janus@GOx/Cu2+ membrane via a Fenton-like reaction, generating hydroxyl radicals with excellent bactericidal properties. Cu2+ promotes angiogenesis and wound healing in diabetic wounds. Under the action of multiple responses, the Janus@GOx/Cu2+ membrane promotes wound healing in diabetic infections.
Collapse
Affiliation(s)
- Yaxian Liang
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesDepartment of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Wenjie Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610054China
| | - Kailong Qi
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesDepartment of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Yige Wei
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesDepartment of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Weifeng Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610054China
| | - Huixu Xie
- State Key Laboratory of Oral DiseasesNational Center for StomatologyNational Clinical Research Center for Oral DiseasesDepartment of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Changsheng Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610054China
| |
Collapse
|
3
|
Wang G, Xie Z, Yu W, Mao S, Wang S, Zheng SY, Yang J. A Double-Layer Polyurethane Electrospun Membrane with Directional Sweat Transport Ability for Use as a Soft Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49813-49822. [PMID: 39229668 DOI: 10.1021/acsami.4c10854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Wearable electronics for long-term monitoring of physiological signals should be capable of removing sweat generated during daily motion, which significantly impacts signal stability, human comfort, and safety of the electronics. In this study, we developed a double-layer polyurethane (PU) membrane with sweat-directional transport ability that can be applied for monitoring strain signals. The PU membrane was composed of a hydrophilic, conductive layer and a relatively hydrophobic layer. The double-layer PU composite membrane exhibited varied pore size and opposite hydrophilicity on its two sides, enabling the spontaneous pumping of sweat from the hydrophobic side to the hydrophilic side, i.e., the directional transport of sweat. The membrane can be used as a strain sensor to monitor motion strain over a broad working range of 0% to 250% with high sensitivity (GF = 4.11). The sensor can also detect simple human movements even under sweating conditions. We believe that the strategy demonstrated here will provide new insights into the design of next-generation strain sensors.
Collapse
Affiliation(s)
- Gaopeng Wang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zeming Xie
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenli Yu
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shihua Mao
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shuaibing Wang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Si Yu Zheng
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
4
|
Chen Y, Zheng W, Xia Y, Zhang L, Cao Y, Li S, Lu W, Liu C, Fu S. Implantable Resistive Strain Sensor-Decorated Colloidal Crystal Hydrogel Catheter for Intestinal Tract Pressure Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21736-21745. [PMID: 38630008 DOI: 10.1021/acsami.4c04817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In the quest to develop advanced monitoring systems for intestinal peristaltic stress, this study introduces a groundbreaking approach inspired by nature's sensory networks. By the integration of novel materials and innovative manufacturing techniques, a multifunctional Janus hydrogel patch has been engineered. This unique patch not only demonstrates superior stress-sensing capabilities in the intricate intestinal environment but also enables adhesion to wet tissue surfaces. This achievement opens new avenues for real-time physiological monitoring and potential therapeutic interventions in the realm of gastrointestinal health.
Collapse
Affiliation(s)
- Yufei Chen
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Wei Zheng
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Hubei 41300, China
| | - Youchen Xia
- Digestive Endoscopy Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lihao Zhang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Yue Cao
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Sunlong Li
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Weipeng Lu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Sengwang Fu
- Digestive Endoscopy Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
5
|
Zhao Z, Gao W, Chang Y, Yang Y, Shen H, Li T, Zhao S. Asymmetric Triple-Functional Janus Membrane for Blood Oxygenation. Adv Healthc Mater 2024; 13:e2302708. [PMID: 38010837 DOI: 10.1002/adhm.202302708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/18/2023] [Indexed: 11/29/2023]
Abstract
The oxygenation membrane, a core material of extracorporeal membrane oxygenation (ECMO), is facing challenges in balancing anti-plasma leakage, gas exchange efficiency, and hemocompatibility. Here, inspired by the asymmetric structural features of alveolus pulmonalis, a novel triple-functional membrane for blood oxygenation with a Janus architecture is proposed, which is composed of a hydrophobic polydimethylsiloxane (PDMS) layer to prevent plasma leakage, an ultrathin polyamide layer to enhance gas exchange efficiency with a CO2 :O2 permeance ratio of ≈10.7, and a hydrophilic polyzwitterionic layer to improve the hemocompatibility. During the simulated ECMO process, the Janus oxygenation membrane exhibits excellent performance in terms of thrombus formation and plasma leakage prevention, as well as adequate O2 transfer rate (17.8 mL min-1 m-2 ) and CO2 transfer rate (70.1 mL min-1 m-2 ), in comparison to the reported oxygenation membranes. This work presents novel concepts for the advancement of oxygenation membranes and demonstrates the application potential of the asymmetric triple-functional Janus oxygenation membrane in ECMO.
Collapse
Affiliation(s)
- Zhenyi Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin, 300072, P. R. China
| | - Wenqing Gao
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, P. R. China
| | - Yun Chang
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, P. R. China
| | - Yue Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin, 300072, P. R. China
| | - Hechen Shen
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, P. R. China
| | - Tong Li
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, 300170, P. R. China
| | - Song Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin, 300072, P. R. China
| |
Collapse
|
6
|
Tian B, Hu M, Yang Y, Wu J. A Janus membrane doped with carbon nanotubes for wet-thermal management. NANOSCALE ADVANCES 2023; 5:4579-4588. [PMID: 37638159 PMCID: PMC10448357 DOI: 10.1039/d3na00398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
In a human skin-fibrous fabric-external environment, fibrous materials, as the "second skin" of the human body, provide comfort against the wet and heat effectively. Fibrous materials protect human health and guarantee work efficiency in various outdoor or inner scenes. Personal wet-thermal management based on fibrous materials can regulate comfort in a facile manner with low or zero energy consumption, which has become a potential development area. However, realizing synergistic management of the wet and heat effectively and conveniently is a challenge in the development and production of fibrous materials. We designed and fabricated a Janus fibrous membrane composed of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA)-modified hydrophobic cotton gauze and electrospun carbon nanotubes (CNTs)-doped cellulose acetate (CA) hydrophilic fibrous membrane. Taking advantage of asymmetric wettability along its thickness direction, the Janus fibrous membrane, acting as a "liquid diode", could transport sweat/moisture from human skin to the external environment unidirectionally, which endowed a dry surface on human skin, avoiding "stickiness", and realizing wet management. Doped CNTs had good photothermal-conversion capacity, so the Janus membrane exhibited excellent heating capacity for passive radiation, so excellent synergistic wet-thermal management was obtained. The Janus membrane could be a candidate for diverse applications of fibrous membranes. Our data provide new ideas for the design and fabrication of fibrous membranes with remarkable wet-thermal management.
Collapse
Affiliation(s)
- Boyang Tian
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Miaomiao Hu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yiwen Yang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Jing Wu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| |
Collapse
|
7
|
Xiang B, Liu Q, Sun Q, Gong J, Mu P, Li J. Recent advances in eco-friendly fabrics with special wettability for oil/water separation. Chem Commun (Camb) 2022; 58:13413-13438. [PMID: 36398621 DOI: 10.1039/d2cc05780h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considering the serious damage to aquatic ecosystems and marine life caused by oil spills and oily wastewater discharge, efficient, environment-friendly and sustainable oil/water separation technology has become an inevitable trend for current development. Herein, fabrics are recognized as eco-friendly materials for water treatment due to their good degradability and low cost. Particularly, fabrics with rough structures and natural hydrophilicity/oleophilicity enable the construction of superwetting surfaces for the selective separation of oil/water mixtures and even complex emulsions. Therefore, superwetting fabrics for efficiently solving oil spills and purifying oily wastewater have received extensive attention. Especially, Janus and smart fabrics are highly anticipated to enable the on-demand and sustainable treatment of oil spills and oily wastewater due to their changeable wettability. Moreover, the fabrication of superwetting fabrics with multifunctional performances for oily wastewater purification can further promote their practical industrial applications, such as photocatalytic, self-cleaning, and self-healing characteristics. However, some potential challenges still exist, which urgently need to be systematically summarized to guide the future development of this research field. In this review, firstly, the fundamental theories of wettability and the separation mechanisms based on special wettability are discussed. Then, superwetting fabrics for efficient oil/water separation are systematically reviewed, such as superhydrophobic/superoleophilic (SHB/SOL), superhydrophilic/superoleophobic (SHL/SOB), SHL/underwater superoleophobic (SHL/UWSOB), and UWSOB/underoil superoleophobic (UWSOB/UOSHB) fabrics. Most importantly, we highlight Janus, smart, and multifunctional fabrics based on their superwetting property. Correspondingly, the advantages and disadvantages of each superwetting fabric are comprehensively analyzed. Besides, super-antiwetting fabrics with superhydrophobic/superoleophobic (SHB/SOB) property are also introduced. Finally, the challenges and future research directions are explained.
Collapse
Affiliation(s)
- Bin Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Qiuqiu Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Qing Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jingling Gong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
8
|
Zhang Q, Li K, Li Y, Li Y, Zhang X, Du Y, Tian D. Gradient monolayered porous membrane for liquid manipulation: from fabrication to application. NANOSCALE ADVANCES 2022; 4:3495-3503. [PMID: 36134360 PMCID: PMC9400516 DOI: 10.1039/d2na00421f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
The controlled transport of liquid on a smart material surface has important applications in the fields of microreactors, mass and heat transfer, water collection, microfluidic devices and so on. Porous membranes with special wettability have attracted extensive attention due to their unique unidirectional transport behavior, that is, liquid can easily penetrate in one direction while reverse transport is prevented, which shows great potential in functional textiles, fog collection, oil/water separation, sensors, etc. However, many porous membranes are synthesized from multilayer structural materials with poor mechanical properties and are currently prone to delamination, which limits their stability. While a monolayered porous membrane, especially for gradient structure, is an efficient, stable and durable material owing to its good durability and difficult stratification. Therefore, it is of great significance to fabricate a monolayered porous membrane for controllable liquid manipulation. In this minireview, we briefly introduce the classification and fabrication of typical monolayered porous membranes. And the applications of monolayered porous membranes in unidirectional penetration, selective separation and intelligent response are further emphasized and discussed. Finally, the controllable preparation and potential applications of porous membranes are featured and their prospects discussed on the basis of their current development.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
- School of Physics, Beihang University Beijing 100191 P. R. China
| | - Ke Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yuliang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science & Technology Beijing Beijing 100083 P. R. China
| | - Yi Du
- School of Physics, Beihang University Beijing 100191 P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University Beijing 100191 P. R. China
| |
Collapse
|