1
|
Berardi AJ, Francisco SD, Chang A, Zelaya JC, Raymond JE, Lahann J. Synthetic Protein Nanoparticles via Photoreactive Electrohydrodynamic Jetting. Macromol Rapid Commun 2024; 45:e2400349. [PMID: 39171381 DOI: 10.1002/marc.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Indexed: 08/23/2024]
Abstract
Protein nanoparticles are an attractive class of materials for nanomedicine applications due to the intrinsic biocompatibility, biodegradability, and intrinsic functionality of their constituent proteins. Despite the clinical success of select protein nanoparticles, this class of nanocarriers remains understudied and underdeveloped compared to lipid and polymer nanoparticles due to challenges related to formulation optimization, large design space, and their structural complexity. In this work, a modular strategy for protein nanoparticle preparation based on the concept of photoreactive jetting is introduced. The process relies on continuous ultraviolet irradiation during electrohydrodynamic (EHD) jetting of protein solutions that contain a homobifunctional photocrosslinker. Protein nanoparticles exhibit nanogel-like architectures comprised of proteins that are linked via synthetic moieties. Compared to conventional protein nanoparticles, this method reduces nanoparticle processing times to minutes, rather than hours to days. The inclusion of an emissive structural motif as the molecular scaffold of the photocrosslinker is used to study the supramolecular architecture of the stable nanoparticles via time-resolved fluorescence spectroscopy.
Collapse
Affiliation(s)
- Anthony J Berardi
- Macromolecular Science and Engineering Program, Ann Arbor, 48109, USA
- Biointerfaces Institute, Ann Arbor, 48109, USA
| | - Sonja D Francisco
- Biointerfaces Institute, Ann Arbor, 48109, USA
- Department of Chemistry, Ann Arbor, 48109, USA
| | - Albert Chang
- Biointerfaces Institute, Ann Arbor, 48109, USA
- Department of Materials Science and Engineering, Ann Arbor, 48109, USA
| | - Julio C Zelaya
- Macromolecular Science and Engineering Program, Ann Arbor, 48109, USA
- Biointerfaces Institute, Ann Arbor, 48109, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, Ann Arbor, 48109, USA
- Department of Chemical Engineering, Ann Arbor, 48109, USA
- Center for Complex Particle Systems, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Macromolecular Science and Engineering Program, Ann Arbor, 48109, USA
- Biointerfaces Institute, Ann Arbor, 48109, USA
- Department of Materials Science and Engineering, Ann Arbor, 48109, USA
- Department of Chemical Engineering, Ann Arbor, 48109, USA
- Center for Complex Particle Systems, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Pangua C, Espuelas S, Simón JA, Álvarez S, Martínez-Ohárriz C, Collantes M, Peñuelas I, Calvo A, Irache JM. Enhancing bevacizumab efficacy in a colorectal tumor mice model using dextran-coated albumin nanoparticles. Drug Deliv Transl Res 2024:10.1007/s13346-024-01734-3. [PMID: 39455507 DOI: 10.1007/s13346-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Bevacizumab is a monoclonal antibody (mAb) that prevents the growth of new blood vessels and is currently employed in the treatment of colorectal cancer (CRC). However, like other mAb, bevacizumab shows a limited penetration in the tumors, hampering their effectiveness and inducing adverse reactions. The aim of this work was to design and evaluate albumin-based nanoparticles, coated with dextran, as carriers for bevacizumab in order to promote its accumulation in the tumor and, thus, improve its antiangiogenic activity. These nanoparticles (B-NP-DEX50) displayed a mean size of about 250 nm and a payload of about 110 µg/mg. In a CRC mice model, these nanoparticles significantly reduced tumor growth and increased tumor doubling time, tumor necrosis and apoptosis more effectively than free bevacizumab. At the end of study, bevacizumab plasma levels were higher in the free drug group, while tumor levels were higher in the B-NP-DEX50 group (2.5-time higher). In line with this, the biodistribution study revealed that nanoparticles accumulated in the tumor core, potentially improving therapeutic efficacy while reducing systemic exposure. In summary, B-NP-DEX can be an adequate alternative to improve the therapeutic efficiency of biologically active molecules, offering a more specific biodistribution to the site of action.
Collapse
Affiliation(s)
- Cristina Pangua
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain
| | - Socorro Espuelas
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Jon Ander Simón
- Program in Solid Tumors, CIMA of the University of Navarra, Pamplona, 31008, Spain
| | - Samuel Álvarez
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain
| | | | - María Collantes
- Radiopharmacy Unit, Clinica Universidad de Navarra, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Iván Peñuelas
- Radiopharmacy Unit, Clinica Universidad de Navarra, Pamplona, 31008, Spain
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, CIMA of the University of Navarra, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Juan M Irache
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain.
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain.
| |
Collapse
|
3
|
Muraleedharan A, Acharya S, Kumar R. Recent Updates on Diverse Nanoparticles and Nanostructures in Therapeutic and Diagnostic Applications with Special Focus on Smart Protein Nanoparticles: A Review. ACS OMEGA 2024; 9:42613-42629. [PMID: 39464472 PMCID: PMC11500139 DOI: 10.1021/acsomega.4c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Nanomedicine enables advanced therapeutics, diagnostics, and predictive analysis, enhancing treatment outcomes and patient care. The choices and development of high-quality organic nanoparticles with relatively lower toxicity are important for achieving advanced medical goals. Among organic molecules, proteins have been prospected as smart candidates to revolutionize nanomedicine due to their inherent fascinating features. The advent of protein nanoarchitectures, which explore the biomolecular corona, offers new insights into their efficient tissue penetration and therapeutic potential. This review examines various animal- and plant-based protein nanoparticles, highlighting their source, activity, products, and unique biomedical applications in regenerative medicine, targeted therapies, gene and drug delivery, antimicrobial activity, bioimaging, immunological adjuvants, etc. It provides an extensive discussion on recent applications of protein nanoparticles across diverse biomedical fields as well as the evolving landscape of other nanoproducts and nanodevices for sensitive medical procedures. Furthermore, this review introduces different preparation technologies of protein nanoparticles, emphasizing how their design and construction significantly influence loading capacity, stability, and targeting effects. Additionally, we delve into the construction of different user-friendly multifunctional modular bioarchitectures by the assembly of protein nanoparticles (PNPs), marking a significant breakthrough in therapies. This review also considers the challenges of synthetic nanomaterials and the emergence of natural alternatives, which provides insights into protein nanoparticle research.
Collapse
Affiliation(s)
- Anju Muraleedharan
- Department
of Bioscience and Engineering, National
Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - Sarbari Acharya
- Department
of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India, 751024
| | - Ravindra Kumar
- Department
of Bioscience and Engineering, National
Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| |
Collapse
|
4
|
Ming P, Li B, Li Q, Yuan L, Jiang X, Liu Y, Cai R, Zhou P, Lan X, Tao G, Xiao J. Multifunctional sericin-based biomineralized nanoplatforms with immunomodulatory and angio/osteo-genic activity for accelerated bone regeneration in periodontitis. Biomaterials 2024; 314:122885. [PMID: 39423514 DOI: 10.1016/j.biomaterials.2024.122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Periodontitis is a chronic inflammation caused by dental plaque. It is characterized by the accumulation of excessive reactive oxygen species (ROS) and inflammatory mediators in the periodontal area. This affects the function of host cells, activates osteoclasts, and destroys periodontal tissue. Treatments such as local debridement or antibiotic therapy for ameliorating the overactive inflammatory microenvironment and repairing periodontal tissues are challenging. This paper reports multifunctional nanoplatforms (Se-CuSrHA@EGCG) based on sericin with ROS-scavenging, immunomodulatory, angiogenic, and osteogenic capabilities. The natural protein sericin, derived from silk cocoons, is used in water/oil emulsification and cross-linking processes to create sericin nanoparticles (Se NPs). Numerous binding sites are present on the surface of Se NPs. Ion-doped hydroxyapatite nanoparticles (Se-CuSrHA NPs) can be constructed using the force between positive and negative charges. After mineralization, an antioxidant coating is formed on the surface using polyethyleneimine (PEI)/epigallocatechin gallate (EGCG). Research conducted both in vitro and in vivo demonstrates that Se-CuSrHA@EGCG NPs can efficiently scavenge ROS, regulate macrophage polarization, increase the secretion of anti-inflammatory cytokines, and balance the immune microenvironment. In addition, Se-CuSrHA@EGCG stimulates angiogenesis, inhibits osteoclasts, and accelerates periodontal tissue repair. Therefore, this is a preferable strategy to accelerate bone regeneration in patients with periodontitis.
Collapse
Affiliation(s)
- Piaoye Ming
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Bojiang Li
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Qiumei Li
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Lingling Yuan
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xueyu Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yunfei Liu
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Peirong Zhou
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Jin SM, Cho JH, Gwak Y, Park SH, Choi K, Choi JH, Shin HS, Hong J, Bae YS, Ju J, Shin M, Lim YT. Transformable Gel-to-Nanovaccine Enhances Cancer Immunotherapy via Metronomic-Like Immunomodulation and Collagen-Mediated Paracortex Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409914. [PMID: 39380383 DOI: 10.1002/adma.202409914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Indexed: 10/10/2024]
Abstract
The generation of non-exhausted effector T-cells depends on vaccine's spatiotemporal profile, and untimely delivery and low targeting to lymph node (LN) paracortex by standard bolus immunization show limited efficacy. By recapitulating the dynamic processes of acute infection, a bioadhesive immune niche domain (BIND) is developed that facilitates the delivery of timely-activating conjugated nanovaccine (t-CNV) in a metronomic-like manner and increased the accumulation and retention of TANNylated t-CNV (tannic acid coated t-CNV) in LN by specifically binding to collagen in subcapsular sinus where they gradually transformed into TANNylated antigen-adjuvant conjugate by proteolysis, inducing their penetration into paracortex through the collagen-binding in LN conduit and evoking durable antigen-specific CD8+ T-cell responses. The BIND combined with t-CNV, mRNA vaccine, IL-2, and anti-PD-1 antibody also significantly enhanced cancer immunotherapy by the dynamic modulation of immunological landscape of tumor microenvironment. The results provide material design strategy for dynamic immunomodulation that can potentiate non-exhausted T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ju Hee Cho
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yejin Gwak
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sei Hyun Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Kyungmin Choi
- Progeneer, 12 Digital-ro 31-gil, Guro-gu, Seoul, 08380, Republic of Korea
| | - Jin-Ho Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - JungHyub Hong
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jaewon Ju
- Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
6
|
Son A, Park J, Kim W, Lee W, Yoon Y, Ji J, Kim H. Integrating Computational Design and Experimental Approaches for Next-Generation Biologics. Biomolecules 2024; 14:1073. [PMID: 39334841 PMCID: PMC11430650 DOI: 10.3390/biom14091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range of diseases. This review examines recent advances in computational and experimental approaches for engineering improved protein therapeutics. Key areas of focus include antibody engineering, enzyme replacement therapies, and cytokine-based drugs. Computational methods like structure-based design, machine learning integration, and protein language models have dramatically enhanced our ability to predict protein properties and guide engineering efforts. Experimental techniques such as directed evolution and rational design approaches continue to evolve, with high-throughput methods accelerating the discovery process. Applications of these methods have led to breakthroughs in affinity maturation, bispecific antibodies, enzyme stability enhancement, and the development of conditionally active cytokines. Emerging approaches like intracellular protein delivery, stimulus-responsive proteins, and de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain in predicting in vivo behavior, scalable manufacturing, immunogenicity mitigation, and targeted delivery. Addressing these challenges will require continued integration of computational and experimental methods, as well as a deeper understanding of protein behavior in complex physiological environments. As the field advances, we can anticipate increasingly sophisticated and effective protein therapeutics for treating human diseases.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS (Sciences for Panomics), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
Berardi AJ, Raymond JE, Chang A, Mauser AK, Lahann J. Self-Reporting Therapeutic Protein Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43350-43363. [PMID: 39106360 DOI: 10.1021/acsami.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
We present a modular strategy to synthesize nanoparticle sensors equipped with dithiomaleimide-based, fluorescent molecular reporters capable of discerning minute changes in interparticle chemical environments based on fluorescence lifetime analysis. Three types of nanoparticles were synthesized with the aid of tailor-made molecular reporters, and it was found that protein nanoparticles exhibited greater sensitivity to changes in the core environment than polymer nanogels and block copolymer micelles. Encapsulation of the hydrophobic small-molecule drug paclitaxel (PTX) in self-reporting protein nanoparticles induced characteristic changes in fluorescence lifetime profiles, detected via time-resolved fluorescence spectroscopy. Depending on the mode of drug encapsulation, self-reporting protein nanoparticles revealed pronounced differences in their fluorescence lifetime signatures, which correlated with burst- vs diffusion-controlled release profiles observed in previous reports. Self-reporting nanoparticles, such as the ones developed here, will be critical for unraveling nanoparticle stability and nanoparticle-drug interactions, informing the future development of rationally engineered nanoparticle-based drug carriers.
Collapse
Affiliation(s)
- Anthony J Berardi
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48105, United States
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
| | - Jeffery E Raymond
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
- Center for Complex Particle Systems, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Albert Chang
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Ava K Mauser
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Joerg Lahann
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48105, United States
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
8
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
9
|
Stellpflug A, Walls J, Hansen C, Joshi A, Wang B. From bone to nanoparticles: development of a novel generation of bone derived nanoparticles for image guided orthopedic regeneration. Biomater Sci 2024; 12:3633-3648. [PMID: 38856671 PMCID: PMC11238765 DOI: 10.1039/d4bm00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Bone related diseases such as osteoporosis, osteoarthritis, metastatic bone cancer, osteogenesis imperfecta, and Paget's disease, are primarily treated with pharmacologic therapies that often exhibit limited efficacy and substantial side effects. Bone injuries or fractures are primarily repaired with biocompatible materials that produce mixed results in sufficiently regenerating healthy and homogenous bone tissue. Each of these bone conditions, both localized and systemic, use different strategies with the same goal of achieving a healthy and homeostatic bone environment. In this study, we developed a new type of bone-based nanoparticle (BPs) using the entire organic extracellular matrix (ECM) of decellularized porcine bone, additionally encapsulating indocyanine green dye (ICG) for an in vivo monitoring capability. Utilizing the regenerative capability of bone ECM and the functionality of nanoparticles, the ICG encapsulated BPs (ICG/BPs) have been demonstrated to be utilized as a therapeutic option for localized and systemic orthopedic conditions. Additionally, ICG enables an in situ monitoring capability in the Short-Wave Infrared (SWIR) spectrum, capturing the degradation or the biodistribution of the ICG/BPs after both local implantation and intravenous administration, respectively. The efficacy and safety of the ICG/BPs shown within this study lay the foundation for future investigations, which will delve into optimization for clinical translation.
Collapse
Affiliation(s)
- Austin Stellpflug
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jacob Walls
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Christopher Hansen
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Amit Joshi
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
10
|
Khakpour S, Hosano N, Moosavi-Nejad Z, Farajian AA, Hosano H. Advancing Tumor Therapy: Development and Utilization of Protein-Based Nanoparticles. Pharmaceutics 2024; 16:887. [PMID: 39065584 PMCID: PMC11279530 DOI: 10.3390/pharmaceutics16070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Protein-based nanoparticles (PNPs) in tumor therapy hold immense potential, combining targeted delivery, minimal toxicity, and customizable properties, thus paving the way for innovative approaches to cancer treatment. Understanding the various methods available for their production is crucial for researchers and scientists aiming to harness these nanoparticles for diverse applications, including tumor therapy, drug delivery, imaging, and tissue engineering. This review delves into the existing techniques for producing PNPs and PNP/drug complexes, while also exploring alternative novel approaches. The methods outlined in this study were divided into three key categories based on their shared procedural steps: solubility change, solvent substitution, and thin flow methods. This classification simplifies the understanding of the underlying mechanisms by offering a clear framework, providing several advantages over other categorizations. The review discusses the principles underlying each method, highlighting the factors influencing the nanoparticle size, morphology, stability, and functionality. It also addresses the challenges and considerations associated with each method, including the scalability, reproducibility, and biocompatibility. Future perspectives and emerging trends in PNPs' production are discussed, emphasizing the potential for innovative strategies to overcome current limitations, which will propel the field forward for biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Shirin Khakpour
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran
| | - Amir A. Farajian
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA;
| | - Hamid Hosano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| |
Collapse
|
11
|
Lin W, Li A, Qiu L, Huang H, Cui P, Wang J. Albumin Nanoparticles Increase the Efficacy of Doxorubicin Hydrochloride Liposome Injection Based on Threshold Theory. Mol Pharm 2024; 21:2970-2980. [PMID: 38742943 DOI: 10.1021/acs.molpharmaceut.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
One of the most significant reasons hindering the clinical translation of nanomedicines is the rapid clearance of intravenously injected nanoparticles by the mononuclear phagocyte system, particularly by Kupffer cells in the liver, leading to an inefficient delivery of nanomedicines for tumor treatment. The threshold theory suggests that the liver's capacity to clear nanoparticles is limited, and a single high dose of nanoparticles can reduce the hepatic clearance efficiency, allowing more nanomedicines to reach tumor tissues and enhance therapeutic efficacy. Building upon this theory, researchers have conducted numerous validation studies based on the same nanoparticle carrier systems. These studies involve the use of albumin nanoparticles to improve the therapeutic efficacy of albumin nanomedicines as well as polyethylene glycol (PEG)-modified liposomal nanoparticles to enhance the efficacy of PEGylated liposomal nanomedicines. However, there is no research indicating the feasibility of the threshold theory when blank nanoparticles and nanomedicine belong to different nanoparticle carrier systems currently. In this study, we prepared two different sizes of albumin nanoparticles by using bovine serum albumin. We used the marketed nanomedicine liposomal doxorubicin hydrochloride injection (trade name: LIBOD, manufacturer: Shanghai Fudan-zhangjiang Biopharmaceutical Co., Ltd.), as the representative nanomedicine. Through in vivo experiments, we found that using threshold doses of albumin nanoparticles still can reduce the clearance rate of LIBOD, prolong its time in vivo, increase the area under the plasma concentration-time curve (AUC), and also lead to an increased accumulation of the drug at the tumor site. Furthermore, evaluation of in vivo efficacy and safety further indicates that threshold doses of 100 nm albumin nanoparticles can enhance the antitumor effect of LIBOD without causing harm to the animals. During the study, we found that the particle size of albumin nanoparticles influenced the in vivo distribution of the nanomedicine at the same threshold dose. Compared with 200 nm albumin nanoparticles, 100 nm albumin nanoparticles more effectively reduce the clearance efficiency of LIBOD and enhance nanomedicine accumulation at the tumor site, warranting further investigation. This study utilized albumin nanoparticles to reduce hepatic clearance efficiency and enhance the delivery efficiency of nonalbumin nanocarrier liposomal nanomedicine, providing a new avenue to improve the efficacy and clinical translation of nanomedicines with different carrier systems.
Collapse
Affiliation(s)
- Wei Lin
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, P. R. China
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Anyin Li
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Hai Huang
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
12
|
Rao S, Jia C, Lu X, Yu Y, Wang Z, Yang Z. Acid-Heat-Induced Fabrication of Nisin-Loaded Egg White Protein Nanoparticles: Enhanced Structural and Antibacterial Stability. Foods 2024; 13:1741. [PMID: 38890971 PMCID: PMC11172011 DOI: 10.3390/foods13111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
As a natural cationic peptide, Nisin is capable of widely inhibiting the growth of Gram-positive bacteria. However, it also has drawbacks such as its antimicrobial activity being susceptible to environmental factors. Nano-encapsulation can improve the defects of nisin in food applications. In this study, nisin-loaded egg white protein nanoparticles (AH-NEn) were prepared in fixed ultrasound-mediated under pH 3.0 and 90 °C. Compared with the controls, AH-NEn exhibited smaller particle size (112.5 ± 2.85 nm), smaller PDI (0.25 ± 0.01), larger Zeta potential (24 ± 1.18 mV), and higher encapsulation efficiency (91.82%) and loading capacity (45.91%). The turbidity and Fourier transform infrared spectroscopy (FTIR) results indicated that there are other non-covalent bonding interactions between the molecules of AH-NEn besides the electrostatic forces, which accounts for the fact that it is structurally more stable than the controls. In addition, by the results of fluorescence intensity, differential scanning calorimetry (DSC), and X-ray diffraction (XRD), it was shown that thermal induction could improve the solubility, heat resistance, and encapsulation of nisin in the samples. In terms of antimicrobial function, acid-heat induction did not recede the antimicrobial activity of nisin encapsulated in egg white protein (EWP). Compared with free nisin, the loss rate of bactericidal activity of AH-NEn was reduced by 75.0% and 14.0% following treatment with trypsin or a thermal treatment at 90 °C for 30 min, respectively.
Collapse
Affiliation(s)
- Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Caochen Jia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Xiangning Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Yisheng Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (S.R.); (C.J.); (X.L.); (Y.Y.); (Z.W.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
13
|
Yu Y, Yang D, Lin B, Zhu L, Li C, Li X. Readily Available Oral Prebiotic Protein Reactive Oxygen Species Nanoscavengers for Synergistic Therapy of Inflammation and Fibrosis in Inflammatory Bowel Disease. ACS NANO 2024; 18:13583-13598. [PMID: 38740518 DOI: 10.1021/acsnano.3c13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A significant gap exists in the demand for safe and effective drugs for inflammatory bowel disease (IBD), and its associated intestinal fibrosis. As oxidative stress plays a central role in the pathogenesis of IBD, astaxanthin (AST), a good antioxidant with high safety, holds promise for treating IBD. However, the application of AST is restricted by its poor solubility and easy oxidation. Herein, different protein-based nanoparticles (NPs) are fabricated for AST loading to identify an oral nanovehicle with potential clinical applicability. Through systematic validation via molecular dynamics simulation and in vitro characterization of properties, whey protein isolate (WPI)-driven NPs using a simple preparation method without the need for cross-linking agents or emulsifiers were identified as the optimal carrier for oral AST delivery. Upon oral administration, the WPI-driven NPs, benefiting from the intrinsic pH sensitivity and mucoadhesive properties, effectively shielded AST from degradation by gastric juices and targeted release of AST at intestinal lesion sites. Additionally, the AST NPs displayed potent therapeutic efficacy in both dextran sulfate sodium (DSS)-induced acute colitis and chronic colitis-associated intestinal fibrosis by ameliorating inflammation, oxidative damage, and intestinal microecology. In conclusion, the AST WPI NPs hold a potential therapeutic value in treating inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Dairong Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingru Lin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Zhu
- School of Chinese Medicine, Hong Kong Baptist University, 999077 Hong Kong, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
14
|
Waheed I, Ali A, Tabassum H, Khatoon N, Lai WF, Zhou X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front Oncol 2024; 14:1296091. [PMID: 38660132 PMCID: PMC11040677 DOI: 10.3389/fonc.2024.1296091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer is a severe disease that results in death in all countries of the world. A nano-based drug delivery approach is the best alternative, directly targeting cancer tumor cells with improved drug cellular uptake. Different types of nanoparticle-based drug carriers are advanced for the treatment of cancer, and to increase the therapeutic effectiveness and safety of cancer therapy, many substances have been looked into as drug carriers. Lipid-based nanoparticles (LBNPs) have significantly attracted interest recently. These natural biomolecules that alternate to other polymers are frequently recycled in medicine due to their amphipathic properties. Lipid nanoparticles typically provide a variety of benefits, including biocompatibility and biodegradability. This review covers different classes of LBNPs, including their characterization and different synthesis technologies. This review discusses the most significant advancements in lipid nanoparticle technology and their use in medicine administration. Moreover, the review also emphasized the applications of lipid nanoparticles that are used in different cancer treatment types.
Collapse
Affiliation(s)
- Ibtesam Waheed
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Anwar Ali
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Biochemical and Biotechnological Sciences, School of Precision Medicine, University of Campania, Naples, Italy
| | - Huma Tabassum
- Institute of Social and Cultural Studies, Department of Public Health, University of the Punjab, Lahore, Pakistan
| | - Narjis Khatoon
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Solomonov A, Kozell A, Shimanovich U. Designing Multifunctional Biomaterials via Protein Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202318365. [PMID: 38206201 DOI: 10.1002/anie.202318365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Protein self-assembly is a fundamental biological process where proteins spontaneously organize into complex and functional structures without external direction. This process is crucial for the formation of various biological functionalities. However, when protein self-assembly fails, it can trigger the development of multiple disorders, thus making understanding this phenomenon extremely important. Up until recently, protein self-assembly has been solely linked either to biological function or malfunction; however, in the past decade or two it has also been found to hold promising potential as an alternative route for fabricating materials for biomedical applications. It is therefore necessary and timely to summarize the key aspects of protein self-assembly: how the protein structure and self-assembly conditions (chemical environments, kinetics, and the physicochemical characteristics of protein complexes) can be utilized to design biomaterials. This minireview focuses on the basic concepts of forming supramolecular structures, and the existing routes for modifications. We then compare the applicability of different approaches, including compartmentalization and self-assembly monitoring. Finally, based on the cutting-edge progress made during the last years, we summarize the current knowledge about tailoring a final function by introducing changes in self-assembly and link it to biomaterials' performance.
Collapse
Affiliation(s)
- Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl st., Rehovot, 76100, Israel
| | - Anna Kozell
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl st., Rehovot, 76100, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl st., Rehovot, 76100, Israel
| |
Collapse
|
16
|
Zhong L, Xu J, Hu Q, Zhan Q, Ma N, Zhao M, Zhao L. Improved bioavailability and antioxidation of β-carotene-loaded biopolymeric nanoparticles stabilized by glycosylated oat protein isolate. Int J Biol Macromol 2024; 263:130298. [PMID: 38382783 DOI: 10.1016/j.ijbiomac.2024.130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The limited bioavailability of β-carotene hinders its potential application in functional foods, despite its excellent antioxidant properties. Protein-based nanoparticles have been widely used for the delivery of β-carotene to overcome this limitation. However, these nanoparticles are susceptible to environmental stress. In this study, we utilized glycosylated oat protein isolate to prepare nanoparticles loaded with β-carotene through the emulsification-evaporation method, aiming to address this challenge. The results showed that β-carotene was embedded into the spherical nanoparticles, exhibiting relatively high encapsulation efficiency (86.21 %) and loading capacity (5.43 %). The stability of the nanoparticles loaded with β-carotene was enhanced in acidic environments and under high ionic strength. The nanoparticles offered protection to β-carotene against gastric digestion and facilitated its controlled release (95.76 % within 6 h) in the small intestine, thereby leading to an improved in vitro bioavailability (65.06 %) of β-carotene. This improvement conferred the benefits on β-carotene nanoparticles to alleviate tert-butyl hydroperoxide-induced oxidative stress through the upregulation of heme oxygenase-1 and NAD(P)H quinone dehydrogenase 1 expression, as well as the promotion of nuclear translocation of nuclear factor-erythroid 2-related factor 2. Our study suggests the potential for the industry application of nanoparticles based on glycosylated proteins to effectively deliver hydrophobic nutrients and enhance their application.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Yang EL, Sun ZJ. Nanomedicine Targeting Myeloid-Derived Suppressor Cells Enhances Anti-Tumor Immunity. Adv Healthc Mater 2024; 13:e2303294. [PMID: 38288864 DOI: 10.1002/adhm.202303294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Indexed: 02/13/2024]
Abstract
Cancer immunotherapy, a field within immunology that aims to enhance the host's anti-cancer immune response, frequently encounters challenges associated with suboptimal response rates. The presence of myeloid-derived suppressor cells (MDSCs), crucial constituents of the tumor microenvironment (TME), exacerbates this issue by fostering immunosuppression and impeding T cell differentiation and maturation. Consequently, targeting MDSCs has emerged as crucial for immunotherapy aimed at enhancing anti-tumor responses. The development of nanomedicines specifically designed to target MDSCs aims to improve the effectiveness of immunotherapy by transforming immunosuppressive tumors into ones more responsive to immune intervention. This review provides a detailed overview of MDSCs in the TME and current strategies targeting these cells. Also the benefits of nanoparticle-assisted drug delivery systems, including design flexibility, efficient drug loading, and protection against enzymatic degradation, are highlighted. It summarizes advances in nanomedicine targeting MDSCs, covering enhanced treatment efficacy, safety, and modulation of the TME, laying the groundwork for more potent cancer immunotherapy.
Collapse
Affiliation(s)
- En-Li Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430079, China
| |
Collapse
|
18
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
19
|
Dzuvor CKO, Shen HH, Haritos VS, He L. Coassembled Multicomponent Protein Nanoparticles Elicit Enhanced Antibacterial Activity. ACS NANO 2024; 18:4478-4494. [PMID: 38266175 DOI: 10.1021/acsnano.3c11179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The waning pipeline of the useful antibacterial arsenal has necessitated the urgent development of more effective antibacterial strategies with distinct mechanisms to rival the continuing emergence of resistant pathogens, particularly Gram-negative bacteria, due to their explicit drug-impermeable, two-membrane-sandwiched cell wall envelope. Herein, we have developed multicomponent coassembled nanoparticles with strong bactericidal activity and simultaneous bacterial cell envelope targeting using a peptide coassembly strategy. Compared to the single-component self-assembled nanoparticle counterparts or cocktail mixtures of these at a similar concentration, coassembled multicomponent nanoparticles showed higher bacterial killing efficiency against Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli by several orders of magnitude (about 100-1,000,000-fold increase). Comprehensive confocal and electron microscopy suggest that the superior antibacterial activity of the coassembled nanoparticles proceeds via multiple complementary mechanisms of action, including membrane destabilization, disruption, and cell wall hydrolysis, actions that were not observed with the single nanoparticle counterparts. To understand the fundamental working mechanisms behind the improved performance of coassembled nanoparticles, we utilized a "dilution effect" system where the antibacterial components are intermolecularly mixed and coassembled with a non-antibacterial protein in the nanoparticles. We suggest that coassembled nanoparticles mediate enhanced bacterial killing activity by attributes such as optimized local concentration, high avidity, cooperativity, and synergy. The nanoparticles showed no cytotoxic or hemolytic activity against tested eukaryotic cells and erythrocytes. Collectively, these findings reveal potential strategies for disrupting the impermeable barrier that Gram-negative pathogens leverage to restrict antibacterial access and may serve as a platform technology for potential nano-antibacterial design to strengthen the declining antibiotic arsenal.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton, Victoria 3800, Australia
| | - Victoria S Haritos
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lizhong He
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
Nagar N, Naidu G, Mishra A, Poluri KM. Protein-Based Nanocarriers and Nanotherapeutics for Infection and Inflammation. J Pharmacol Exp Ther 2024; 388:91-109. [PMID: 37699711 DOI: 10.1124/jpet.123.001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Infectious and inflammatory diseases are one of the leading causes of death globally. The status quo has become more prominent with the onset of the coronavirus disease 2019 (COVID-19) pandemic. To combat these potential crises, proteins have been proven as highly efficacious drugs, drug targets, and biomarkers. On the other hand, advancements in nanotechnology have aided efficient and sustained drug delivery due to their nano-dimension-acquired advantages. Combining both strategies together, the protein nanoplatforms are equipped with the advantageous intrinsic properties of proteins as well as nanoformulations, eloquently changing the field of nanomedicine. Proteins can act as carriers, therapeutics, diagnostics, and theranostics in their nanoform as fusion proteins or as composites with other organic/inorganic materials. Protein-based nanoplatforms have been extensively explored to target the major infectious and inflammatory diseases of clinical concern. The current review comprehensively deliberated proteins as nanocarriers for drugs and nanotherapeutics for inflammatory and infectious agents, with special emphasis on cancer and viral diseases. A plethora of proteins from diverse organisms have aided in the synthesis of protein-based nanoformulations. The current study specifically presented the proteins of human and pathogenic origin to dwell upon the field of protein nanotechnology, emphasizing their pharmacological advantages. Further, the successful clinical translation and current bottlenecks of the protein-based nanoformulations associated with the infection-inflammation paradigm have also been discussed comprehensively. SIGNIFICANCE STATEMENT: This review discusses the plethora of promising protein-based nanocarriers and nanotherapeutics explored for infectious and inflammatory ailments, with particular emphasis on protein nanoparticles of human and pathogenic origin with reference to the advantages, ADME (absorption, distribution, metabolism, and excretion parameters), and current bottlenecks in development of protein-based nanotherapeutic interventions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Goutami Naidu
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Amit Mishra
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| |
Collapse
|
21
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
22
|
Incocciati A, Kubeš J, Piacentini R, Cappelletti C, Botta S, Bertuccini L, Šimůnek T, Boffi A, Macone A, Bonamore A. Hydrophobicity-enhanced ferritin nanoparticles for efficient encapsulation and targeted delivery of hydrophobic drugs to tumor cells. Protein Sci 2023; 32:e4819. [PMID: 37883077 PMCID: PMC10661074 DOI: 10.1002/pro.4819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
Ferritin, a naturally occurring iron storage protein, has gained significant attention as a drug delivery platform due to its inherent biocompatibility and capacity to encapsulate therapeutic agents. In this study, we successfully genetically engineered human H ferritin by incorporating 4 or 6 tryptophan residues per subunit, strategically oriented towards the inner cavity of the nanoparticle. This modification aimed to enhance the encapsulation of hydrophobic drugs into the ferritin cage. Comprehensive characterization of the mutants revealed that only the variant carrying four tryptophan substitutions per subunit retained the ability to disassemble and reassemble properly. As a proof of concept, we evaluated the loading capacity of this mutant with ellipticine, a natural hydrophobic indole alkaloid with multimodal anticancer activity. Our data demonstrated that this specific mutant exhibited significantly higher efficiency in loading ellipticine compared to human H ferritin. Furthermore, to evaluate the versatility of this hydrophobicity-enhanced ferritin nanoparticle as a drug carrier, we conducted a comparative study by also encapsulating doxorubicin, a commonly used anticancer drug. Subsequently, we tested both ellipticine and doxorubicin-loaded nanoparticles on a promyelocytic leukemia cell line, demonstrating efficient uptake by these cells and resulting in the expected cytotoxic effect.
Collapse
Affiliation(s)
- Alessio Incocciati
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | - Jan Kubeš
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Roberta Piacentini
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
- Center of Life Nano‐ and Neuro‐ScienceItalian Institute of TechnologyRomeItaly
| | - Chiara Cappelletti
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | - Sofia Botta
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | | | - Tomáš Šimůnek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Alberto Boffi
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | - Alberto Macone
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | - Alessandra Bonamore
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| |
Collapse
|
23
|
Kaltbeitzel J, Wich PR. Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew Chem Int Ed Engl 2023; 62:e202216097. [PMID: 36917017 DOI: 10.1002/anie.202216097] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
Proteins and enzymes are versatile biomaterials for a wide range of medical applications due to their high specificity for receptors and substrates, high degradability, low toxicity, and overall good biocompatibility. Protein nanoparticles are formed by the arrangement of several native or modified proteins into nanometer-sized assemblies. In this review, we will focus on artificial nanoparticle systems, where proteins are the main structural element and not just an encapsulated payload. While under natural conditions, only certain proteins form defined aggregates and nanoparticles, chemical modifications or a change in the physical environment can further extend the pool of available building blocks. This allows the assembly of many globular proteins and even enzymes. These advances in preparation methods led to the emergence of new generations of nanosystems that extend beyond transport vehicles to diverse applications, from multifunctional drug delivery to imaging, nanocatalysis and protein therapy.
Collapse
Affiliation(s)
- Jonas Kaltbeitzel
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
24
|
Padhi AK, Kalita P, Maurya S, Poluri KM, Tripathi T. From De Novo Design to Redesign: Harnessing Computational Protein Design for Understanding SARS-CoV-2 Molecular Mechanisms and Developing Therapeutics. J Phys Chem B 2023; 127:8717-8735. [PMID: 37815479 DOI: 10.1021/acs.jpcb.3c04542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The continuous emergence of novel SARS-CoV-2 variants and subvariants serves as compelling evidence that COVID-19 is an ongoing concern. The swift, well-coordinated response to the pandemic highlights how technological advancements can accelerate the detection, monitoring, and treatment of the disease. Robust surveillance systems have been established to understand the clinical characteristics of new variants, although the unpredictable nature of these variants presents significant challenges. Some variants have shown resistance to current treatments, but innovative technologies like computational protein design (CPD) offer promising solutions and versatile therapeutics against SARS-CoV-2. Advances in computing power, coupled with open-source platforms like AlphaFold and RFdiffusion (employing deep neural network and diffusion generative models), among many others, have accelerated the design of protein therapeutics with precise structures and intended functions. CPD has played a pivotal role in developing peptide inhibitors, mini proteins, protein mimics, decoy receptors, nanobodies, monoclonal antibodies, identifying drug-resistance mutations, and even redesigning native SARS-CoV-2 proteins. Pending regulatory approval, these designed therapies hold the potential for a lasting impact on human health and sustainability. As SARS-CoV-2 continues to evolve, use of such technologies enables the ongoing development of alternative strategies, thus equipping us for the "New Normal".
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- Department of Zoology, School of Life Sciences, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
25
|
Sharda D, Kaur P, Choudhury D. Protein-modified nanomaterials: emerging trends in skin wound healing. DISCOVER NANO 2023; 18:127. [PMID: 37843732 PMCID: PMC10579214 DOI: 10.1186/s11671-023-03903-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023]
Abstract
Prolonged inflammation can impede wound healing, which is regulated by several proteins and cytokines, including IL-4, IL-10, IL-13, and TGF-β. Concentration-dependent effects of these molecules at the target site have been investigated by researchers to develop them as wound-healing agents by regulating signaling strength. Nanotechnology has provided a promising approach to achieve tissue-targeted delivery and increased effective concentration by developing protein-functionalized nanoparticles with growth factors (EGF, IGF, FGF, PDGF, TGF-β, TNF-α, and VEGF), antidiabetic wound-healing agents (insulin), and extracellular proteins (keratin, heparin, and silk fibroin). These molecules play critical roles in promoting cell proliferation, migration, ECM production, angiogenesis, and inflammation regulation. Therefore, protein-functionalized nanoparticles have emerged as a potential strategy for improving wound healing in delayed or impaired healing cases. This review summarizes the preparation and applications of these nanoparticles for normal or diabetic wound healing and highlights their potential to enhance wound healing.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
26
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
27
|
Zhang Q, Toprakcioglu Z, Jayaram AK, Guo G, Wang X, Knowles TPJ. Formation of Protein Nanoparticles in Microdroplet Flow Reactors. ACS NANO 2023; 17:11335-11344. [PMID: 37306477 PMCID: PMC10311583 DOI: 10.1021/acsnano.3c00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Nanoparticles are increasingly being used for biological applications, such as drug delivery and gene transfection. Different biological and bioinspired building blocks have been used for generating such particles, including lipids and synthetic polymers. Proteins are an attractive class of material for such applications due to their excellent biocompatibility, low immunogenicity, and self-assembly characteristics. Stable, controllable, and homogeneous formation of protein nanoparticles, which is key to successfully delivering cargo intracellularly, has been challenging to achieve using conventional methods. In order to address this issue, we employed droplet microfluidics and utilized the characteristic of rapid and continuous mixing within microdroplets in order to produce highly monodisperse protein nanoparticles. We exploit the naturally occurring vortex flows within microdroplets to prevent nanoparticle aggregation following nucleation, resulting in systematic control over the particle size and monodispersity. Through combination of simulation and experiment, we find that the internal vortex velocity within microdroplets determines the uniformity of the protein nanoparticles, and by varying parameters such as protein concentration and flow rates, we are able to finely tune nanoparticle dimensional properties. Finally, we show that our nanoparticles are highly biocompatible with HEK-293 cells, and through confocal microscopy, we determine that the nanoparticles fully enter into the cell with almost all cells containing them. Due to the high throughput of the method of production and the level of control afforded, we believe that the approach described in this study for generating monodisperse protein-based nanoparticles has the potential for intracellular drug delivery or for gene transfection in the future.
Collapse
Affiliation(s)
- Qi Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Center
of Excellence for Environmental Safety and Biological Effects, Beijing
Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Zenon Toprakcioglu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Akhila K. Jayaram
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J J Thomson
Avenue, Cambridge CB3 OHE, U.K.
| | - Guangsheng Guo
- Center
of Excellence for Environmental Safety and Biological Effects, Beijing
Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Xiayan Wang
- Center
of Excellence for Environmental Safety and Biological Effects, Beijing
Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J J Thomson
Avenue, Cambridge CB3 OHE, U.K.
| |
Collapse
|
28
|
Sihler S, Krämer M, Schmitt F, Favella P, Mützel L, Baatz J, Rosenau F, Ziener U. Robust Protocol for the Synthesis of BSA Nanohydrogels by Inverse Nanoemulsion for Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37247617 DOI: 10.1021/acs.langmuir.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In a highly efficient and reproducible process, bovine serum albumin (BSA) nanogels are prepared from inverse nanoemulsions. The concept of independent nanoreactors of the individual droplets in the nanoemulsions allows high protein concentrations of up to 0.6% in the inverse total system. The BSA gel networks are generated by the 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride coupling strategy widely used in protein chemistry. In a robust work-up protocol, the hydrophobic continuous phase of the inverse emulsion is stepwise replaced by water without compromising the colloidal stability and non-toxicity of the nanogel particles. Further, the simple process allows the loading of the nanogels with various cargos like a dye (Dy-495), a drug (ibuprofen), another protein [FMN-binding fluorescent protein (EcFbFP)], and oligonucleotides [plasmid DNA for enhanced GFP expression in mammalian cells (pEGFP c3) and a synthetic anti-Pseudomonas aeruginosa aptamer library]. These charged nanoobjects work efficiently as carriers for staining and transfection of cells. This is exemplarily shown for a phalloidin dye and a plasmid DNA as cargo with adenocarcinomic human alveolar basal epithelial cells (A549), a cell revertant of the SV-40 cancer rat cell line SV-52 (Rev2), and human breast carcinoma cells (MDA-MB-231), respectively.
Collapse
Affiliation(s)
- Susanne Sihler
- Institute of Organic Chemistry III-Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Felicitas Schmitt
- Institute of Organic Chemistry III-Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Patrizia Favella
- Institute of Pharmaceutical Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen 72488, Germany
| | - Laura Mützel
- Institute of Pharmaceutical Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Jennifer Baatz
- Institute of Pharmaceutical Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Ulrich Ziener
- Institute of Organic Chemistry III-Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
29
|
Engelberger F, Zakary JD, Künze G. Guiding protein design choices by per-residue energy breakdown analysis with an interactive web application. Front Mol Biosci 2023; 10:1178035. [PMID: 37228581 PMCID: PMC10204868 DOI: 10.3389/fmolb.2023.1178035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Recent developments in machine learning have greatly facilitated the design of proteins with improved properties. However, accurately assessing the contributions of an individual or multiple amino acid mutations to overall protein stability to select the most promising mutants remains a challenge. Knowing the specific types of amino acid interactions that improve energetic stability is crucial for finding favorable combinations of mutations and deciding which mutants to test experimentally. In this work, we present an interactive workflow for assessing the energetic contributions of single and multi-mutant designs of proteins. The energy breakdown guided protein design (ENDURE) workflow includes several key algorithms, including per-residue energy analysis and the sum of interaction energies calculations, which are performed using the Rosetta energy function, as well as a residue depth analysis, which enables tracking the energetic contributions of mutations occurring in different spatial layers of the protein structure. ENDURE is available as a web application that integrates easy-to-read summary reports and interactive visualizations of the automated energy calculations and helps users selecting protein mutants for further experimental characterization. We demonstrate the effectiveness of the tool in identifying the mutations in a designed polyethylene terephthalate (PET)-degrading enzyme that add up to an improved thermodynamic stability. We expect that ENDURE can be a valuable resource for researchers and practitioners working in the field of protein design and optimization. ENDURE is freely available for academic use at: http://endure.kuenzelab.org.
Collapse
|
30
|
Wang C, Xiao C, Chen Y, Li Y, Zhang Q, Shan W, Li Y, Bi S, Wang Y, Wang X, Ren L. Sequential administration of virus-like particle-based nanomedicine to elicit enhanced tumor chemotherapy. J Mater Chem B 2023; 11:2674-2683. [PMID: 36857702 DOI: 10.1039/d2tb02163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein cages have played a long-standing role in biomedicine applications, especially in tumor chemotherapy. Among protein cages, virus like particles (VLPs) have received attention for their potential applications in vaccine development and targeted drug delivery. However, most of the existing protein-based platform technologies are plagued with immunological problems that may limit their systemic delivery efficiency as drug carriers. Here, we show that using immune-orthogonal protein cages sequentially and modifying the dominant loop epitope can circumvent adaptive immune responses and enable effective drug delivery using repeated dosing. We genetically modified three different hepadnavirus core protein derived VLPs as delivery vectors for doxorubicin (DOX). These engineered VLPs have similar assembly characteristics, particle sizes, and immunological properties. Our results indicated that there was negligible antibody cross-reactivity in either direction between these three RGD-VLPs in mice that were previously immunized against HBc VLPs. Moreover, the sequential administration of multiple RGD-VLP-based nanomedicine (DOX@RGD-VLPs) could effectively reduce immune clearance and inhibited tumor growth. Hence, this study could provide an attractive protein cage-based platform for therapeutic drug delivery.
Collapse
Affiliation(s)
- Chufan Wang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Cheng Xiao
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Yurong Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, P. R. China
| | - Yao Li
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Qiang Zhang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, P. R. China
| | - Yulin Li
- Henan Bioengineering Research Center, Zhengdong New District, Zhengzhou, China
| | - Shengli Bi
- Chinese Center for Disease Control & Prevention, Institute Viral Disease Control & Prevention, Beijing, P. R. China
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengdong New District, Zhengzhou, China
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, P. R. China
| | - Lei Ren
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China
- State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
31
|
Yao Y, Ko Y, Grasman G, Raymond JE, Lahann J. The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:351-361. [PMID: 36959977 PMCID: PMC10028570 DOI: 10.3762/bjnano.14.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The potential of therapeutically loaded nanoparticles (NPs) has been successfully demonstrated during the last decade, with NP-mediated nonviral gene delivery gathering significant attention as highlighted by the broad clinical acceptance of mRNA-based COVID-19 vaccines. A significant barrier to progress in this emerging area is the wild variability of approaches reported in published literature regarding nanoparticle characterizations. Here, we provide a brief overview of the current status and outline important concerns regarding the need for standardized protocols to evaluate NP uptake, NP transfection efficacy, drug dose determination, and variability of nonviral gene delivery systems. Based on these concerns, we propose wide adherence to multimodal, multiparameter, and multistudy analysis of NP systems. Adoption of these proposed approaches will ensure improved transparency, provide a better basis for interlaboratory comparisons, and will simplify judging the significance of new findings in a broader context, all critical requirements for advancing the field of nonviral gene delivery.
Collapse
Affiliation(s)
- Yao Yao
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yeongun Ko
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- School of Polymer Science and Engineering, Chonnam National University, Buk-gu, Gwangju 61186, South Korea
| | - Grant Grasman
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Reutovich AA, Srivastava AK, Arosio P, Bou-Abdallah F. Ferritin nanocages as efficient nanocarriers and promising platforms for COVID-19 and other vaccines development. Biochim Biophys Acta Gen Subj 2023; 1867:130288. [PMID: 36470367 PMCID: PMC9721431 DOI: 10.1016/j.bbagen.2022.130288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The development of safe and effective vaccines against SARS-CoV-2 and other viruses with high antigenic drift is of crucial importance to public health. Ferritin is a well characterized and ubiquitous iron storage protein that has emerged not only as a useful nanoreactor and nanocarrier, but more recently as an efficient platform for vaccine development. SCOPE OF REVIEW This review discusses ferritin structure-function properties, self-assembly, and novel bioengineering strategies such as interior cavity and exterior surface modifications for cargo encapsulation and delivery. It also discusses the use of ferritin as a scaffold for biomedical applications, especially for vaccine development against influenza, Epstein-Barr, HIV, hepatitis-C, Lyme disease, and respiratory viruses such as SARS-CoV-2. The use of ferritin for the synthesis of mosaic vaccines to deliver a cocktail of antigens that elicit broad immune protection against different viral variants is also explored. MAJOR CONCLUSIONS The remarkable stability, biocompatibility, surface functionalization, and self-assembly properties of ferritin nanoparticles make them very attractive platforms for a wide range of biomedical applications, including the development of vaccines. Strong immune responses have been observed in pre-clinical studies against a wide range of pathogens and have led to the exploration of ferritin nanoparticles-based vaccines in multiple phase I clinical trials. GENERAL SIGNIFICANCE The broad protective antibody response of ferritin nanoparticles-based vaccines demonstrates the usefulness of ferritin as a highly promising and effective approaches for vaccine development.
Collapse
Affiliation(s)
| | - Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| |
Collapse
|
33
|
Ebensperger P, Zmyslia M, Lohner P, Braunreuther J, Deuringer B, Becherer A, Süss R, Fischer A, Jessen-Trefzer C. A Dual-Metal-Catalyzed Sequential Cascade Reaction in an Engineered Protein Cage. Angew Chem Int Ed Engl 2023; 62:e202218413. [PMID: 36799770 DOI: 10.1002/anie.202218413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/18/2023]
Abstract
Herein, we describe the creation of an artificial protein cage housing a dual-metal-tagged guest protein that catalyzes a linear, two-step sequential cascade reaction. The guest protein consists of a fusion protein of HaloTag and monomeric rhizavidin. Inside the protein capsid, we established a ruthenium-catalyzed allylcarbamate deprotection reaction followed by a gold-catalyzed ring-closing hydroamination reaction that led to indoles and phenanthridines with an overall yield of up to 66 % in aqueous solutions. Furthermore, we show that the encapsulation stabilizes the metal catalysts against deactivation by air, proteins and cell lysate.
Collapse
Affiliation(s)
- Paul Ebensperger
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Mariia Zmyslia
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Philipp Lohner
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Judith Braunreuther
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Benedikt Deuringer
- Institute of Pharmaceutical Science, University of Freiburg, Sonnenstrasse 5, 79104, Freiburg i. Br., Germany
| | - Anita Becherer
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Regine Süss
- Institute of Pharmaceutical Science, University of Freiburg, Sonnenstrasse 5, 79104, Freiburg i. Br., Germany
| | - Anna Fischer
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| |
Collapse
|
34
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
35
|
Shen L, Cao S, Wang Y, Zhou P, Wang S, Zhao Y, Meng L, Zhang Q, Li Y, Xu X, Yuan Q, Li J. Self-Adaptive Antibacterial Scaffold with Programmed Delivery of Osteogenic Peptide and Lysozyme for Infected Bone Defect Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:626-637. [PMID: 36541416 DOI: 10.1021/acsami.2c19026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bone defects caused by disease or trauma are often accompanied by infection, which severely disrupts the normal function of bone tissue at the defect site. Biomaterials that can simultaneously reduce inflammation and promote osteogenesis are effective tools for addressing this problem. In this study, we set up a programmed delivery platform based on a chitosan scaffold to enhance its osteogenic activity and prevent implant-related infections. In brief, the osteogenic peptide sequence (YGFGG) was modified onto the surface of cowpea chlorotic mottle virus (CCMV) to form CCMV-YGFGG nanoparticles. CCMV-YGFGG exhibited good biocompatibility and osteogenic ability in vitro. Then, CCMV-YGFGG and lysozyme were loaded on the chitosan scaffold, which exhibited a good antibacterial effect and promoted bone regeneration for infected bone defect treatment. As a delivery platform, the scaffold showed staged release of lysozyme and CCMV-YGFGG, which facilitates the regeneration of infected bone defects. Our study provides a novel and promising strategy for the treatment of infected bone defects.
Collapse
Affiliation(s)
- Luxuan Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yuemin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Shuaibing Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yao Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lingzhuang Meng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Quan Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yanyan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
36
|
Zheng H, Liu L, Li Y, Rong R, Song L, Shi J, Teng J, Sun X, Zhang Y. X-ray excited Mn2+-doped persistent luminescence materials with biological window emission for in vivo bioimaging. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Malo de Molina P, Le TP, Iturrospe A, Gasser U, Arbe A, Colmenero J, Pomposo JA. Neat Protein Single-Chain Nanoparticles from Partially Denatured BSA. ACS OMEGA 2022; 7:42163-42169. [PMID: 36440132 PMCID: PMC9685756 DOI: 10.1021/acsomega.2c04805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The main challenge for the preparation of protein single-chain nanoparticles (SCNPs) is the natural complexity of these macromolecules. Herein, we report the suitable conditions to produce "neat" bovine serum albumin (BSA) single-chain nanoparticles (SCNPs) from partially denatured BSA, which involves denaturation in urea and intramolecular cross-linking below the overlap concentration. We use two disuccinimide ester linkers containing three and six methylene spacer groups: disuccinimidyl glutarate (DSG) and disuccinimidyl suberate (DSS), respectively. Remarkably, the degree of internal cross-linking can be followed simply and efficiently via 1H NMR spectroscopy. The associated structural changes-as probed by small-angle neutron scattering (SANS)-reveal that the denatured protein has a random-like coil conformation, which progressively shrinks with the addition of DSG or DSS, thus allowing for size control of the BSA-SCNPs with radii of gyration down to 5.4 nm. The longer cross-linker exhibits slightly more efficiency in chain compaction with a somewhat stronger size reduction but similar reactivity at a given cross-linker concentration. This reliable method is applicable to a wide range of compact proteins since most proteins have appropriate reactive amino acids and denature in urea. Critically, this work paves the way to the synthesis of "neat", biodegradable protein SCNPs for a range of applications including nanomedicine.
Collapse
Affiliation(s)
- Paula Malo de Molina
- Materials
Physics Center (MPC), Centro de Física de Materiales (CFM)
(CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE—Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Thu Phuong Le
- Materials
Physics Center (MPC), Centro de Física de Materiales (CFM)
(CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia, Spain
| | - Amaia Iturrospe
- Materials
Physics Center (MPC), Centro de Física de Materiales (CFM)
(CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia, Spain
| | - Urs Gasser
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Arantxa Arbe
- Materials
Physics Center (MPC), Centro de Física de Materiales (CFM)
(CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia, Spain
| | - Juan Colmenero
- Materials
Physics Center (MPC), Centro de Física de Materiales (CFM)
(CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, University of the Basque
Country (UPV/EHU) P.O. Box 1072, E-20018 Donostia, Spain
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 Donostia, Spain
| | - José A. Pomposo
- Materials
Physics Center (MPC), Centro de Física de Materiales (CFM)
(CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE—Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, University of the Basque
Country (UPV/EHU) P.O. Box 1072, E-20018 Donostia, Spain
| |
Collapse
|
38
|
Gagliardi A, Ambrosio N, Voci S, Salvatici MC, Fresta M, Cosco D. Easy preparation, characterization and cytotoxic investigation of 5-Fluorouracil-loaded zein/sericin nanoblends. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
39
|
Habibi N, Brown TD, Adu-Berchie K, Christau S, Raymond JE, Mooney DJ, Mitragotri S, Lahann J. Nanoparticle Properties Influence Transendothelial Migration of Monocytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5603-5616. [PMID: 35446569 DOI: 10.1021/acs.langmuir.2c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticle-based delivery of therapeutics to the brain has had limited clinical impact due to challenges crossing the blood-brain barrier (BBB). Certain cells, such as monocytes, possess the ability to migrate across the BBB, making them attractive candidates for cell-based brain delivery strategies. In this work, we explore nanoparticle design parameters that impact both monocyte association and monocyte-mediated BBB transport. We use electrohydrodynamic jetting to prepare nanoparticles of varying sizes, compositions, and elasticity to address their impact on uptake by THP-1 monocytes and permeation across the BBB. An in vitro human BBB model is developed using human cerebral microvascular endothelial cells (hCMEC/D3) for the assessment of migration. We compare monocyte uptake of both polymeric and synthetic protein nanoparticles (SPNPs) of various sizes, as well as their effect on cell migration. SPNPs (human serum albumin/HSA or human transferrin/TF) are shown to promote increased monocyte-mediated transport across the BBB over polymeric nanoparticles. TF SPNPs (200 nm) associate readily, with an average uptake of 138 particles/cell. Nanoparticle loading is shown to influence the migration of THP-1 monocytes. The migration of monocytes loaded with 200 nm TF and 200 nm HSA SPNPs was 2.3-fold and 2.1-fold higher than that of an untreated control. RNA-seq analysis after TF SPNP treatment suggests that the upregulation of several migration genes may be implicated in increased monocyte migration (ex. integrin subunits α M and α L). Integrin β 2 chain combines with either integrin subunit α M chain or integrin subunit α L chain to form macrophage antigen 1 and lymphocyte function-associated antigen 1 integrins. Both products play a pivotal role in the transendothelial migration cascade. Our findings highlight the potential of SPNPs as drug and/or gene delivery platforms for monocyte-mediated BBB transport, especially where conventional polymer nanoparticles are ineffective or otherwise not desirable.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tyler D Brown
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
| | - Kwasi Adu-Berchie
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
| | - Stephanie Christau
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeffery E Raymond
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David J Mooney
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
| | - Samir Mitragotri
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
| | - Joerg Lahann
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Material Science & Engineering, Department of Macromolecular Science & Engineering, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Habibi N, Mauser A, Raymond JE, Lahann J. Systematic studies into uniform synthetic protein nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:274-283. [PMID: 35330645 PMCID: PMC8919420 DOI: 10.3762/bjnano.13.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/11/2022] [Indexed: 05/07/2023]
Abstract
Nanoparticles are frequently pursued as drug delivery carriers due to their potential to alter the pharmacological profiles of drugs, but their broader utility in nanomedicine hinges upon exquisite control of critical nanoparticle properties, such as shape, size, or monodispersity. Electrohydrodynamic (EHD) jetting is a probate method to formulate synthetic protein nanoparticles (SPNPs), but a systematic understanding of the influence of crucial processing parameters, such as protein composition, on nanoparticle morphologies is still missing. Here, we address this knowledge gap by evaluating formulation trends in SPNPs prepared by EHD jetting based on a series of carrier proteins and protein blends (hemoglobin, transferrin, mucin, or insulin). In general, blended SPNPs presented uniform populations with minimum diameters between 43 and 65 nm. Size distributions of as-jetted SPNPs approached monodispersity as indicated by polydispersity indices (PDISEM) ranging from 0.11-0.19. Geometric factor analysis revealed high circularities (0.82-0.90), low anisotropy (<1.45) and excellent roundness (0.76-0.89) for all SPNPs prepared via EHD jetting. Tentatively, blended SPNPs displayed higher circularity and lower anisotropy, as compared to single-protein SPNPs. Secondary statistical analysis indicated that blended SPNPs generally present combined features of their constituents, with some properties driven by the dominant protein constituent. Our study suggests SPNPs made from blended proteins can serve as a promising drug delivery carrier owing to the ease of production, the composition versatility, and the control over their size, shape and dispersity.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ava Mauser
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|