1
|
Farooq S, Bereczki A, Habib M, Costa I, Cardozo O. High-performance plasmonics nanostructures in gas sensing: a comprehensive review. Med Gas Res 2025; 15:1-9. [PMID: 39436166 PMCID: PMC11515073 DOI: 10.4103/mgr.medgasres-d-23-00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 10/23/2024] Open
Abstract
Plasmonic nanostructures have emerged as indispensable components in the construction of high-performance gas sensors, playing a pivotal role across diverse applications, including industrial safety, medical diagnostics, and environmental monitoring. This review paper critically examines seminal research that underscores the remarkable efficacy of plasmonic materials in achieving superior attributes such as heightened sensitivity, selectivity, and rapid response times in gas detection. Offering a synthesis of pivotal studies, this review aims to furnish a comprehensive discourse on the contemporary advancements within the burgeoning domain of plasmonic gas sensing. The featured investigations meticulously scrutinize various plasmonic structures and their applications in detecting gases like carbon monoxide, carbon dioxide, hydrogen and nitrogen dioxide. The discussed frameworks encompass cutting-edge approaches, spanning ideal absorbers, surface plasmon resonance sensors, and nanostructured materials, thereby elucidating the diverse strategies employed for advancing plasmonic gas sensing technologies.
Collapse
Affiliation(s)
- Sajid Farooq
- Nuclear and Energy Research Institute, São Paulo, Brazil
| | - Allan Bereczki
- Nuclear and Energy Research Institute, São Paulo, Brazil
| | - Muhammad Habib
- Department of Physics, COMSAT University, Lahore, Pakistan
| | - Isolda Costa
- Nuclear and Energy Research Institute, São Paulo, Brazil
| | - Olavo Cardozo
- Post graduate program on material sciences, CCEN, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Hameed YAS, Alkhathami N, Snari RM, Munshi AM, Alaysuy O, Hadi M, Alsharif MA, Khalil MA, El-Metwaly NM. Novel amino-functionalized MOF-based sensor for zinc ion detection in water and blood serum samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125432. [PMID: 39549333 DOI: 10.1016/j.saa.2024.125432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Aquatic systems with low zinc levels can experience a significant decrease in carbon dioxide uptake and limited growth of phytoplankton species. In this study, we describe the use of a new fluorescent sensor based on NH2-MIL-53(Al), and modified with glutaraldehyde and sulfadoxine, for selectively detecting zinc ions in water and blood serum samples. Characterization of the synthesized material was performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), confirming successful functionalization and preservation of the MOF structure. The sensor's performance for Zn2+ detection was evaluated by spectrofluorometry, demonstrating a significant fluorescence enhancement upon Zn2+ binding due to the interaction between Zn2+ ions and the sulfonamide groups. With a detection limit as low as 3.14 × 10-2 ppm, the sensor demonstrates high selectivity for Zn2+ over other common metal ions. The sensor's response is rapid, stable, and reproducible, making it suitable for practical applications. Real sample analysis was conducted in tap water and blood serum samples, with the results compared to those obtained using ICP-OES and a colorimetric test with 5-bromo-PAPS. The comparison confirmed the high accuracy and reliability of the fluorescent sensor in detecting Zn2+ ions in complex matrices. NH2-MIL-53(Al) modified with glutaraldehyde and sulfadoxine shows potential as a selective fluorescent sensor for Zn2+ detection, making it a valuable tool for monitoring the environment and biology.
Collapse
Affiliation(s)
- Yasmeen A S Hameed
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 73222, Saudi Arabia
| | - Nada Alkhathami
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa M Munshi
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Muhammad Hadi
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Marwah A Alsharif
- Department of Physics, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - M A Khalil
- Egyptian Propylene and Polypropylene Company, Port Said 42511, Egypt
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
3
|
Li KF, Yu CH, Liang GL, Chen J, Chang Y, Xu G, Wang GE. Organic-inorganic hybrid covalent superlattice for temperature-compensated ratiometric gas sensing. Nat Commun 2025; 16:1560. [PMID: 39939340 PMCID: PMC11821860 DOI: 10.1038/s41467-025-56609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 01/16/2025] [Indexed: 02/14/2025] Open
Abstract
Room-temperature chemiresistive sensors are valued for their low power consumption, ease of operation, and real-time monitoring capabilities, making them highly advantageous for various applications. However, the challenge of inaccurate detection due to variations in operating temperature is a significant hurdle for their practical use. To address this, we develop a ratiometric-gas sensing method that leverages the exceptional photoelectric and chemiresistive gas sensing sensitivity of organic-inorganic hybrid superlattice materials AgBDT (BDT = 1,4-benzenedithiol). This approach can effectively detect nitrogen dioxide molecules, with a detection limit of 3.06 ppb. Crucially, the ratiometric-gas sensing technique offers robust diminution to temperature interference, with the coefficient of variation value dropping from 21.81% to 7.81% within the temperature range of 25 to 65 °C, which significantly enhances the stability and reliability of the device. This method would be capable of not only the detecting of gases but also providing rapid, accurate analysis in real conditions.
Collapse
Affiliation(s)
- Ke-Feng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, PR China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, PR China
| | - Chen-Hui Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China
| | - Guang-Ling Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China
| | - Jie Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China
| | - Yu Chang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China.
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China.
| |
Collapse
|
4
|
Ouyang Q, Rong Y, Xia G, Chen Q, Ma Y, Liu Z. Integrating Humidity-Resistant and Colorimetric COF-on-MOF Sensors with Artificial Intelligence Assisted Data Analysis for Visualization of Volatile Organic Compounds Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411621. [PMID: 39887649 DOI: 10.1002/advs.202411621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Indexed: 02/01/2025]
Abstract
Direct visualization and monitoring of volatile organic compounds (VOCs) sensing processes via portable colorimetric sensors are highly desired but challenging targets. The key challenge resides in the development of efficient sensing systems with high sensitivity, selectivity, humidity resistance, and profuse color change. Herein, a strategy is reported for the direct visualization of VOCs sensing by mimicking human olfactory function and integrating colorimetric COF-on-MOF sensors with artificial intelligence (AI)-assisted data analysis techniques. The Dye@Zeolitic Imidazolate Framework@Covalent Organic Framework (Dye@ZIF-8@COF) sensor takes advantage of the highly porous structure of MOF core and hydrophobic nature of the COF shell, enabling highly sensitive colorimetric sensing of trace number of VOCs. The Dye@ZIF-8@COF sensor exhibits exceptional sensitivity to VOCs at sub-parts per million levels and demonstrates excellent humidity resistance (under 20-90% relative humidity), showing great promise for practical applications. Importantly, AI-assisted information fusion and perceptual analysis greatly promote the accuracy of the VOCs sensing processes, enabling direct visualization and classification of seven stages of matcha drying processes with a superior accuracy of 95.74%. This work paves the way for the direct visualization of sensing processes of VOCs via the integration of advanced humidity-resistant sensing materials and AI-assisted data analyzing techniques.
Collapse
Affiliation(s)
- Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Tea Industry Research Institute, Fujian Eight Horses Tea Co., Ltd, Quanzhou, 362442, P. R. China
| | - Yanna Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Gaofan Xia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yujie Ma
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, P. R. China
| |
Collapse
|
5
|
Benseghir Y, Tsang MY, Schöfbeck F, Hetey D, Kitao T, Uemura T, Shiozawa H, Reithofer MR, Chin JM. Electric-field assisted spatioselective deposition of MIL-101(Cr) PEDOT to enhance electrical conductivity and humidity sensing performance. J Colloid Interface Sci 2025; 678:979-986. [PMID: 39226838 DOI: 10.1016/j.jcis.2024.08.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Precise deposition of metal-organic framework (MOF) materials is important for fabricating high-performing MOF-based devices. Electric-field assisted drop-casting of poly(3,4-ethylenedioxythiophene)-functionalized (PEDOT) MIL-101(Cr) nanoparticles onto interdigitated electrodes allowed their precise spatioselective deposition as percolating nanoparticle chains in the interelectrode gaps. The resulting aligned materials were investigated for resistive and capacitive humidity sensing and compared with unaligned samples prepared via regular drop-casting. The spatioselective deposition of MOFs resulted in up to over 500 times improved conductivity and approximately 6 times increased responsivity during resistive humidity sensing. The aligned samples also showed good capacitive humidity sensing performance, with up to 310 times capacitance gain at 10 versus 90 % relative humidity. In contrast, the resistive behavior of the unaligned samples rendered them unsuitable for capacitive sensing. This work demonstrates that applying an alternating potential during drop-casting is a simple yet effective method to control MOF deposition for greater efficiency, conductivity, and enhanced humidity sensing performance.
Collapse
Affiliation(s)
- Youven Benseghir
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Min Ying Tsang
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Flora Schöfbeck
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Daniel Hetey
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hidetsugu Shiozawa
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jia Min Chin
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Sun Y, He W, Jiang C, Li J, Liu J, Liu M. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. NANO-MICRO LETTERS 2025; 17:109. [PMID: 39812886 PMCID: PMC11735798 DOI: 10.1007/s40820-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films. While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene, the rapid development of new 2D materials with exotic properties has opened up novel applications, particularly in smart interaction and integrated functionalities. This review aims to consolidate recent progress, highlight the unique advantages of 2D materials, and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices. We begin with an in-depth analysis of the advantages, sensing mechanisms, and potential applications of 2D materials in wearable biodevice fabrication. Following this, we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body. Special attention is given to showcasing the integration of multi-functionality in 2D smart devices, mainly including self-power supply, integrated diagnosis/treatment, and human-machine interaction. Finally, the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of 2D materials for advanced biodevices.
Collapse
Affiliation(s)
- Yingzhi Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Weiyi He
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Can Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
7
|
Zhen YX, Wang G, Li YF, Yu Y. Nanogenerators for gas sensing applications. Front Chem 2025; 12:1532018. [PMID: 39867594 PMCID: PMC11757891 DOI: 10.3389/fchem.2024.1532018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection. The paper thoroughly examines the advancements made in the field of NG-based self-powered gas sensor research in recent years. A systematic description is given of the two main types of NG-based self-powered gas sensors. Lastly, the evolution of sensor use in a few typical gas sensing applications is highlighted, and the field's future development trend is anticipated.
Collapse
Affiliation(s)
- Ye-Xuan Zhen
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Shijiazhuang, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Gong Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Shijiazhuang, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Yun-Fei Li
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Shijiazhuang, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| | - Yu Yu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Shijiazhuang, China
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, China
| |
Collapse
|
8
|
Hua X, Fan X, Ye Y, Wang X, Zhang C, Jiang Y, Zhang Y, Wang C. Signal Amplification via Nonlinear Femtosecond Laser Filamentation for Trace Metal Ion Detection Using Metal-Organic Framework-Polymer Adsorbents. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1694-1700. [PMID: 39701821 DOI: 10.1021/acsami.4c20725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Signal amplification strategies are essential for enhancing the sensitivity and accuracy of analytical methods. This study introduces an innovative approach that utilizes the nonlinear process of femtosecond laser filamentation as a signal amplifier in combination with metal-organic framework (MOF)-polymer adsorbents. In this method, metal ions adsorbed in the MOF-polymer composite alter the intensity and temporal characteristics of an 800 nm femtosecond laser pulse. These changes significantly impact the spectra produced after filamentation, thus serving as an effective signal amplifier. Using MOF single crystals as metal ion enrichment platforms, we enhance spectral signals and achieve detection limits as low as 0.1 ppb for trace metal ions. The integration of the MOF adsorbent with the extensive spectral modifications induced by femtosecond laser filamentation represents a significant advancement in signal amplification techniques for analytical chemistry and environmental monitoring.
Collapse
Affiliation(s)
- Xin Hua
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaolin Fan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ying Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangyang Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cankun Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yibin Jiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yusheng Zhang
- Suzhou Institute for Advanced Research, University of Science and Technology of China (USTC), Suzhou 215123, China
| | - Cheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
9
|
Liu X, Yang X, Xiang S, Lv Y, Zhang Z. Coordination-Defect-Driven Construction of Responsive Pure-MOF Microspheres for Switchable Mode-Dependent Anticounterfeiting Labels. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2063-2071. [PMID: 39716438 DOI: 10.1021/acsami.4c19719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Luminescent metal-organic frameworks (MOFs) with exceptional dynamics and diverse active sites possess tremendous potential in information security and anticounterfeiting applications. However, traditional MOF systems are based on broadband spectral signals with spectrum overlap, which easily leads to low-resolution signal identification, compromising the overall security level. Here, we report the coordination-defect-induced amorphous pure-MOF microsphere with switchable whispering-gallery-mode (WGM) signals as a mode-dependent security platform. Amorphous MOF microspheres are prepared by a chlorine coordination-defect-driven growth strategy based on the aperiodic arrangement in coordinate networks. The as-prepared amorphous MOF microspheres with well-defined circular morphology display the typical WGM resonance with dimension-dependent character, permitting the creation of photonic barcodes with substantial encoding capacity. Furthermore, the amorphous MOF microspheres exhibit optical mode switching behavior due to reversible framework shrinkage, which enables the design of covert photonic barcodes as anticounterfeiting labels, finally demonstrating responsive coding property and enhanced information security. The results provide a novel strategy for exploring an MOF-based security platform for information encryption and optical anticounterfeiting.
Collapse
Affiliation(s)
- Xinming Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Xue Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
10
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
11
|
Liu S, Guo Y, Gong Y, Wei Y, Hu Q, Yu L. Hydrodynamic Fluidic Pump Empowered Sensitive Recognition and Active Transport of Hydrogen Peroxide in 1D Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408755. [PMID: 39527459 PMCID: PMC11714159 DOI: 10.1002/advs.202408755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Through synthetic chemistry, the development of molecular devices for the precise selective recognition and active transport of small molecules stands as one of the most ambitious objectives in extensive medical, environmental, and biological applications. The periodical channels of the metal-organic frameworks (MOFs) with excellent chemical affinity offer vast regulatory space for reaching this goal. Herein, by post-modifying fluorescent probes and ionic liquid molecules into the Zr-MOFs (NU-1000), a donor-acceptor (D-A) system within the periodical 1D channels is created to construct a hydrodynamic fluidic pump within the abundant 1D channels. Irradiation with light serves to initiate and direct fluid motion, expediting the transport of H2O2 molecules to the active site, thus boosting the sensor sensitivity through gas enrichment. The rapid mass transfer, characterized by a high flow rate and intensified interaction between the D-A system and H2O2 molecules, enables the detection of H2O2 at concentrations as low as 20 ppb. Besides, with the aid of incident light, the pump system exhibits active transport characteristics by transporting radicals derived from H2O2 against a concentration gradient, reaching a remarkable 10th cycle. The strategy of achieving active transport of small molecules through pore modification holds promise for advancing the development of artificial bioactive channels.
Collapse
Affiliation(s)
- Shuya Liu
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationShandong UniversityJinan250100China
| | - Yongxian Guo
- Qilu University of Technology (Shandong Academy of Sciences)Shandong Analysis and Test CenterJinan250014China
| | - Yanjun Gong
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationShandong UniversityJinan250100China
| | - Yanze Wei
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationShandong UniversityJinan250100China
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences)Shandong Analysis and Test CenterJinan250014China
| | - Li Yu
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationShandong UniversityJinan250100China
| |
Collapse
|
12
|
Hou L, Duan J, Xiong F, Carraro C, Shi T, Maboudian R, Long H. Low Power Gas Sensors: From Structure to Application. ACS Sens 2024; 9:6327-6357. [PMID: 39535966 DOI: 10.1021/acssensors.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Gas sensors are pivotal across industries, encompassing environmental monitoring, industrial safety, and healthcare. Recently, a surge in demand for low power gas sensors has emerged, driven by the huge need for applications in portable devices, wireless sensor networks, and the Internet of things (IoT). The practical realization of a densely interconnected sensor network demands gas sensors to have low power consumption for energy-efficient operation. This Perspective offers a comprehensive overview of the progress of low-power sensors for gas and volatile organic compound detection, with a keen focus on the interplay between sensing materials (including metal oxide semiconductors, metal-organic frameworks, and two-dimensional materials), sensor structures, and power consumption. The main gas sensing mechanisms are discussed, and we delve into the mechanisms for achieving low power consumption including material properties and sensor design. Furthermore, typical applications of low power gas sensors are also presented, including wearable technology, food safety, and environmental monitoring. The review will end by discussing some open questions and ongoing needs.
Collapse
Affiliation(s)
- Linlin Hou
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Jian Duan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Feng Xiong
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Carlo Carraro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | - Roya Maboudian
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Hu Long
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| |
Collapse
|
13
|
Abudayyeh A, Mahmoud LA, Ting VP, Nayak S. Metal-Organic Frameworks (MOFs) and Their Composites for Oil/Water Separation. ACS OMEGA 2024; 9:47374-47394. [PMID: 39651103 PMCID: PMC11618436 DOI: 10.1021/acsomega.4c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024]
Abstract
Contamination of water by oil-based pollutants is a major environmental problem because of its harmful impact on human life, marine life, and the environment. As a result, a wide range of materials are being investigated for the effective separation of oil from water. Among these materials, metal-organic frameworks (MOFs) and their composites have emerged as excellent candidates due to their ultraporous structures with high surface areas that can be engineered to achieve high selectivity for one of the phases in an oil/water mixture for efficient water filtration. However, the often nanocrystalline/microcrystalline form of MOFs combined with challenges of processability and poor stability in water has largely limited their use in industrial and environmental applications. Hence, considerable efforts have recently been made to improve the performance and stability of MOFs by introducing hydrophobic functional groups into the organic linkers and fabricating polymer-MOF composites to increase their stability and recyclability. In addition, the use of biobased or biodegradable MOF composites can be particularly useful for applications in natural environments. This Review presents recent advances in the field of hydrophobic MOFs and MOF-based composites studied for the separation of oil from oil/water mixtures, with an account of future challenges in this area.
Collapse
Affiliation(s)
- Abdullah
M. Abudayyeh
- Institute
of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain Louvain-la-Neuve, Walloon Brabant BE 1348, Belgium
| | - Lila A.M. Mahmoud
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Valeska P. Ting
- Research
School of Chemistry & College of Engineering, Computing and Cybernetics, The Australian National University, Canberra ACT 2602, Australia
| | - Sanjit Nayak
- Bristol
Composite Institute, School of Civil Aerospace and Design Engineering, University of Bristol, Queens Building, Bristol BS8 1TR, United
Kingdom
| |
Collapse
|
14
|
Wu X, Tian X, Zhang W, Peng X, Zhou S, Buenconsejo PJS, Li Y, Xiao S, Tao J, Zhang M, Yuan H. Solution-Processable MOF-on-MOF System Constructed via Template-Assisted Growth for Ultratrace H 2S Detection. Angew Chem Int Ed Engl 2024; 63:e202410411. [PMID: 39187431 DOI: 10.1002/anie.202410411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Conductive metal-organic frameworks (c-MOFs) hold promise for highly sensitive sensing systems due to their conductivity and porosity. However, the fabrication of c-MOF thin films with controllable morphology, thickness, and preferential orientation remains a formidable yet ubiquitous challenge. Herein, we propose an innovative template-assisted strategy for constructing MOF-on-MOF (Ni3(HITP)2/NUS-8 (HITP: 2,3,6,7,10,11-hexamino-tri (p-phenylene))) systems with good electrical conductivity, porosity, and solution processability. Leveraging the 2D nature and solution processability of NUS-8, we achieve the controllable self-assembly of Ni3(HITP)2 on NUS-8 nanosheets, producing solution-processable Ni3(HITP)2/NUS-8 nanosheets with a film conductivity of 1.55×10-3 S ⋅ cm-1 at room temperature. Notably, the excellent solution processability facilitates the fabrication of large-area thin films and printing of intricate patterns with good uniformity, and the Ni3(HITP)2/NUS-8-based system can monitor finger bending. Gas sensors based on Ni3(HITP)2/NUS-8 exhibit high sensitivity (LOD~6 ppb) and selectivity towards ultratrace H2S at room temperature, attributed to the coupling between Ni3(HITP)2 and NUS-8 and the redox reaction with H2S. This approach not only unlocks the potential of stacking different MOF layers in a sequence to generate functionalities that cannot be achieved by a single MOF, but also provides novel avenues for the scalable integration of MOFs in miniaturized devices with salient sensing performance.
Collapse
Affiliation(s)
- Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xin Tian
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siyuan Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Pio John S Buenconsejo
- Facility for Analysis Characterization Testing Simulation (FACTS), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection (School of Electrical Engineering and Automation), Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection (School of Electrical Engineering and Automation), Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jifang Tao
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
15
|
He X, Zhu X, Hong Z, Wang B, Hong W, Yao Y, Sun F, Cai Q, Xu G, Liu W. Van der Waals Heterojunction Based Self-Powered Biomimetic Dual-Mode Sensor for Precise Object Identification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411121. [PMID: 39428861 DOI: 10.1002/adma.202411121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Indexed: 10/22/2024]
Abstract
The design and fabrication of materials that can concurrently respond to light and gas within the dual-modal recognition domain present a significant challenge due to contradictory structural requirements. This innovative strategy introduces a type-I heterojunction, combining the properties of Sb2Te3 and WSe2 nanosheets, to overcome these obstacles. The heterojunction is prepared through a precise stacking approach to create a single-side barrier on the valence band and a near-zero offset on the conduction band. The resulting Sb2Te3/WSe2 heterojunction demonstrates unparalleled performance, showcasing the best integrated photoelectric and gas sensing performance in a single device to date. Based on the above features, the heterojunction successfully integrates visual and olfactory sensing performance, achieving the first biomimetic visual-olfactory dual-mode recognition in a single device. This simulation increased the accuracy of distinguishing electric and fuel-powered cars from ≈50% to ≈96%. This work introduces a novel approach to creating efficient, self-powered sensing materials, paving the way for next-generation biomimetic dual-model devices with broad applications in environmental protection, medical care, and other fields.
Collapse
Affiliation(s)
- Xu He
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Xinxu Zhu
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaoan Hong
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Bicheng Wang
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wenting Hong
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yu Yao
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Fapeng Sun
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Cai
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Gang Xu
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Liu
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
16
|
Chen D, Wan S, Guo X, Yang C, Wang W, Yan K, Wang D. Competitive coordination assisted scalable fabrication of FITC‑nickel frameworks anchored nanofiber paper for colorimetric/fluorescent monitoring of shrimp freshness. Food Chem 2024; 460:140675. [PMID: 39106806 DOI: 10.1016/j.foodchem.2024.140675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
A novel type of colorimetric/fluorescent nanopaper indicator has been developed from the melt-extruded poly (vinyl alcohol-co-ethylene) nanofibers with surface anchored metal-organic frameworks (MOFs) by an interfacial coordination strategy. Specifically, the fluorescein isothiocyanate molecules could be anchored to the nanofiber surface by nickel ions and co-assembled into a hydrophilic nanocoating via a dynamic water/alcohol solvent evaporation method. Interestingly, this hydrophilic surface enables fast adsorption of moistures and interaction with biological amine vapors, resulting a saffron cake-layer of MOF nanocrystals with ultra-sensitive colorimetric/fluorescent responses based on an alkaline pH/ammonia induced competitive coordination mechanism. Finally, these porous nanofibrous matrix and active nanocoating make the nano-paper an ultra-sensitive optical platform for in-situ monitoring of the shrimp freshness from mins to weeks. Therefore, this composite film shows great potential into advanced paper-based indicators for food quality control and safety in processing industry.
Collapse
Affiliation(s)
- Ding Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Sha Wan
- CCCC Second Harbor Engineering Company LTD, Wuhan 430040, China
| | - Xiaoming Guo
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Wenwen Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China..
| |
Collapse
|
17
|
Guo L, Wang J, Han H, Wang P, Lu Y, Yuan Q, Du C, Yin S, Zhou Y, Zhang C. MXene/WO 3 Sensor Array with Improved SNN Algorithm for Accurate Identification of Toxic Gases. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62421-62428. [PMID: 39497603 DOI: 10.1021/acsami.4c14793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Gas sensing is pivotal in critical areas such as industrial production and food safety. This study explores the gas classification capabilities of MXene-based gas sensors. Pure V2CTx MXene and an MXene/WO3 nanocomposite were synthesized, and MXene-based gas sensors were integrated into a 2 × 2 rudimentary electronic nose array. The tests on gas sensitivity revealed that the inclusion of WO3 nanoparticles (NPs) boosted the sensor's response to 10 ppm of NO2 from 2.82 to 3.45 at room temperature. Moreover, the sensor showcased a rapid response/recovery duration of 74.5/149.0 s, excellent environmental stability, and long-term reliable sensing performance. Furthermore, we have improved the method of accurately identifying four toxic gases detected by an MXene-based sensor array using a spiking neural network (SNN) based on the memristive system. Also, the performance of this identification method revealed that the method achieved 95.83% accuracy in the identification of the four gases. Notably, the improved SNN demonstrated approximately 5% higher accuracy than the other gas recognition algorithm. These results highlight the potential of SNN as a powerful tool to accurately and reliably identify toxic gases based on the gas sensor array.
Collapse
Affiliation(s)
- Liangchao Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Junke Wang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Haoran Han
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Peng Wang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yunxiang Lu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Qilong Yuan
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Chunyu Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, PR China
| | - Shuo Yin
- Department of Mechanical and Manufacturing Engineering, The University of Dublin, Parsons Building, Dublin 2, Ireland
| | - Ye Zhou
- Institute of Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| |
Collapse
|
18
|
Mei H, Zhang F, Zhou T, Zhang T. Pulse-Driven MEMS NO 2 Sensors Based on Hierarchical In 2O 3 Nanostructures for Sensitive and Ultra-Low Power Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:7188. [PMID: 39598965 PMCID: PMC11598139 DOI: 10.3390/s24227188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
As the mainstream type of gas sensors, metal oxide semiconductor (MOS) gas sensors have garnered widespread attention due to their high sensitivity, fast response time, broad detection spectrum, long lifetime, low cost, and simple structure. However, the high power consumption due to the high operating temperature limits its application in some application scenarios such as mobile and wearable devices. At the same time, highly sensitive and low-power gas sensors are becoming more necessary and indispensable in response to the growth of the environmental problems and development of miniaturized sensing technologies. In this work, hierarchical indium oxide (In2O3) sensing materials were designed and the pulse-driven microelectromechanical system (MEMS) gas sensors were also fabricated. The hierarchical In2O3 assembled with the mass of nanosheets possess abundant accessible active sites. In addition, compared with the traditional direct current (DC) heating mode, the pulse-driven MEMS sensor appears to have the higher sensitivity for the detection of low-concentrations of nitrogen dioxide (NO2). The limit of detection (LOD) is as low as 100 ppb. It is worth mentioning that the average power consumption of the sensor is as low as 0.075 mW which is one three-hundredth of that in the DC heating mode. The enhanced sensing performances are attributed to loose and porous structures and the reducing desorption of the target gas driven by pulse heating. The combination of morphology design and pulse-driven strategy makes the MEMS sensors highly attractive for portable equipment and wearable devices.
Collapse
Affiliation(s)
- Haixia Mei
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun 130022, China;
| | - Fuyun Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| |
Collapse
|
19
|
Satter S, Bender F, Post N, Ricco AJ, Josse F. Analysis of Multivariable Sensor Responses to Multi-Analyte Gas Samples in the Presence of Interferents and Humidity. ACS Sens 2024. [PMID: 39509608 DOI: 10.1021/acssensors.4c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
This work presents an adaptive sensor signal-processing approach to enable quantification, using a single gas sensor or a small sensor array, of multianalyte mixtures of aromatic hydrocarbons in the presence of various interferents and humidity for environmental-monitoring applications. Dynamic sensor responses are analyzed by extracting multivariable sensing parameters to provide necessary sensitivity and selectivity. This is achieved by integrating the Levenberg-Marquardt-modified, exponentially weighted, recursive-least-squares-estimation (LM-modified EW-RLSE) algorithm and principal-component analysis (PCA). Achieving measured detection limits as low as 3 μg/L (≤1 ppm by volume) for 6 target analytes, the system exhibits excellent PCA cluster separation for all analytes in the mixtures, with reliable identification and accurate quantification, even in the presence of various interferents. Concentration errors of approximately ±5% are obtained for mixtures containing up to 6 BTEX compounds (including chemical isomers) and up to 4 interferents. Additionally, the study investigates the impact of humidity on the polymer/plasticizer-coated shear-horizontal surface acoustic wave (SH-SAW) sensors, demonstrating accurate concentration estimation in a relative humidity range from dry nitrogen to 65%. This sensing-and-multivariate-signal-processing approach is a promising candidate for reliable environmental monitoring in real-world applications.
Collapse
Affiliation(s)
- Sakin Satter
- Department of Electrical and Computer Engineering, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Florian Bender
- Department of Electrical and Computer Engineering, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicholas Post
- Department of Electrical and Computer Engineering, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Antonio J Ricco
- Department of Electrical Engineering, Stanford University, Stanford, California 94305-4075, United States
| | - Fabien Josse
- Department of Electrical and Computer Engineering, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
20
|
Chen M, Yazdani M, Murugappan K. Non-Destructive Pest Detection: Innovations and Challenges in Sensing Airborne Semiochemicals. ACS Sens 2024. [PMID: 39511957 DOI: 10.1021/acssensors.4c02049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Pests, especially invasive ones, pose significant threats to the global ecosystem, crop security, and agriculture economy. Sensing airborne semiochemicals as a nondestructive detection method has been recognized as a promising strategy to detect the presence of these living pests on site. However, sensing airborne semiochemicals in fields is challenging, as they are transmitted in concentrations as low as several nanograms per cubic meter in chemically diverse environments. This low vapor pressure together with similarity in functional groups of pheromones among different species have curtailed the practical deployment of corresponding sensors for real world applications. This review describes the advances in semiochemical detection methods and technologies including traditional analytical instruments, trained animals, and electroantennography with a focus on electronic noses (e-noses). Several key types of volatile organic compound (VOC) sensors used in e-noses are summarized, including their transduction methods, sensing materials, and sensing performance for semiochemical and simulants detection. Notably, it was found that many commercial VOC sensors failed to respond to airborne semiochemicals effectively, leading to a reduced efficiency of e-noses. Future work may focus on developing stable and robust sensing materials with higher sensitivity and selectivity to pheromones and understanding the feasibility of the deployment of the sensors under field conditions.
Collapse
Affiliation(s)
- Ming Chen
- CSIRO, Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
- CSIRO, Health and Biosecurity, P.O. Box 2583, Brisbane 4001, Queensland Australia
| | - Maryam Yazdani
- CSIRO, Health and Biosecurity, P.O. Box 2583, Brisbane 4001, Queensland Australia
| | - Krishnan Murugappan
- CSIRO, Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
| |
Collapse
|
21
|
SONG R, LIAO G, LIN J, WU J, HUANG L. [Preparation of chiral metal organic framework modified silica monolithic capillary column and its application in enantioseparations of chiral drugs]. Se Pu 2024; 42:1087-1093. [PMID: 39449516 PMCID: PMC11519764 DOI: 10.3724/sp.j.1123.2024.01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 10/26/2024] Open
Abstract
Metal organic frameworks (MOFs) are crystalline compounds composed of metal ions (or metal clusters) and organic ligands. Chiral MOFs have been successfully utilized as novel materials for the separation of chiral enantiomers by chromatography, demonstrating excellent chiral separation performance. In this study, a chiral MOF-modified silica monolithic capillary column was used for pressurized capillary electrochromatography. First, a chiral MOF (Co-glycyl-L-glutamic acid, Co-L-GG) was synthesized. This MOF was then used to prepare a chiral capillary monolithic column via a one-step in situ polymerization method. The optimal conditions for preparing the chiral capillary monolithic column were determined as follows: Co-L-GG amount, 5 mg; polyethylene glycol amount, 0.96 mg; tetramethoxysilane dosage, 3.6 mL; trimethoxymethylsilane dosage, 0.4 mL. Next, the effects of the separation conditions on the separation of chiral drugs were investigated. Under the conditions of an applied voltage of -20 kV and a mobile phase consisting of acetonitrile and 20 mmol/L disodium hydrogen phosphate (80∶20, v/v), six chiral drugs were separated within 3 min, with baseline separation achieved for amlodipine, fluvastatin, and tryptophan. Moreover, the prepared chiral capillary monolithic column exhibited good reproducibility and stability. Finally, molecular docking studies were conducted using AutoDock to explore the chiral recognition mechanism, and the results were analyzed using Discovery Studio. The results indicated that larger differences in binding free energy between Co-L-GG and the enantiomers of the chiral drugs were correlated with higher enantioselectivity factors. However, this correlation did not necessarily lead to an increase in resolution. Co-L-GG, which is enriched with primary amines, secondary amines, and carbonyl groups, demonstrated enantiomeric recognition capability. In conclusion, this study demonstrates that chiral MOFs can be effectively used as chiral functional monomers to prepare chiral monolithic capillary columns, highlighting their significant potential for the separation and analysis of chiral compounds. The comprehensive exploration of the synthesis, characterization, and applications of these MOFs will help provide valuable insights into the development of advanced separation technologies.
Collapse
|
22
|
Wang G, Ren Z, Zheng L, Kang Y, Luo N, Qiao Z. Pulsed Airstream-Driven Hierarchical Micro-Nano Pore Structured Triboelectric Nanogenerator for Wireless Self-Powered Formaldehyde Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406500. [PMID: 39139056 DOI: 10.1002/smll.202406500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Formaldehyde (HCHO), as a common volatile organic compound, has a serious impact on human health in the daily lives and industrial production scenarios. Given the security issue of HCHO detection and danger warning, a ZIF-8/copper foam based pulsed airstream-driven triboelectric nanogenerator (ZCP-TENG) is designed to develop the self-powered HCHO sensors. By combining contact electrification and electrostatic induction, the ZCP-TENG can be utilized for airflow energy harvesting and HCHO concentration detection. The short-circuit current and output power of the ZCP-TENG can reach 2.0 µA and 81 µW (20 ppm). With the high surface area, abundant micro-nano pores, and excellent permeation flux, the ZCP-TENGs exhibit excellent HCHO sensing response (61.3% at 100 ppm), low detection limit (≈2 ppm), and rapid response/recovery time (14/15 s), which can be served as a highly sensitive and selective HCHO sensor. By connecting an intelligent wireless alarm, the ZCP-TENGs are designed to construct a self-powered warning system to monitor and remind the HCHO of exceedance situations. Moreover, by combining a support vector machine model, the difference concentrations can be quickly identified with an average prediction accuracy of 100%. This study illustrates that ZCP-TENGs have broad application prospects and provide guidance for HCHO monitoring and danger warnings.
Collapse
Affiliation(s)
- Gang Wang
- Shandong Laboratory of Advanced Material and Green Manufacturing at Yantai, Yantai, 264006, P. R. China
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, P. R. China
| | - Zhongkan Ren
- Shandong Laboratory of Advanced Material and Green Manufacturing at Yantai, Yantai, 264006, P. R. China
| | - Longkui Zheng
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Yajie Kang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Ning Luo
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Zhuhui Qiao
- Shandong Laboratory of Advanced Material and Green Manufacturing at Yantai, Yantai, 264006, P. R. China
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
23
|
Saboorizadeh B, Zare-Dorabei R, Safavi M, Safarifard V. Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22477-22503. [PMID: 39418638 DOI: 10.1021/acs.langmuir.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The porous materials known as metal-organic frameworks (MOFs) stand out for their enormous surface area, adaptable pore size and shape, and structural variety. These characteristics make them well-suited for various applications, especially in healthcare. This review thoroughly summarizes recent studies on the use of MOFs in drug delivery, biosensing, and therapeutics. MOFs may encapsulate medications, target certain cells or tissues, and regulate their release over time. Additionally, MOFs have the potential to be used in biosensing applications, allowing for the selective detection of chemical and biological substances. MOFs' optical or electrical characteristics may be modified to make biosensors that track physiological data. MOFs show potential for targeted drug delivery and the regulated release of therapeutic substances in cancer treatment. In addition, they may work as potent antibacterial agents, providing a less dangerous option than traditional antibiotics that increase antibiotic resistance. For practical applications, further research is required as well as more consideration for the problems with toxicity and biocompatibility. In addition to addressing the difficulties and promising possibilities in this area, this study intends to provide insights into the potential of MOFs in healthcare for drug delivery, biosensing, and treatment. Despite several essential reviews in this area, it was necessary to look into the most recent research on drug delivery, biosensing, and therapy as a combined concept.
Collapse
Affiliation(s)
- Bahar Saboorizadeh
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 33131-93685, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
24
|
Xu J, Zeng W, Luo X, Qin A, Liu S, Zhang M, Liu R, Guliakova AA, Zhang Q, Zhu G. Noncontact Perception of Thin-Film Transistors by the Synergy of Both Capacitive and Electrostatic Induction Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54154-54162. [PMID: 39329267 DOI: 10.1021/acsami.4c11042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
In recent years, the rapid expansion of research and application of the Internet of Things and wearable electronics has prompted the development of a variety of sensors to perceive physical or chemical information from both the human body and the environment, among which the proximity sensor is a kind of noncontact sensor used to detect the approach of a target and thus exhibits promising applications in human-machine interactions. Thin-film transistors are one type of key components in modern electronics and have been further developed as electrostatic-induction-type proximity sensors to perceive the approach of electrically charged objects. However, they are immune to the approach of a zero-potential object. Capacitive-induction-type proximity sensors are capable of detecting the approach of conductive targets while being less sensitive to insulated ones. Integration of both electrostatic and capacitive induction mechanisms into one proximity sensor is highly expected to broaden its perception to a variety of targets. Here, an interdigital electrode was introduced as an extended gate into an amorphous metal oxide thin-film transistor to construct proximity sensors that combine both electrostatic and capacitive induction mechanisms and therefore can sensitively perceive the approach of a variety of objects that were electrically charged, grounded, or floated. Besides proximity sensing, remote velocity measurement and positioning of an invasive object were also realized, which further extended its functions as a kind of interdigital-electrode gate transistor.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Wanyu Zeng
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Xingsheng Luo
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Anthon Qin
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Shixin Liu
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Mengyun Zhang
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Ruochen Liu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Anna A Guliakova
- Department of General and Experimental Physics, Herzen University, St. Petersburg 191186, Russia
| | - Qun Zhang
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Guodong Zhu
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Lv H, Wu D, Cui X, Wu X, Yang J. Enhancing Magnetic Ordering in Two-Dimensional Metal-Organic Frameworks via Frontier Molecular Orbital Engineering. J Phys Chem Lett 2024; 15:9960-9967. [PMID: 39359144 DOI: 10.1021/acs.jpclett.4c02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) have promise for use in lightweight permanent magnets in contrast to inorganic solid- or molecule-based magnets, but the realization of 2D MOF magnets with a high ordering temperature is limited by the typically weak spin exchange interactions. Here, we have proposed a frontier molecular orbital engineering strategy for modulating magnetism in 2D MOFs. It shows that the magnetic ground state can be mediated by two intra-atomic spin exchange pathways in organic ligands, akin to the Bloch and Heisenberg models, depending on the shape of the frontier orbitals of the organic ligands. By engineering the shape of the lowest unoccupied molecular orbital (LUMO) via chemical hydrogenation, we achieved a nearly 11-fold increase in the ordering temperature. In particular, a quantitative analysis shows that the ordering temperature increases linearly with the orbital delocalization index of the ligands' LUMO. This work suggests a general frontier orbital engineering approach for modulating the spin exchange interaction in 2D MOF magnets.
Collapse
Affiliation(s)
- Haifeng Lv
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Daoxiong Wu
- School of Marine Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Xuefeng Cui
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
26
|
Zou C, Peng C, She X, Wang M, Peng B, Zhou Y. Photoelectric H 2S Sensing Based on Electrospun Hollow CuO-SnO 2 Nanotubes at Room Temperature. SENSORS (BASEL, SWITZERLAND) 2024; 24:6420. [PMID: 39409460 PMCID: PMC11479242 DOI: 10.3390/s24196420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Pure tin oxide (SnO2) as a typical conductometric hydrogen sulfide (H2S) gas-sensing material always suffers from limited sensitivity, elevated operation temperature, and poor selectivity. To overcome these hindrances, in this work, hollow CuO-SnO2 nanotubes were successfully electrospun for room-temperature (25 °C) trace H2S detection under blue light activation. Among all SnO2-based candidates, a pure SnO2 sensor showed no signal, even toward 10 ppm, while the 1% CuO-SnO2 sensor achieved a limit of detection (LoD) value of 2.5 ppm, a large response of 4.7, and a short response/recovery time of 21/61 s toward 10 ppm H2S, as well as nice repeatability, long-term stability, and selectivity. This excellent performance could be ascribed to the one-dimensional (1D) hollow nanostructure, abundant p-n heterojunctions, and the photoelectric effect of the CuO-SnO2 nanotubes. The proposed design strategies cater to the demanding requirements of high sensitivity and low power consumption in future application scenarios such as Internet of Things and smart optoelectronic systems.
Collapse
Affiliation(s)
- Cheng Zou
- Liangjiang School of Artificial Intelligence of Chongqing University of Technology, Chongqing 401135, China;
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Cheng Peng
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaopeng She
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Mengqing Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Bo Peng
- Liangjiang School of Artificial Intelligence of Chongqing University of Technology, Chongqing 401135, China;
| | - Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
27
|
Yang ZM, Han X, Zhang MH, Liu C, Liu QL, Tang L, Gao F, Su J, Ding M, Zuo JL. Dynamic Interchain Motion in 1D Tetrathiafulvalene-Based Coordination Polymers for Highly Sensitive Molecular Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402255. [PMID: 38837847 DOI: 10.1002/smll.202402255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The application of electrically conductive 1D coordination polymers (1D CPs) in nanoelectronic molecular recognition is theoretically promising yet rarely explored due to the challenges in their synthesis and optimization of electrical properties. In this regard, two tetrathiafulvalene-based 1D CPs, namely [Co(m-H2TTFTB)(DMF)2(H2O)]n (Co-m-TTFTB), and {[Ni(m-H2TTFTB)(CH3CH2OH)1.5(H2O)1.5]·(H2O)0.5}n (Ni-m-TTFTB) are successfully constructed. The shorter S···S contacts between the [M(solvent)3(m-H2TTFTB)]n chains contribute to a significant improvement in their electrical conductivities. The powder X-ray diffraction (PXRD) under different organic solvents reveals the flexible and dynamic structural characteristic of M-m-TTFTB, which, combined with the 1D morphology, lead to their excellent performance for sensitive detection of volatile organic compounds. Co-m-TTFTB achieves a limit of detection for ethanol vapor down to 0.5 ppm, which is superior to the state-of-the-art chemiresistive sensors based on metal-organic frameworks or organic polymers at room temperature. In situ diffuse reflectance infrared Fourier transform spectroscopy, PXRD measurements and density functional theory calculations reveal the molecular insertion sensing mechanism and the corresponding structure-function relationship. This work expands the applicable scenario of 1D CPs and opens a new realm of 1D CP-based nanoelectronic sensors for highly sensitive room temperature gas detection.
Collapse
Affiliation(s)
- Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao Han
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Hang Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qing-Long Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Lingyu Tang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Manna K, Boruah R, Natarajan S. Zn, Cd and Cu Coordination Polymers for Metronidazole Sensing and for Ullmann and Chan-Lam Coupling Reactions. Chem Asian J 2024; 19:e202400501. [PMID: 39034642 DOI: 10.1002/asia.202400501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Five compounds, [Zn2(bpe)(BPTA)2(H2O)2] ⋅ 2H2O (1); [Zn(bpe)(BPTA)] (2); [Cd(bpe)(BPTA)H2O] (3); [Cd(BPTA) (bpmh)] ⋅ 2H2O (4); and Cu2(BPTA)2(bpmh)3(H2O)2] ⋅ 2H2O (5) were prepared employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2, 5 BPTA) as the primary ligand and 1,2-di(pyridin-4-yl)ethane (4, 4' bpe) (1-3) and 1,2-bis(pyridin-3-ylmethylene)hydrazine (bpmh) (4-5) as the secondary ligands. Single crystal studies indicated that the compounds 1, 3 and 5 have two-dimensional layer structures and compounds 2 and 4 three-dimensional structures. The luminescence behaviour of the compounds 2 and 3 were explored for the sensing of metronidazole in aqueous medium. The studies indicated that the compounds can detect metronidazole in ppm level both in solution as well as simple paper strips. The Cu compound 5 was found to lose the coordinated water molecule at 100 °C without any structural change. The coordinatively unsaturated Cu-centre were examined towards the Lewis acidic character by carrying out the Ullmann type C-C homocoupling reaction of the aromatic halide compounds. The compounds, 4 and 5, also have the Lewis basic functionality arising out the =N-N=, aza groups. The bifunctional nature of the coordination polymers (CP) was explored towards the Chan-Lam coupling reaction between phenyl boronic acid and aniline derivatives in the ethanol medium. In both the catalytic reactions, good yields and recyclability were observed. The present studies illustrated the rich diversity that the transition metal containing compounds exhibit in extended framework structures.
Collapse
Affiliation(s)
- Krishna Manna
- Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Rishika Boruah
- Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Srinivasan Natarajan
- Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
29
|
Zhang Y, Liu J, Rong C, Wang D, Li W, Gao Z, Chen Y. Current Advances of CO Sensing Based on Low Dimensional Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18821-18836. [PMID: 39196291 DOI: 10.1021/acs.langmuir.4c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Carbon monoxide (CO) is a harmful gas with significant impacts on human health and the environment. Its timely detection, especially in the event of thermal runaway in automotive lithium batteries, is crucial to prevent casualties. This paper reviews the progress in the development of efficient, sensitive, and reliable CO sensors, focusing on electrochemical, optical, and resistive sensing materials. Low-dimensional materials have a large specific surface area, providing an abundant number of active sites, which has drawn extensive attention from researchers. According to the different sensor signals, we categorized these sensors into electrical and optical signal sensors. We hope that by systematically introducing the sensing mechanism and sensing performance of these two kinds of sensors, appropriate CO sensors can be developed in different application scenarios so as to realize early warning and monitoring to the maximum extent, reduce industrial losses, and ensure the life and health of personnel.
Collapse
Affiliation(s)
- Yundi Zhang
- College of Automotive Engineering, Jilin University, Changchun 130025, China
| | - Jie Liu
- College of Automotive Engineering, Jilin University, Changchun 130025, China
| | - Changru Rong
- General Research and Development Institute, China FAW Corporation Limited, Changchun 130013, China
| | - Deping Wang
- General Research and Development Institute, China FAW Corporation Limited, Changchun 130013, China
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130025, China
| | - Zhenhai Gao
- College of Automotive Engineering, Jilin University, Changchun 130025, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
30
|
Lv S, Gu T, Pu Q, Wang B, Jia X, Sun P, Wang L, Liu F, Lu G. Integrated Mixed Potential Gas Sensor with Efficient Structure for Discriminative Volatile Organic Compounds Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405124. [PMID: 39041889 PMCID: PMC11423222 DOI: 10.1002/advs.202405124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Indexed: 07/24/2024]
Abstract
Amid growing interest in the precise detection of volatile organic compounds (VOCs) in industrial field, the demand for highly effective gas sensors is at an all-time high. However, traditional sensors with their classic single-output signal, bulky and complex integrated structure when forming array often involve complicated technology and high cost, limiting their widespread adoption. Here, this study introduces a novel approach, employing an integrated YSZ-based (YSZ: yttria-stabilized zirconia) mixed potential sensor equipped with a triple-sensing electrode array, to efficiently detect and differentiate six types of VOCs gases. This innovative sensor integrates NiSb2O6, CuSb2O6, and MgSb2O6 sensing electrodes (SEs), which are sensitive to pentane, isoprene, n-propanol, acetone, acetic acid, and formaldehyde gases. Through feature engineering based on intuitive spike-based response values, it accentuates the distinct characteristics of every gas. Eventually, an average classification accuracy of 98.8% and an overall R-squared error (R2) of 99.3% for concentration regression toward six target gases can be achieved, showcasing the potential to quantitatively distinguish between industrial hazardous VOCs gases.
Collapse
Affiliation(s)
- Siyuan Lv
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Tianyi Gu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qi Pu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bin Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Lijun Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
31
|
Xiao S, Jiao Z, Yang X. ZIF-8-Derived Multifunctional Triethylamine Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:5425. [PMID: 39205119 PMCID: PMC11360602 DOI: 10.3390/s24165425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Triethylamine (TEA) is a typical volatile organic compound (VOC) widely present in air and water, produced in industrial production activities, with high toxicity and great harm. Fluorescence detection and resistive sensing are effective methods for detecting pollutants. Here, In-doped interpenetrating twin ZIF-8 and its annealed derivatives have been successfully designed and prepared as a multifunctional TEA sensor. On the one hand, ZIF-8-In exhibits excellent fluorescence emission enhancement at 450 nm in a dose-dependent manner to TEA in water within the concentration range of 1-100 ppm, with a detection limit as low as 1 ppm. On the other hand, the annealed ZIF-8-In derivative is ZnO/In2O3 with a porous hierarchical structure, which is a perfect sensitive material for manufacturing gas sensors. Within the concentration range of 1-100 ppm, the ZnO/In2O3 gas sensor has a high response for 100 ppm TEA, reaching 107.7 (Ra/Rg), and can detect TEA gas as low as 1 ppm. Furthermore, the response of ZnO/In2O3 sensors to TEA is at least 10 times that of the other four VOC gases, demonstrating excellent gas selectivity. This multifunctional sensor can adapt to complex detection situations, demonstrating good application prospects.
Collapse
Affiliation(s)
| | - Zheng Jiao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (S.X.); (X.Y.)
| | | |
Collapse
|
32
|
Wang W, Ibarlucea B, Huang C, Dong R, Al Aiti M, Huang S, Cuniberti G. Multi-metallic MOF based composites for environmental applications: synergizing metal centers and interactions. NANOSCALE HORIZONS 2024; 9:1432-1474. [PMID: 38984482 DOI: 10.1039/d4nh00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The escalating threat of environmental issues to both nature and humanity over the past two decades underscores the urgency of addressing environmental pollutants. Metal-organic frameworks (MOFs) have emerged as highly promising materials for tackling these challenges. Since their rise in popularity, extensive research has been conducted on MOFs, spanning from design and synthesis to a wide array of applications, such as environmental remediation, gas storage and separation, catalysis, sensors, biomedical and drug delivery systems, energy storage and conversion, and optoelectronic devices, etc. MOFs possess a multitude of advantageous properties such as large specific surface area, tunable porosity, diverse pore structures, multi-channel design, and molecular sieve capabilities, etc., making them particularly attractive for environmental applications. MOF-based composites inherit the excellent properties of MOFs and also exhibit unique physicochemical properties and structures. The tailoring of central coordinated metal ions in MOFs is critical for their adaptability in environmental applications. Although many reviews on monometallic, bimetallic, and polymetallic MOFs have been published, few reviews focusing on MOF-based composites with monometallic, bimetallic, and multi-metallic centers in the context of environmental pollutant treatment have been reported. This review addresses this gap by providing an in-depth overview of the recent progress in MOF-based composites, emphasizing their applications in hazardous gas sensing, electromagnetic wave absorption (EMWA), and pollutant degradation in both aqueous and atmospheric environments and highlighting the importance of the number and type of metal centers present. Additionally, the various categories of MOFs are summarized. MOF-based composites demonstrate significant promise in addressing environmental challenges, and this review provides a clear and valuable perspective on their potential in environmental applications.
Collapse
Affiliation(s)
- Wei Wang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20009, Spain
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Muhannad Al Aiti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- Dresden Center for Nanoanalysis, Technische Universität Dresden, 01062 Dresden, Germany
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| |
Collapse
|
33
|
Wang Z, Ma W, Wei J, Lan K, Yan S, Chen R, Qin G. High-performance peptide biosensor based on unified structure of lotus silk. Talanta 2024; 276:126280. [PMID: 38788380 DOI: 10.1016/j.talanta.2024.126280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The sensitive materials of current gas sensors are fabricated on planar substrates, significantly limiting the quantity of sensitive material available on the sensor and the complete exposure of the sensitive material to the target gas. In this work, we harnessed the finest, resilient, naturally degradable, and low-cost lotus silk derived from plant fibers, to fabricate a high-performance bio-sensor for toxic and harmful gas detection, employing peptides with full surface connectivity. The proposed approach to fabricate gas sensors eliminated the need for substrates and electrodes. To ascertain the effectiveness and versatility of the sensors created via this method, sensors for three distinct representative gases (isoamyl alcohol, 4-vinylanisole, and benzene) were prepared and characterized. These sensors surpassed reported detection limits by at least one order of magnitude. The inherent pliancy of lotus silk imparts adaptability to the sensor architecture, facilitating the realization of 1D, 2D, or 3D configurations, all while upholding consistent performance characteristics. This innovative sensor paradigm, grounded in lotus silk, represents great potential toward the advancement of highly proficient bio gas sensors and associated applications.
Collapse
Affiliation(s)
- Zhi Wang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, PR China
| | - Weichao Ma
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Junqing Wei
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300072, PR China
| | - Kuibo Lan
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, PR China
| | - Shanchun Yan
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Guoxuan Qin
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
34
|
Luo X, Zhang M, Hu Y, Xu Y, Zhou H, Xu Z, Hao Y, Chen S, Chen S, Luo Y, Lin Y, Zhao J. Wrinkled metal-organic framework thin films with tunable Turing patterns for pliable integration. Science 2024; 385:647-651. [PMID: 39116246 DOI: 10.1126/science.adn8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Flexible integration spurs diverse applications in metal-organic frameworks (MOFs). However, current configurations suffer from the trade-off between MOF loadings and mechanical compliance. We report a wrinkled configuration of MOF thin films. We established an interfacial synthesis confined and controlled by a polymer topcoat and achieved multiple Turing motifs in the wrinkled thin films. These films have complete MOF surface coverage and exhibit strain tolerance up to 53.2%. The enhanced mechanical properties allow film transfer onto various substrates. We obtained membranes with large H2/CO2 selectivity (41.2) and high H2 permeance (8.46 × 103 gas permeation units), showcasing negligible defects after transfer. We also achieved soft humidity sensors on delicate electrodes by avoiding exposure to harsh MOF synthesis conditions. These results highlight the potential of wrinkled MOF thin films for plug-and-play integration.
Collapse
Affiliation(s)
- Xinyu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Ming Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yubin Hu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yan Xu
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haofei Zhou
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinxuan Hao
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Sheng Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengfu Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Junjie Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| |
Collapse
|
35
|
Gohel VR, Chetyrkina M, Gaev A, Simonenko NP, Simonenko TL, Gorobtsov PY, Fisenko NA, Dudorova DA, Zaytsev V, Lantsberg A, Simonenko EP, Nasibulin AG, Fedorov FS. Multioxide combinatorial libraries: fusing synthetic approaches and additive technologies for highly orthogonal electronic noses. LAB ON A CHIP 2024; 24:3810-3825. [PMID: 39016307 DOI: 10.1039/d4lc00252k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
This study evaluates the performance advancement of electronic noses, on-chip engineered multisensor systems, exploiting a combinatorial approach. We analyze a spectrum of metal oxide semiconductor materials produced by individual methods of liquid-phase synthesis and a combination of chemical deposition and sol-gel methods with hydrothermal treatment. These methods are demonstrated to enable obtaining a fairly wide range of nanomaterials that differ significantly in chemical composition, crystal structure, and morphological features. While synthesis routes foster diversity in material properties, microplotter printing ensures targeted precision in making on-chip arrays for evaluation of a combinatorial selectivity concept in the task of organic vapor, like alcohol homologs, acetone, and benzene, classification. The synthesized nanomaterials demonstrate a high chemiresistive response, with a limit of detection beyond ppm level. A specific combination of materials is demonstrated to be relevant when the number of sensors is low; however, such importance diminishes with an increase in the number of sensors. We show that on-chip material combinations could favor selectivity to a specific analyte, disregarding the others. Hence, modern synthesis methods and printing protocols supported by combinatorial analysis might pave the way for fabricating on-chip orthogonal multisensor systems.
Collapse
Affiliation(s)
- Vishalkumar Rajeshbhai Gohel
- Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Str, Moscow, 121205, Russian Federation.
| | - Margarita Chetyrkina
- Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Str, Moscow, 121205, Russian Federation.
| | - Andrey Gaev
- Bauman Moscow State Technical University, 5/1 Baumanskaya 2-ya Str, Moscow, 105005, Russian Federation
| | - Nikolay P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr, Moscow, 119991, Russian Federation
| | - Tatiana L Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr, Moscow, 119991, Russian Federation
| | - Philipp Yu Gorobtsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr, Moscow, 119991, Russian Federation
| | - Nikita A Fisenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr, Moscow, 119991, Russian Federation
| | - Darya A Dudorova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr, Moscow, 119991, Russian Federation
| | - Valeriy Zaytsev
- Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Str, Moscow, 121205, Russian Federation.
| | - Anna Lantsberg
- Bauman Moscow State Technical University, 5/1 Baumanskaya 2-ya Str, Moscow, 105005, Russian Federation
| | - Elizaveta P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr, Moscow, 119991, Russian Federation
| | - Albert G Nasibulin
- Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Str, Moscow, 121205, Russian Federation.
| | - Fedor S Fedorov
- Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Str, Moscow, 121205, Russian Federation.
| |
Collapse
|
36
|
Zhang X, Jablonka KM, Smit B. Deep learning-based recommendation system for metal-organic frameworks (MOFs). DIGITAL DISCOVERY 2024; 3:1410-1420. [PMID: 38993728 PMCID: PMC11235176 DOI: 10.1039/d4dd00116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
This work presents a recommendation system for metal-organic frameworks (MOFs) inspired by online content platforms. By leveraging the unsupervised Doc2Vec model trained on document-structured intrinsic MOF characteristics, the model embeds MOFs into a high-dimensional chemical space and suggests a pool of promising materials for specific applications based on user-endorsed MOFs with similarity analysis. This proposed approach significantly reduces the need for exhaustive labeling of every material in the database, focusing instead on a select fraction for in-depth investigation. Ranging from methane storage and carbon capture to quantum properties, this study illustrates the system's adaptability to various applications.
Collapse
Affiliation(s)
- Xiaoqi Zhang
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne(EPFL) Rue de l'Industrie 17 CH-1951 Sion Valais Switzerland
| | - Kevin Maik Jablonka
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne(EPFL) Rue de l'Industrie 17 CH-1951 Sion Valais Switzerland
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena) Lessingstrasse 12-14 07743 Jena Germany
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne(EPFL) Rue de l'Industrie 17 CH-1951 Sion Valais Switzerland
| |
Collapse
|
37
|
Hulushe ST, Watkins GM, Khanye SD. A cobalt(II) coordination polymer-derived catalyst engineered via temperature-induced semi-reversible single-crystal-to-single-crystal (SCSC) dehydration for efficient liquid-phase epoxidation of olefins. Dalton Trans 2024; 53:11326-11343. [PMID: 38899354 DOI: 10.1039/d4dt00739e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Single-crystal-to-single-crystal (SCSC) transformations provide more avenues for phase transitions, which have piqued great interest in crystal engineering. In this work, a 3D Co(II)-based coordination polymer (CP), {Co2(OH2)8(btec)}·4H2O (1), (where (btec)4- = 1,2,4,5-benzenetetracarboxylate) undergoes SCSC transition upon heating at 180 °C to afford an anhydrous phase [Co2(btec)] (1'). Room-temperature water-vapour induced semi-reversible SCSC transformation of 1' involves condensation of two water molecules coordinating to the metal cluster, yielding a new framework [Co2(OH2)2(btec)] (2). These SCSC transitions were accomplished through a sequential bond breaking and new bond formation process which was accompanied by colour changes from orange (1) → violet (1') → pink (2). All materials were structurally elucidated by single-crystal X-ray diffraction (SCXRD) and further established by various analytical techniques. According to SCXRD data, all the frameworks possess octahedral geometries around the cobalt(II) sphere. SCXRD studies further revealed that 1 is a polymeric architecture with a binodal 4-c sql topology while 1' and 2 possess (3,6)-c kgd and (4,6)-c scu 3D nets, respectively. By virtue of multitopicity exhibited by the tetracarboxylate, the coordination number of the linker around the Co(II) sphere increased from four (in 1) to eight (in 1') and then decreased to six (in 2). Most interestingly, permanent porosity could be observed for the dihydrate 2, originated from potential void space as substantiated by dinitrogen (N2) sorption isotherm. These porous frameworks were active catalysts for the aerobic epoxidation of the model substrate cyclohexene using molecular oxygen (O2) as the final oxidant in the presence of the sacrificial i-butyraldehyde (IBA) reductant. For using the dihydrous phase 2, cyclohexene and various other olefins were catalytically oxidised to their corresponding epoxides with up to 38.5% conversion and 99.0% selectivity. The catalyst 2 can be expediently recycled in four runs without significant loss of activity. This research demonstrates that a little innovation in the active-site-engineered organic-inorganic hybrid materials can significantly enhance the catalytic performance and selectivity of coordination polymer-derived heterogeneous catalysts.
Collapse
Affiliation(s)
- Siya T Hulushe
- Department of Chemistry, Rhodes University, Makhanda 6139, South Africa.
| | - Gareth M Watkins
- Department of Chemistry, Rhodes University, Makhanda 6139, South Africa.
| | - Setshaba D Khanye
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
38
|
Estany-Macià A, Fort-Grandas I, Joshi N, Svendsen WE, Dimaki M, Romano-Rodríguez A, Moreno-Sereno M. ZIF-8-Based Surface Plasmon Resonance and Fabry-Pérot Sensors for Volatile Organic Compounds. SENSORS (BASEL, SWITZERLAND) 2024; 24:4381. [PMID: 39001159 PMCID: PMC11244607 DOI: 10.3390/s24134381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
This work explores the use of ZIF-8, a metal-organic framework (MOF) material, for its use in the optical detection of volatile organic compounds (VOCs) in Fabry-Pérot and surface plasmon resonance (SPR)-based sensors. The experiments have been carried out with ethanol (EtOH) and show response times as low as 30 s under VOC-saturated atmospheres, and the estimated limit of detection is below 4000 ppm for both sensor types. The selectivity towards other VOCs is relatively poor, although the dynamics of adsorption/desorption differ for each VOC and could be used for selectivity purposes. Furthermore, the hydrophobicity of ZIF-8 has been confirmed and the fabricated sensors are insensitive to this compound, which is a very attractive result for its practical use in gas sensing devices.
Collapse
Affiliation(s)
- Anna Estany-Macià
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ignasi Fort-Grandas
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Inorganic and Organic Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nirav Joshi
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Winnie E Svendsen
- Group NABIS, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Maria Dimaki
- Group NABIS, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Albert Romano-Rodríguez
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mauricio Moreno-Sereno
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
39
|
Mishra S, Patel C, Pandey D, Mukherjee S, Raghuvanshi A. Semiconducting 2D Copper(I) Iodide Coordination Polymer as a Potential Chemiresistive Sensor for Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311448. [PMID: 38326094 DOI: 10.1002/smll.202311448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The development of a cost-effective, ultra-selective, and room temperature gas sensor is the need of an hour, owing to the rapid industrialization. Here, a new 2D semiconducting Cu(I) coordination polymer (CP) with 1,4-di(1H-1,2,4-triazol-1-yl)benzene (1,4-TzB) ligand is reported. The CP1 consists of a Cu2I2 secondary building unit bridged by 1,4-TzB, and has high stability as well as semiconducting properties. The chemiresistive sensor, developed by a facile drop-casting method derived from CP1, demonstrates a response value of 66.7 at 100 ppm on methanol exposure, accompanied by swift transient (response and recovery time 17.5 and 34.2 s, respectively) behavior. In addition, the developed sensor displays ultra-high selectivity toward methanol over other volatile organic compounds , boasting LOD and LOQ values of 1.22 and 4.02 ppb, respectively. The CP is found to be a state-of-the-art chemiresistive sensor with ultra-high sensitivity and selectivity toward methanol at room temperature.
Collapse
Affiliation(s)
- Shivendu Mishra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Chandrabhan Patel
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Dilip Pandey
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Shaibal Mukherjee
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
- Centre for Advance Electronics (CAE), Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Abhinav Raghuvanshi
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
40
|
Wang X, Qi H, Shao Y, Zhao M, Chen H, Chen Y, Ying Y, Wang Y. Extrusion Printing of Surface-Functionalized Metal-Organic Framework Inks for a High-Performance Wearable Volatile Organic Compound Sensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400207. [PMID: 38655847 PMCID: PMC11220709 DOI: 10.1002/advs.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Wearable sensors hold immense potential for real-time and non-destructive sensing of volatile organic compounds (VOCs), requiring both efficient sensing performance and robust mechanical properties. However, conventional colorimetric sensor arrays, acting as artificial olfactory systems for highly selective VOC profiling, often fail to meet these requirements simultaneously. Here, a high-performance wearable sensor array for VOC visual detection is proposed by extrusion printing of hybrid inks containing surface-functionalized sensing materials. Surface-modified hydrophobic polydimethylsiloxane (PDMS) improves the humidity resistance and VOC sensitivity of PDMS-coated dye/metal-organic frameworks (MOFs) composites. It also enhances their dispersion within liquid PDMS matrix, thereby promoting the hybrid liquid as high-quality extrusion-printing inks. The inks enable direct and precise printing on diverse substrates, forming a uniform and high particle-loading (70 wt%) film. The printed film on a flexible PDMS substrate demonstrates satisfactory flexibility and stretchability while retaining excellent sensing performance from dye/MOFs@PDMS particles. Further, the printed sensor array exhibits enhanced sensitivity to sub-ppm VOC levels, remarkable resistance to high relative humidity (RH) of 90%, and the differentiation ability for eight distinct VOCs. Finally, the wearable sensor proves practical by in situ monitoring of wheat scab-related VOC biomarkers. This study presents a versatile strategy for designing effective wearable gas sensors with widespread applications.
Collapse
Affiliation(s)
- Xiao Wang
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Hao Qi
- State Key Laboratory of Rice BiologyZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhou310058P. R. China
| | - Yuzhou Shao
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Mingming Zhao
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Huayun Chen
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Yun Chen
- State Key Laboratory of Rice BiologyZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhou310058P. R. China
| | - Yibin Ying
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou310058P. R. China
| | - Yixian Wang
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou310058P. R. China
| |
Collapse
|
41
|
Kwon H, Kamboj O, Song A, Alarcón-Correa M, Remke J, Moafian F, Miksch B, Goyal R, Kim DY, Hamprecht FA, Fischer P. Scalable Optical Nose Realized with a Chemiresistively Modulated Light-Emitter Array. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402287. [PMID: 38696529 DOI: 10.1002/adma.202402287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Biological olfaction relies on a large number of receptors that function as sensors to detect gaseous molecules. It is challenging to realize artificial olfactory systems that contain similarly large numbers of sensory materials. It is shown that combinatorial materials processing with vapor deposition can be used to fabricate large arrays of distinct chemiresistive sensing materials. By combining these with light-emitting diodes, an array of chemiresistively-modulated light-emitting diodes, or ChemLEDs, that permit a simultaneous optical read-out in response to an analyte is obtained. The optical nose uses a common voltage source and ground for all sensing elements and thus eliminates the need for complex wiring of individual sensors. This optical nose contains one hundred ChemLEDs and generates unique light patterns in response to gases and their mixtures. Optical pattern recognition methods enable the quantitative prediction of the corresponding concentrations and compositions, thereby paving the way for massively parallel artificial olfactory systems. ChemLEDs open the possibility to explore demanding gas sensing applications, including in environmental, food quality monitoring, and potentially diagnostic settings.
Collapse
Affiliation(s)
- Hyunah Kwon
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Ocima Kamboj
- IWR, Heidelberg University, INF 205, 69120, Heidelberg, Germany
| | - Alexander Song
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mariana Alarcón-Correa
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Julia Remke
- IWR, Heidelberg University, INF 205, 69120, Heidelberg, Germany
| | - Fahimeh Moafian
- IWR, Heidelberg University, INF 205, 69120, Heidelberg, Germany
| | - Björn Miksch
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany
| | - Rahul Goyal
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Dong Yeong Kim
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
- Major of Semiconductor Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | | | - Peer Fischer
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
42
|
Wu P, Li Y, Yang A, Tan X, Chu J, Zhang Y, Yan Y, Tang J, Yuan H, Zhang X, Xiao S. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens 2024; 9:2728-2776. [PMID: 38828988 DOI: 10.1021/acssensors.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Xiangyu Tan
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan 650217, China
| | - Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Yifan Zhang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxu Yan
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
43
|
Shi L, Tang P, Hu J, Zhang Y. A Strategy for Multigas Identification Using Multielectrical Parameters Extracted from a Single Carbon-Based Field-Effect Transistor Sensor. ACS Sens 2024; 9:3126-3136. [PMID: 38843033 DOI: 10.1021/acssensors.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Given the widespread utilization of gas sensors across various industries, the detection of diverse and complex target gases presents a significant challenge in designing sensors with multigas detection capability. Although constructing a sensor array with widely used chemiresistive gas sensors is one solution, it is difficult for a single chemiresistive gas sensor to simultaneously detect different gases, as it can only detect a single target gas. The intrinsic reason for this bottleneck is that chemiresistive gas sensors rely entirely on the resistivity as the unique parameter to evaluate the diverse gas sensing properties of sensors, such as sensitivity, selectivity, etc. Herein, a field-effect transistor (FET) with abundant electrical parameters is employed to prepare a gas sensor for the detection of a variety of gases. Semiconducting carbon nanotubes (CNTs) are selected as the channel material, which is modified by Pd nanoparticles to enhance the gas sensing properties of the sensors. By extracting various electrical parameters such as transconductance, threshold voltage, etc. from the transfer characteristic curves of FET, a correlation between multielectrical parameters and various gas detection information is established for subsequent data analysis. Through the utilization of the principal component analysis algorithm, the identification of six gases can be finally achieved by relying solely on a single carbon-based FET-type gas sensor. We hope our work can solve the bottleneck of multigas identification by a single sensor in principle and is expected to reduce the system complexity and cost caused by the design of sensor arrays, offering a valuable guidance for multigas identification technology.
Collapse
Affiliation(s)
- Lin Shi
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China
| | - Pinghua Tang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China
| | - Jinyong Hu
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China
| | - Yong Zhang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
44
|
Li Y, Ren H, Chi C, Miao Y. Artificial Intelligence-Guided Gut-Microenvironment-Triggered Imaging Sensor Reveals Potential Indicators of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307819. [PMID: 38569219 PMCID: PMC11187919 DOI: 10.1002/advs.202307819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/16/2024] [Indexed: 04/05/2024]
Abstract
The gut-brain axis has recently emerged as a crucial link in the development and progression of Parkinson's disease (PD). Dysregulation of the gut microbiota has been implicated in the pathogenesis of this disease, sparking growing interest in the quest for non-invasive biomarkers derived from the gut for early PD diagnosis. Herein, an artificial intelligence-guided gut-microenvironment-triggered imaging sensor (Eu-MOF@Au-Aptmer) to achieve non-invasive, accurate screening for various stages of PD is presented. The sensor works by analyzing α-Syn in the gut using deep learning algorithms. By monitoring changes in α-Syn, the sensor can predict the onset of PD with high accuracy. This work has the potential to revolutionize the diagnosis and treatment of PD by allowing for early intervention and personalized treatment plans. Moreover, it exemplifies the promising prospects of integrating artificial intelligence (AI) and advanced sensors in the monitoring and prediction of a broad spectrum of diseases and health conditions.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of Medicine of University of Electronic Science and Technology of ChinaNo. 32, West Section 2, First Ring Road, Qingyang DistrictChengdu610000China
- Institute of Communications Engineering & Department of Electrical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Hong‐Xia Ren
- Sichuan Technology & Business CollegeChengdu611800China
| | - Chong‐Yung Chi
- Institute of Communications Engineering & Department of Electrical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Yang‐Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of Medicine of University of Electronic Science and Technology of ChinaNo. 32, West Section 2, First Ring Road, Qingyang DistrictChengdu610000China
| |
Collapse
|
45
|
Zhan L, Yin X, Qiu L, Li C, Wang Y. Application of dual chemotherapeutic drug delivery system based on metal-organic framework platform in enhancing tumor regression for breast cancer research. Biochem Biophys Res Commun 2024; 710:149889. [PMID: 38581955 DOI: 10.1016/j.bbrc.2024.149889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The nanomedicine system based on dual drug delivery systems (DDDs) can significantly enhance the efficacy of tumor treatment. Herein, a metal-organic framework, Zeolite imidazole salt frames 8 (ZIF-8), was successfully utilized as a carrier to load the dual chemotherapeutic drugs doxorubicin (DOX) and camptothecin (CPT), named DOX/CPT@ZIF-8 (denoted as DCZ), and their inhibitory effects on 4T1 breast cancer cells were evaluated. The study experimentally demonstrated the synergistic effects of the dual chemotherapeutic drugs within the ZIF-8 carrier and showed that the ZIF-8 nano-carrier loaded with the dual drugs exhibited stronger cytotoxicity and inhibitory effects on 4T1 breast cancer cells compared to single-drug treatment. The use of a ZIF-8-based dual chemotherapeutic drug carrier system highlighted its potential advantages in suppressing 4T1 breast cancer cells.
Collapse
Affiliation(s)
- Lin Zhan
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xuelian Yin
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Li Qiu
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Chenchen Li
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, School of Pharmacy & the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
| | - Yanli Wang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, School of Pharmacy & the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
46
|
Li WB, Liang G, Chen DJ, Ye JW, Liu JW, Li J, Shao HY, Mo ZW, Chen XM. Metal-Organic Framework Based Sensors for Benzene Vapor. Chemistry 2024; 30:e202304334. [PMID: 38388776 DOI: 10.1002/chem.202304334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Sensing of benzene vapor is a hot spot due to the volatile drastic carcinogen even at trace concentration. However, achieving convenient and rapid detection is still a challenge. As a sort of functional porous material, metal-organic frameworks (MOFs) have been developed as detection sensors by adsorbing benzene vapor and converting it into other signals (fluorescence intensity/wavelength, chemiresistive, weight or color, etc.). Supramolecular interaction between benzene molecules and the host framework, aperture size/shape and structural flexibility are influential factors in the performance of MOF-based sensors. Therefore, enhancing the host-guest interactions between the host framework and benzene molecules, or regulating the diffusion rate of benzene molecules by changing the aperture size/shape and flexibility of the host framework to enhance the detection signal are effective strategies for constructing MOF-based sensors. This concept highlights several types of MOF-based sensors for the detection of benzene vapor.
Collapse
Affiliation(s)
- Wen-Bin Li
- School of Environmental and Chemical Engineering, Wuyi University, Guangdong, 529020, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Gang Liang
- School of Environmental and Chemical Engineering, Wuyi University, Guangdong, 529020, China
| | - De-Jian Chen
- School of Environmental and Chemical Engineering, Wuyi University, Guangdong, 529020, China
| | - Jia-Wen Ye
- School of Environmental and Chemical Engineering, Wuyi University, Guangdong, 529020, China
| | - Jie-Wei Liu
- School of Environmental and Chemical Engineering, Wuyi University, Guangdong, 529020, China
| | - Jing Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Macau SAR, China
| | - Huai-Yu Shao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Macau SAR, China
| | - Zong-Wen Mo
- School of Environmental and Chemical Engineering, Wuyi University, Guangdong, 529020, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
47
|
Rajput SK, Mothika VS. Powders to Thin Films: Advances in Conjugated Microporous Polymer Chemical Sensors. Macromol Rapid Commun 2024; 45:e2300730. [PMID: 38407503 DOI: 10.1002/marc.202300730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.
Collapse
Affiliation(s)
- Saurabh Kumar Rajput
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| | - Venkata Suresh Mothika
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| |
Collapse
|
48
|
Lu G, Zong B, Tao T, Yang Y, Li Q, Mao S. High-Performance Ni 3(HHTP) 2 Film-Based Flexible Field-Effect Transistor Gas Sensors. ACS Sens 2024; 9:1916-1926. [PMID: 38501291 DOI: 10.1021/acssensors.3c02656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Conductive metal-organic frameworks (MOFs) have received increasing attention in recent years and present high application potential as sensing elements in electronic sensors. In this study, flexible field-effect transistor (FET) sensors based on conductive MOF, i.e., Ni3(HHTP)2, have been constructed. This Ni3(HHTP)2 sensor has high sensitivity (detection limit of 56 ppb) as well as superior selectivity for NO2 detection at room temperature, which is demonstrated by accurate gas detection in a mixed gas atmosphere. Moreover, by employing six flexible substrates, i.e., polyimide (PI), tape (PET), facemask, paper cup, tablecloth, and take-out bag (textile), we successfully demonstrate the universality of the flexible sensor construction with conductive MOF as sensing film on various substrates. This study of conductive MOF-based flexible electronic sensors offers a new opportunity for a wide range of sensing applications with wearable and portable electronic devices.
Collapse
Affiliation(s)
- Guirong Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Boyang Zong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tian Tao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuehong Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
49
|
Sala A, Faye Diouf MD, Marchetti D, Pasquale L, Gemmi M. Mechanochemical Synthesis and Three-Dimensional Electron Diffraction Structure Solution of a Novel Cu-Based Protocatechuate Metal-Organic Framework. CRYSTAL GROWTH & DESIGN 2024; 24:3246-3255. [PMID: 38659659 PMCID: PMC11036354 DOI: 10.1021/acs.cgd.3c01494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Mechanochemical synthesis is a powerful approach to obtain new materials, limiting costs, and times. However, defected and submicrometrical-sized crystal products make critical their characterization through classical single-crystal X-ray diffraction. A valid alternative is represented by three-dimensional (3D) electron diffraction, in which a transmission electron microscope is used, like a diffractometer. This work matches a green water-based mechanochemical synthesis and 3D electron diffraction to obtain and characterize a Cu-based protocatechuate metal-organic framework (PC-MOF). Its structure has been fully refined through dynamical diffraction theory, and free water molecules could be detected in the channels of the framework. Thermal characterization, focused on the dehydration profile determination, leads to the formation of a novel high-temperature 2D coordination polymer, fully solved with 3D electron diffraction data. At last, the strong activity of the PC-MOF against cationic dyes like methylene blue has been reported.
Collapse
Affiliation(s)
- Andrea Sala
- Electron
Crystallography, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Moussa D. Faye Diouf
- Electron
Crystallography, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, University of Parma, Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Danilo Marchetti
- Electron
Crystallography, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, University of Parma, Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Lea Pasquale
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Mauro Gemmi
- Electron
Crystallography, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
50
|
Shan Z, Xiao JZ, Wu M, Wang J, Su J, Yao MS, Lu M, Wang R, Zhang G. Topologically Tunable Conjugated Metal-Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH 3 Sensing. Angew Chem Int Ed Engl 2024; 63:e202401679. [PMID: 38389160 DOI: 10.1002/anie.202401679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian-Ze Xiao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ming-Shui Yao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|