1
|
Liu L, Li L, Wang T, Li Z, Yan B, Tan R, Zeng A, Ma W, Zhu X, Yin Z, Ma C. Recent nanoengineered therapeutic advancements in sepsis management. Front Bioeng Biotechnol 2024; 12:1495277. [PMID: 39703795 PMCID: PMC11655211 DOI: 10.3389/fbioe.2024.1495277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Sepsis (defined as sepsis 3.0) is a life-threatening organ dysfunction caused by a dysregulated host response to a variety of pathogenic microorganisms. Characterized by high morbidity and mortality, sepsis has become a global public health problem. However, there is a lack of appropriate diagnostic and therapeutic strategies for sepsis and current management rely on the limited treatment strategies. Recently, nanomedicines targeting and controlling the release of bio-active agents have shown excellent potency in sepsis management, with improved therapeutic efficacy and reduced adverse effects. In this review, we have summarized the advantages of nanomaterials. Also, the preparation and efficacy of the main categories of anti-sepsis nanomedicines applied in sepsis management are described in detail, including antibiotic-coated nanomaterials, antimicrobial peptides-coated nanomaterials, biomimetic nanomaterials, nanomaterials targeting macrophages and natural products loaded nanomaterials. These advances in nanomedicines establish the huge potential for nanomaterials-based sepsis management, especially in the improved pharmaceutical and pharmacological properties, enhanced therapeutic efficacy, controllable drug-targeting and reduced side effects. To further facilitate clinical translation of anti-sepsis nanomedicines, we propose that the issues involving safety, regulatory laws and cost-effectiveness should receive much more attention in the future.
Collapse
Affiliation(s)
- Li Liu
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Ting Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Bingpeng Yan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xin Zhu
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Chunhua Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Dissanayake R, Nazeer N, Zarei Z, Bhayo AM, Ahmed M. Controlled self-assembly of macrocyclic peptide into multifunctional photoluminescent nanoparticles. J Pharm Sci 2024:S0022-3549(24)00516-1. [PMID: 39551234 DOI: 10.1016/j.xphs.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Self-assembled peptide nanoparticles are unique stimuli responsive biodegradable materials with applications in biomedicines as delivery carriers and imaging agents. This study investigates the controlled self-assembly of chicken Angiogenin 4 derived immunomodulatory macrocyclic peptide (mCA4-5) in the presence of an inert amphipathic stabilizing peptide and as a function of pH, temperature and presence of ions to yield optically active, physiologically stable and biodegradable peptide nanoparticles. The photoluminescent peptide nanoparticles (PLPNs) produced were characterized for the size, surface charge, optical properties and crystallinity. The carvacrol loaded nanoparticles prepared by facile encapsulation of the drug during the self-assembly process were evaluated for the drug release efficacies, as a function of pH and in the presence of reducing agent. Carvacrol loaded, physiologically stable PLPNs obtained with high conversion efficacy were highly effective against planktonic bacteria and bacterial biofilms and efficiently eradicated intracellular bacteria in infected macrophages and fibroblast. Furthermore, the drug-loaded nanoparticles exhibited significant antioxidant activities and immunomodulatory effects, highlighting their multifunctional therapeutic potential.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Zeyaealdin Zarei
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Adnan Murad Bhayo
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave. Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
3
|
Ma X, Yang N, Mao R, Hao Y, Li Y, Guo Y, Teng D, Huang Y, Wang J. Self-assembly antimicrobial peptide for treatment of multidrug-resistant bacterial infection. J Nanobiotechnology 2024; 22:668. [PMID: 39478570 PMCID: PMC11526549 DOI: 10.1186/s12951-024-02896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
The wide-spreading of multidrug resistance poses a significant threat to human and animal health. Although antimicrobial peptides (AMPs) show great potential application, their instability has severely limited their clinical application. Here, self-assembled AMPs composed of multiple modules based on the principle of associating natural marine peptide N6 with ß-sheet-forming peptide were designed. It is noteworthy that one of the designed peptides, FFN could self-assemble into nanoparticles at 35.46 µM and achieve a dynamic transformation from nanoparticles to nanofibers in the presence of bacteria, resulting in a significant increase in stability in trypsin and tissues by 1.72-57.5 times compared to that of N6. Additionally, FFN exhibits a broad spectrum of antibacterial activity against multidrug-resistant (MDR) gram-positive (G+) and gram-negative (G-) bacteria with Minimum inhibitory concentrations (MICs) as low as 2 µM by membrane destruction and complemented by nanofiber capture. In vivo mouse mastitis infection model further confirmed the therapeutic potential and promising biosafety of the self-assembled peptide FFN, which can effectively alleviate mastitis caused by MDR Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and eliminate pathogenic bacteria. In conclusion, the design of peptide-based nanomaterials presents a novel approach for the delivery and clinical translation of AMPs, promoting their application in medicine and animal husbandry.
Collapse
Affiliation(s)
- Xuanxuan Ma
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Na Yang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ruoyu Mao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ya Hao
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yuanyuan Li
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ying Guo
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Da Teng
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
4
|
Lv Y, Liu J, Zhang Y, Zhou Y, Huang J, Wang W, Ye X. New Family of Benzimidazole-Based Chitosan Derivatives against Penicillium expansum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21843-21853. [PMID: 39308015 DOI: 10.1021/acs.jafc.4c06436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Penicillium expansum is the major fungus that causes blue mold and produces patulin, threatening human health. Due to health and environmental pollution concerns, chitosan (CS) has attracted more and more attention as a safer alternative to synthetic fungicides for the control of blue mold. In the present study, four different benzimidazole groups were introduced onto CS by the acylation reaction to obtain benzimidazole-based chitosan derivatives (R1b-R4b). After being well-characterized with Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis spectra), and nuclear magnetic resonance (NMR), their antifungal activities against P. expansum were screened. Results showed that the inhibitory effects of chitosan derivatives against the pathogen were significantly correlated with chitosan derivatives' concentration and their structures. R4b was shown as optimum with good solubility and antifungal activity with a minimum inhibitory concentration (MIC) value of 0.5 mg/mL and a minimum fungicidal concentration (MFC) value of 2.0 mg/mL. The remarkable antifungal efficiency of R4b against P. expansum was further demonstrated in terms of spore germination, mycelial growth, patulin production, and the preliminary antifungal mechanism. R4b exhibited significant inhibition of patulin production, while its antifungal mechanism was revealed by destroying cell membrane integrity and inducing membrane depolarization. Furthermore, R4b treatment could significantly reduce the incidence of blue mold rot in apple fruit, and the MTT assay showed the nontoxicity of R4b against Raw 264.7, HBZY-1, and Caco-2 cells. Altogether, these results indicate that it is promising to be used as a fruit preservative in the future.
Collapse
Affiliation(s)
- Yan Lv
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jing Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yujun Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yiyu Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Wenjie Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China
| | - Xiancheng Ye
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P. R. China
| |
Collapse
|
5
|
Tian Y, Hou Y, Tian J, Zheng J, Xiao Z, Hu J, Zhang Y. D-Peptide cell culture scaffolds with enhanced antibacterial and controllable release properties. J Mater Chem B 2024; 12:8122-8132. [PMID: 39044470 DOI: 10.1039/d4tb00969j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The development of peptide-based hydrogels characterized by both high biostability and potent antimicrobial activity, aimed at combating multidrug-resistant bacterial infections and providing scaffolds for cell cultures, continues to pose a significant challenge. The susceptibility of antimicrobial peptides (AMPs) to degradation by cations, serum, and proteases restricted their applications in clinical environments. In this study, we designed a peptide sequence (termed D-IK1) entirely consisting of D-amino acids, an enantiomer of a previously reported AMP IK1. Our results demonstrated remarkably improved antibacterial and anticancer activities of D-IK1 as compared to IK1. D-IK1 self-assembled into hydrogels that effectively inhibited bacterial and cancer cell growth by the controlled and sustained release of D-IK1. Importantly, D-IK1 was extremely stable in salt solutions and resisted serum and protease degradation. In addition, the D-IK1 hydrogel fostered cell adhesion and proliferation, proving its viability as a 3D scaffold for cell culture applications. Our research presents a versatile, highly stable antibacterial hydrogel scaffold with potential widespread applications in cell culture, wound healing, and the eradication of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yu Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangqian Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakun Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeyu Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Ibrahim UH, Gafar MA, Khan R, Tageldin A, Govender T, Mackraj I. Engineered extracellular vesicles coated with an antimicrobial peptide for advanced control of bacterial sepsis. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70000. [PMID: 39185334 PMCID: PMC11342353 DOI: 10.1002/jex2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Alarming sepsis-related mortality rates present significant challenges to healthcare services globally. Despite advances made in the field, there is still an urgent need to develop innovative approaches that could improve survival rates and reduce the overall cost of treatment for sepsis patients. Therefore, this study aimed to develop a novel multifunctional therapeutic agent for advanced control of bacterial sepsis. Extracellular vesicles (EVs) isolated from lipopolysaccharide (LPS) induced HepG2 (hepatocellular carcinoma cells) (iEV) displayed an average particle size of 171.63 ± 2.77 nm, a poly dispersion index (PDI) of 0.32 ± 0.0, and a zeta potential (ZP) of -11.87 ± 0.18 mV. Compared to HepG2 EV, LPS induction significantly increases the EV protein concentration, PDI and ZP, reduces the average size and promotes cell proliferation and cytoprotective effects of the isolated EVs (iEVs) against LPS-induced cytotoxicity. Coating of iEV with a cationic antimicrobial peptide (AMP) to form PC-iEV slightly changed their physical properties and shifted their surface charge toward neutral values. This modification improved the antibacterial activity (2-fold lower minimum bactericidal concentration [MBC] values) and biocompatibility of the conjugated peptide while maintaining iEV cytoprotective and anti-inflammatory activities. Our findings indicate the superior anti-inflammatory and antibacterial dual activity of PC-iEV against pathogens associated with sepsis.
Collapse
Affiliation(s)
- Usri H. Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Mohammed A. Gafar
- Discipline of Pharmaceutical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Irene Mackraj
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
7
|
An Y, Guo X, Yan T, Jia Y, Jiao R, Cai X, Deng B, Bao G, Li Y, Yang W, Wang R, Sun W, Xie J. Enhancing the stability and therapeutic potential of the antimicrobial peptide Feleucin-K3 against Multidrug-Resistant a. Baumannii through rational utilization of a D-amino acid substitution strategy. Biochem Pharmacol 2024; 225:116269. [PMID: 38723723 DOI: 10.1016/j.bcp.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Antimicrobial peptides (AMPs), which have a low probability of developing resistance, are considered the most promising antimicrobial agents for combating antibiotic resistance. Feleucin-K3 is an amphiphilic cationic AMP that exhibits broad-spectrum antimicrobial activity. In our previous research, the first phenylalanine residue was identified as the critical position affecting its biological activity. Here, a series of Feleucin-K3 analogs containing hydrophobic D-amino acids were developed, leveraging the low sensitivity of proteases to unnatural amino acids and the regulatory effect of hydrophobicity on antimicrobial activity. Among them, K-1dF, which replaced the phenylalanine of Feleucin-K3 with its enantiomer (D-phenylalanine), exhibited potent antimicrobial activity with a therapeutic index of 46.97 and MICs between 4 to 8 μg/ml against both sensitive and multidrug-resistant Acinetobacter baumannii. The introduction of D-phenylalanine increased the salt tolerance and serum stability of Feleucin-K3. Moreover, K-1dF displayed a rapid bactericidal effect, a low propensity to develop resistance, and a synergistic effect when combined with antibiotics. More importantly, it exhibited considerable or superior efficacy to imipenem against pneumonia and skin abscess infection. In brief, the K-1dF obtained by simple and effective modification strategy has emerged as a promising candidate antimicrobial agent for tackling multidrug-resistant Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Yingying An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Tiantian Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Yue Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Ruoyan Jiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Xinyu Cai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Bochuan Deng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China.
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Puértolas E, Pérez I, Murgui X. Potential of CO 2 laser for food processing: Applications and challenges. Crit Rev Food Sci Nutr 2024; 64:7671-7685. [PMID: 36927208 DOI: 10.1080/10408398.2023.2188954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Laser food processing has the breath-taking potential to revolutionize the industry in many aspects. Among the different laser configurations, CO2 laser has received special attention due to its relative high efficiency in power generation, its high-power output and its laser beam wavelength, infrared, which is strongly absorbed by water, the main component of food materials. Over the last 50 years, different uses of CO2 laser for processing foods have been proposed so far, including cooking, broiling and browning, selective laser sintering, marking, microperforation for improving downstream mass transfer operations (e.g. infusion, diffusion, marinating, salting, drying, extraction), cutting and peeling, and microbial surface decontamination. The present work is a review of the state of the art of the use of CO2 laser for food processing that covers the main characteristics and mechanisms of this technology, as well as the most important published results regarding its applications in the agri-food sector, highlighting the main challenges to bring out its full potential in the coming years.
Collapse
Affiliation(s)
- Eduardo Puértolas
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Izaskun Pérez
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Xabier Murgui
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
9
|
Liu Y, Cui P, Tan R, Ru S. Rapid Membrane-Penetrating Hybrid Peptides Achieve Efficient Dual Antimicrobial and Antibiofilm Activity through a Triple Bactericidal Mechanism. ACS OMEGA 2024; 9:26133-26148. [PMID: 38911764 PMCID: PMC11191078 DOI: 10.1021/acsomega.4c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Antimicrobial peptides (AMPs) are a type of biomaterial used against multidrug resistant (MDR) bacteria. This study reports the design of a peptide family rich in tryptophan and lysine obtained by optimizing a natural AMP using single factor modification and pheromone hybridization to expedite the penetration and improve the antimicrobial activity of AMPs. S-4, L-4, and P-4 showed α-helical structures, exhibited extremely fast membrane penetration rates in vitro, and could kill MDR bacteria efficiently within 30 min. Intracellular fluorescence localization suggested rapid membrane-penetrating of AMPs within 1 min, making it more difficult for bacteria to develop resistance. Furthermore, they could effectively inhibit and destroy bacterial biofilms with dual antimicrobial and antibiofilm activity. In the treatment of skin infections caused by MDR-Acinetobacter baumannii in vivo , AMPs could effectively alleviate inflammation without toxic side effects. Additionally, the triple antimicrobial damage of AMPs was described in detail. AMPs rapidly penetrate the cell membrane, inducing cell membrane damage, triggering oxidative damage with a storm of reactive oxygen species and leading to bacterial death through leakage of cellular contents by complexing with DNA. The multiple damage is an important means by which AMPs can prevent bacterial resistance adequately.
Collapse
Affiliation(s)
| | | | - Rong Tan
- Lab of Environmental Health
and Ecological Engineering, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- Lab of Environmental Health
and Ecological Engineering, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
10
|
Wang T, Tan P, Tang Q, Zhou C, Ding Y, Xu S, Song M, Fu H, Zhang Y, Zhang X, Bai Y, Sun Z, Ma X. Phage-displayed heptapeptide sequence conjugation significantly improves the specific targeting ability of antimicrobial peptides against Staphylococcus aureus. MLIFE 2024; 3:251-268. [PMID: 38948143 PMCID: PMC11211671 DOI: 10.1002/mlf2.12123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Broad-spectrum antibacterial drugs often lack specificity, leading to indiscriminate bactericidal activity, which can disrupt the normal microbial balance of the host flora and cause unnecessary cytotoxicity during systemic administration. In this study, we constructed a specifically targeted antimicrobial peptide against Staphylococcus aureus by introducing a phage-displayed peptide onto a broad-spectrum antimicrobial peptide and explored its structure-function relationship through one-factor modification. SFK2 obtained by screening based on the selectivity index and the targeting index showed specific killing ability against S. aureus. Moreover, SFK2 showed excellent biocompatibility in mice and piglet, and demonstrated significant therapeutic efficacy against S. aureus infection. In conclusion, our screening of phage-derived heptapeptides effectively enhances the specific bactericidal ability of the antimicrobial peptides against S. aureus, providing a theoretical basis for developing targeted antimicrobial peptides.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Luoyang Key Laboratory of Animal Genetic and Breeding, College of Animal ScienceHenan University of Science and TechnologyLuoyangChina
| | - Peng Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Qi Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Chenlong Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yakun Ding
- Key Laboratory of Innovative Utilization of Indigenous Cattle and Sheep Germplasm Resources (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural AffairsZhengzhou UniversityZhengzhouChina
| | - Shenrui Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Mengda Song
- Key Laboratory of Innovative Utilization of Indigenous Cattle and Sheep Germplasm Resources (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural AffairsZhengzhou UniversityZhengzhouChina
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yucheng Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiaohui Zhang
- Luoyang Key Laboratory of Animal Genetic and Breeding, College of Animal ScienceHenan University of Science and TechnologyLuoyangChina
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Indigenous Cattle and Sheep Germplasm Resources (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural AffairsZhengzhou UniversityZhengzhouChina
- Animal Health Supervision in Henan ProvinceZhengzhouChina
| | - Zhihong Sun
- Laboratory for Bio‐Feed and Molecular Nutrition, Department of Animal Science and TechnologySouthwest UniversityChongqingChina
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
11
|
Huang X, Liu M, Lu Q, Lv K, Wang L, Yin S, Yuan M, Li Q, Li X, Zhao T, Zhao D. Physical-Chemical Coupling Coassembly Approach to Branched Magnetic Mesoporous Nanochains with Adjustable Surface Roughness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309564. [PMID: 38582520 PMCID: PMC11187885 DOI: 10.1002/advs.202309564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Self-assembly processes triggered by physical or chemical driving forces have been applied to fabricate hierarchical materials with subtle nanostructures. However, various physicochemical processes often interfere with each other, and their precise control has remained a great challenge. Here, in this paper, a rational synthesis of 1D magnetite-chain and mesoporous-silica-nanorod (Fe3O4&mSiO2) branched magnetic nanochains via a physical-chemical coupling coassembly approach is reported. Magnetic-field-induced assembly of magnetite Fe3O4 nanoparticles and isotropic/anisotropic assembly of mesoporous silica are coupled to obtain the delicate 1D branched magnetic mesoporous nanochains. The nanochains with a length of 2-3 µm in length are composed of aligned Fe3O4@mSiO2 nanospheres with a diameter of 150 nm and sticked-out 300 nm long mSiO2 branches. By properly coordinating the multiple assembly processes, the density and length of mSiO2 branches can well be adjusted. Because of the unique rough surface and length in correspondence to bacteria, the designed 1D Fe3O4&mSiO2 branched magnetic nanochains show strong bacterial adhesion and pressuring ability, performing bacterial inhibition over 60% at a low concentration (15 µg mL-1). This cooperative coassembly strategy deepens the understanding of the micro-nanoscale assembly process and lays a foundation for the preparation of the assembly with adjustable surface structures and the subsequent construction of complex multilevel structures.
Collapse
Affiliation(s)
- Xirui Huang
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Minchao Liu
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Qianqian Lu
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Kexin Lv
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Lipeng Wang
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Sixing Yin
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Minjia Yuan
- Shanghai Qiran Biotechnology Co., LtdShanghai201702China
| | - Qi Li
- Shanghai Qiran Biotechnology Co., LtdShanghai201702China
| | - Xiaomin Li
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Tiancong Zhao
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Dongyuan Zhao
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| |
Collapse
|
12
|
Wang C, Chen D, Wu S, Zhou W, Chen X, Zhang Q, Wang L. Dietary supplementation with Neolamarckia cadamba leaf extract improves broiler meat quality by enhancing antioxidant capacity and regulating metabolites. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:358-372. [PMID: 38800732 PMCID: PMC11127102 DOI: 10.1016/j.aninu.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 05/29/2024]
Abstract
This study was to evaluate the effect of supplementing the diet of broilers with Neolamarckia cadamba leaf extract (NCLE) on meat quality by evaluating antioxidant parameters and the expression of genes in the p38 mitogen-activated protein kinase/nuclear factor-erythroid 2-related factor 2/antioxidant responsive element (p38 MAPK/Nrf2/ARE) signaling pathway, coupled with LC-MS-based metabolomic analysis. A total of 480 one-day-old male broilers were randomly allocated to four treatment groups-a control (CON) group, which was fed a basal diet, and three NCLE treatment groups, which were fed the basal diet supplemented with 100, 200, or 400 mg/kg NCLE (N1, N2, and N3 groups, respectively) for 42 d. Compared with the CON group, meat quality was improved in the N2 and N3 groups, as evidenced by the higher pH45min (P < 0.05) and lower shear force (P < 0.05) in breast muscle (BM) and lower drip loss at 48 h (P < 0.05) in leg muscle (LM). Moreover, BM antioxidant capacity was significantly enhanced in the N3 group, characterized by an increase in the total antioxidant capacity (T-AOC), the concentrations of glutathione peroxidase (GSH-Px) and catalase (CAT), and the relative mRNA expression of p38 MAPK, extracellular-signal regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), Nrf2, CAT, and GSH-Px (P < 0.05). Similarly, LM in the N3 group displayed higher T-AOC, increased GSH-Px and CAT concentrations, reduced malonaldehyde contents (P < 0.05), and upregulation of the relative mRNA levels of JNK, Nrf2, heme oxygenase, CAT, and superoxide dismutase (SOD) (P < 0.05). Metabolomics analysis revealed that D-arabinono-1,4-lactone and lyso-PAF C-16-d4 were negatively correlated with shear force and cooking loss (P < 0.05) and displayed increased abundance in BM of the N3 group. L-Serine levels were upregulated while D-fructose 1,6-diphosphate contents were downregulated in the three NCLE groups. Finally, the differential metabolites in both BM and LM were involved in amino acid metabolism pathways. Our results indicated that NCLE supplementation improved meat quality by enhancing antioxidant enzyme activities, promoting the expression of genes in the p38 MAPK/Nrf2/ARE signaling pathway, and regulating amino acid metabolism. The optimal NCLE concentration was found to be 400 mg/kg.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shou Wu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
13
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
14
|
Shu J, Wang Y, Zhang G, Shu X, Xu T, Zhang J, Wu F, He J. Fructose-mineralized black phosphorus for syncretic bone regeneration and tumor suppression. J Mater Chem B 2024; 12:4882-4898. [PMID: 38682491 DOI: 10.1039/d4tb00564c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Black phosphorus (BPs) nanosheets with their inherent and selective chemotherapeutic effects have recently been identified as promising cancer therapeutic agents, but challenges in surface functionalization hinder satisfactory enhancement of their selectivity between tumors and normal cells. To address this issue, we developed a novel biomineralization-inspired strategy to synthesize CaBPs-Na2FDP@CaCl2 nanosheets, aiming to achieve enhanced and selective anticancer bioactivity along with accelerated osteoblast activity. Benefiting from the in situ mineralization and fructose modification, CaBPs-Na2FDP@CaCl2 exhibited improved pH-responsive degradation behavior and targeted therapy for osteosarcoma. The in vitro results indicated that CaBPs-Na2FDP@CaCl2 exhibited efficient uptake and quick degradation by GLUT5-positive 143B osteosarcoma cells, enhancing BPs-driven chemotherapeutic effects through ATP level disturbance-mediated apoptosis of tumor cells. Moreover, CaBPs-Na2FDP@CaCl2 underwent gradual degradation into PO43-, Ca2+ and fructose in MC3T3-E1 cells, eliminating systemic toxicity. Intracellular Ca2+ bound to calmodulin (CaM), activating Ca2+/CaM-dependent signaling cascades, thereby enhancing osteoblast differentiation and mineralization in pro-osteoblastic cells. In vivo experiments affirmed the anti-tumor capability, inhibition of tumor recurrence and bone repair promotion of CaBPs-Na2FDP@CaCl2. This study not only broadens the application of BPs in bone tumor therapy but also provides a versatile surface functionalization strategy for nanotherapeutic agents.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Yao Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Guangpeng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Xuedong Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Tingting Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
15
|
Cirillo S, Zhang B, Brown S, Zhao X. Antimicrobial peptide A 9K as a gene delivery vector in cancer cells. Eur J Pharm Biopharm 2024; 198:114244. [PMID: 38467336 DOI: 10.1016/j.ejpb.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Designed peptides are promising biomaterials for biomedical applications. The amphiphilic cationic antimicrobial peptide (AMP), A9K, can self-assemble into nano-rod structures and has shown cancer cell selectivity and could therefore be a promising candidate for therapeutic delivery into cancer cells. In this paper, we investigate the selectivity of A9K for cancer cell models, examining its effect on two human cancer cell lines, A431 and HCT-116. Little or no activity was observed on the control, human dermal fibroblasts (HDFs). In the cancer cell lines the peptide inhibited cellular growth through changes in mitochondrial morphology and membrane potential while remaining harmless towards HDFs. In addition, the peptide can bind to and protect nucleic acids while transporting them into both 2D cultures and 3D spheroids of cancer cells. A9K showed high efficiency in delivering siRNA molecules into the centre of the spheroids. A9K was also explored in vivo, using a zebrafish (Danio rerio) development toxicity assay, showing that the peptide is safe at low doses. Finally, a high-content imaging screen, using RNA interference (RNAi) targeted towards cellular uptake, in HCT-116 cells was carried out. Our findings suggest that active cellular uptake is involved in peptide internalisation, mediated through clathrin-mediated endocytosis. These new discoveries make A9K attractive for future developments in clinical and biotechnological applications.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Bo Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- The Sheffield RNAi Screening Facility, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
16
|
Bai G, Niu C, Liang X, Li L, Wei Z, Chen K, Bohinc K, Guo X. Dextran-based antibacterial hydrogel-derived fluorescent sensors for the visual monitoring of AgNPs. Int J Biol Macromol 2024; 267:131288. [PMID: 38565365 DOI: 10.1016/j.ijbiomac.2024.131288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The unpredictable release behavior of metal nanoparticles/metal ions from metal nanoparticle-loaded hydrogels, without a suitable in situ detection method, is resulting in serious cytotoxicity. To optimize the preparation and design of antibacterial hydrogels for in situ detection of metal nanoparticles, an in-situ detection platform based on the fluorescence signal change caused by the potential surface energy transfer of silver nanoparticles (AgNPs) and carbon dots (CD) through silver mirror reaction and Schiff base reaction was established. The antimicrobial test results show that the composite antimicrobial hydrogel, with lower dosages of AgNPs and CD, exhibited a higher inhibition rate of 99.1 % against E. coli and 99.8 % against S. aureus compared to the single antimicrobial component. This suggests a potential synergistic antimicrobial activity. Furthermore, the fluorescence detection platform was established with a difference of <3 μg between detected values and actual values over a period of 72 h. This demonstrates the excellent in situ detection capability of the hydrogel in antimicrobial-related applications.
Collapse
Affiliation(s)
- Ge Bai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chunhua Niu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xuexue Liang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Lan Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Zhong Wei
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Kai Chen
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | - Xuhong Guo
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China; State Key Laboratory of Chemical Engineering and International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
17
|
Gafar MA, Omolo CA, Elhassan E, Ibrahim UH, Govender T. Applications of peptides in nanosystems for diagnosing and managing bacterial sepsis. J Biomed Sci 2024; 31:40. [PMID: 38637839 PMCID: PMC11027418 DOI: 10.1186/s12929-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Sepsis represents a critical medical condition stemming from an imbalanced host immune response to infections, which is linked to a significant burden of disease. Despite substantial efforts in laboratory and clinical research, sepsis remains a prominent contributor to mortality worldwide. Nanotechnology presents innovative opportunities for the advancement of sepsis diagnosis and treatment. Due to their unique properties, including diversity, ease of synthesis, biocompatibility, high specificity, and excellent pharmacological efficacy, peptides hold great potential as part of nanotechnology approaches against sepsis. Herein, we present a comprehensive and up-to-date review of the applications of peptides in nanosystems for combating sepsis, with the potential to expedite diagnosis and enhance management outcomes. Firstly, sepsis pathophysiology, antisepsis drug targets, current modalities in management and diagnosis with their limitations, and the potential of peptides to advance the diagnosis and management of sepsis have been adequately addressed. The applications have been organized into diagnostic or managing applications, with the last one being further sub-organized into nano-delivered bioactive peptides with antimicrobial or anti-inflammatory activity, peptides as targeting moieties on the surface of nanosystems against sepsis, and peptides as nanocarriers for antisepsis agents. The studies have been grouped thematically and discussed, emphasizing the constructed nanosystem, physicochemical properties, and peptide-imparted enhancement in diagnostic and therapeutic efficacy. The strengths, limitations, and research gaps in each section have been elaborated. Finally, current challenges and potential future paths to enhance the use of peptides in nanosystems for combating sepsis have been deliberately spotlighted. This review reaffirms peptides' potential as promising biomaterials within nanotechnology strategies aimed at improving sepsis diagnosis and management.
Collapse
Affiliation(s)
- Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, P.O. Box 1996, Khartoum, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
18
|
Song M, Tang Q, Ding Y, Tan P, Zhang Y, Wang T, Zhou C, Xu S, Lyu M, Bai Y, Ma X. Staphylococcus aureus and biofilms: transmission, threats, and promising strategies in animal husbandry. J Anim Sci Biotechnol 2024; 15:44. [PMID: 38475886 PMCID: PMC10936095 DOI: 10.1186/s40104-024-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts (meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
Collapse
Affiliation(s)
- Mengda Song
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yakun Ding
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yucheng Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chenlong Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shenrui Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mengwei Lyu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Yang XC, Ding Y, Song SN, Wang WH, Huang S, Pang XY, Li B, Yu YY, Xia YM, Gao WW. Biocompatible N-carbazoleacetic acid decorated Cu xO nanoparticles as self-cascading platforms for synergistic single near-infrared triggered phototherapy treating microbial infections. Biomater Sci 2024; 12:1558-1572. [PMID: 38305728 DOI: 10.1039/d3bm01873c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In this work, positively charged N-carbazoleacetic acid decorated CuxO nanoparticles (CuxO-CAA NPs) as novel biocompatible nanozymes have been successfully prepared through a one-step hydrothermal method. CuxO-CAA can serve as a self-cascading platform through effective GSH-OXD-like and POD-like activities, and the former can induce continuous generation of H2O2 through the catalytic oxidation of overexpressed GSH in the bacterial infection microenvironment, which in turn acts as a substrate for the latter to yield ˙OH via Fenton-like reaction, without introducing exogenous H2O2. Upon NIR irradiation, CuxO-CAA NPs possess a high photothermal conversion effect, which can further improve the enzymatic activity for increasing the production rate of H2O2 and ˙OH. Besides, the photodynamic performance of CuxO-CAA NPs can produce 1O2. The generated ROS and hyperthermia have synergetic effects on bacterial mortality. More importantly, CuxO-CAA NPs are more stable and biosafe than Cu2O, and can generate electrostatic adsorption with negatively charged bacterial cell membranes and accelerate bacterial death. Antibacterial results demonstrate that CuxO-CAA NPs are lethal against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AREC) through destroying the bacterial membrane and disrupting the bacterial biofilm formation. MRSA-infected animal wound models show that CuxO-CAA NPs can efficiently promote wound healing without causing toxicity to the organism.
Collapse
Affiliation(s)
- Xiao-Chan Yang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yong Ding
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Sheng-Nan Song
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Wen-Hui Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shan Huang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
- The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xue-Yao Pang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Bo Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Ya-Ya Yu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Ya-Mu Xia
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
20
|
Wang C, Wu S, Zhou W, Hu L, Hu Q, Cao Y, Wang L, Chen X, Zhang Q. Effects of Neolamarckia cadamba leaves extract on microbial community and antibiotic resistance genes in cecal contents and feces of broilers challenged with lipopolysaccharides. Appl Environ Microbiol 2024; 90:e0110723. [PMID: 38231769 PMCID: PMC10880616 DOI: 10.1128/aem.01107-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/20/2023] [Indexed: 01/19/2024] Open
Abstract
The effects of Neolamarckia cadamba leaves extract (NCLE), with effective ingredients of flavonoids, on antibiotic resistance genes (ARGs) and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation (LPS) were investigated. LPS stimulation increased (P < 0.05) the relative abundance of ARGs and mobile genetic elements (MGEs), such as tet(W/N/W), APH(3')-IIIa, ErmB, tet (44), ANT (6)-Ia, tet(O), tet (32), Vang_ACT_CHL, myrA, ANT (6)-Ib, IncQ1, tniB, and rep2 in cecal contents. However, the difference disappeared (P > 0.05) when NCLE was added at the same time. These differential ARGs and MGEs were mainly correlated (P < 0.01) with Clostridiales bacterium, Lachnospiraceae bacterium, and Candidatus Woodwardibium gallinarum. These species increased in LPS-stimulated broilers and decreased when NCLE was applied at the same time. In feces, LPS stimulation decreased (P < 0.05) the relative abundance of tet(Q), adeF, ErmF, Mef(En2), OXA-347, tet (40), npmA, tmrB, CfxA3, and ISCrsp1, while the LPS + NCLE treated group showed no significant effect (P > 0.05) on these ARGs. These differential ARGs and MGEs in feces were mainly correlated (P < 0.01) with Clostridiales bacterium, Pseudoflavonifractor sp. An184, Flavonifractor sp. An10, Ruminococcaceae bacterium, etc. These species increased in LPS-stimulated broilers and increased when NCLE was applied at the same time. In conclusion, LPS stimulation and NCLE influenced microbial communities and associated ARGs in both cecal contents and feces of broilers. NCLE alleviated the change of ARGs and MGEs in LPS-induced broilers by maintaining the microbial balance.IMPORTANCEAntibiotics showed a positive effect on gut health regulation and growth performance improvement in livestock breeding, but the antimicrobial resistance threat and environment pollution problem are increasingly severe with antibiotics abuse. As alternatives, plant extract containing bioactive substances are increasingly used to improve immunity and promote productivity. However, little is known about their effects on diversity and abundance of ARGs. Here, we investigated the effects of NCLE, with effective ingredients of flavonoids, on ARGs and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation. We found that NCLE reduced the abundance of ARGs in cecal contents of lipopolysaccharide-induced broilers by maintaining the microbial balance. This study provides a comprehensive view of cecal and fecal microbial community, ARGs, and MGEs of broiler following LPS stimulation and NCLE treatment. It might be used to understand and control ARGs dissemination in livestock production.
Collapse
Affiliation(s)
- Cheng Wang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
- State key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuo Wu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Lei Hu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Qi Hu
- Bioinformation Center, NEOMICS Institute, Shenzhen, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- State key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Feng Q, Wu T, Wang H, Wu M, Dou B, Wang P. Two-step resonance-energy-transfer-based ratiometric biosensor for sensing and annihilation of Staphylococcus aureus. Chem Commun (Camb) 2024; 60:2046-2049. [PMID: 38287913 DOI: 10.1039/d3cc05300h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
A two-step resonance energy transfer (RET)-based fluorescence/electrochemiluminescence (FL/ECL) biosensor was developed for ratiometric measurement and annihilation of Staphylococcus aureus (S. aureus). Using coupled dual-recognition-triggered target conversion with the catalytic hairpin assembly (CHA) technique, the monitoring of S. aureus was obtained at the single-cell level.
Collapse
Affiliation(s)
- Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Tao Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Huan Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Meisheng Wu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
22
|
Zhang Y, Gao L, Han J, Miao X. Dual-signal and one-step monitoring of Staphylococcus aureus in milk using hybridization chain reaction based fluorescent sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123191. [PMID: 37517267 DOI: 10.1016/j.saa.2023.123191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Food-borne pathogens in dairy products that was contaminated from raw ingredients or improper food handling can cause a major threaten to human health. Here, to construct the pathogens detection, a dual-signal readout fluorescent switching sensor was designed for one-step determination of Staphylococcus aureus (S. aureus), which was a marker of food contamination. Graphene oxide (GO) was used as a fluorescence quencher, while fluorophore-labeled hairpin DNA was used as a donor, resulting in fluorescence resonance energy transfer (FRET) from the fluorophore to GO (signal off). Enzyme-free hybridization chain reaction could generate remarkable signal amplification, which avoided the nonspecific desorption caused by any enzymatic proteins in GO surface. With the strong binding ability of aptamer to S. aureus, a long bifluorescent molecules-labeled double-stranded DNA product was formed, bringing in dual-signal readout responses (signal on). Consequently, a reliable, sensitive and selective sensor was obtained for one-step quantification of S. aureus concentration from 10 to 108 CFU/mL with a detection limit of 1 CFU/mL. Furthermore, satisfactory stability, reproducibility, specificity and good recovery efficiency in milk samples revealed that the proposed sensor could be served as a prospective tool for food safety analysis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012, China.
| | - Liang Gao
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012, China
| | - Jing Han
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012, China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
23
|
Xu B, Shaoyong W, Wang L, Yang C, Chen T, Jiang X, Yan R, Jiang Z, Zhang P, Jin M, Wang Y. Gut-targeted nanoparticles deliver specifically targeted antimicrobial peptides against Clostridium perfringens infections. SCIENCE ADVANCES 2023; 9:eadf8782. [PMID: 37774026 PMCID: PMC10541502 DOI: 10.1126/sciadv.adf8782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Specifically targeted antimicrobial peptides (STAMPs) are novel alternatives to antibiotics, whereas the development of STAMPs for colonic infections is hindered by limited de novo design efficiency and colonic bioavailability. In this study, we report an efficient de novo STAMP design strategy that combines a traversal design, machine learning model, and phage display technology to identify STAMPs against Clostridium perfringens. STAMPs could physically damage C. perfringens, eliminate biofilms, and self-assemble into nanoparticles to entrap pathogens. Further, a gut-targeted engineering particle vaccine (EPV) was used for STAMPs delivery. In vivo studies showed that both STAMP and EPV@STAMP effectively limited C. perfringens infections and then reduced inflammatory response. Notably, EPV@STAMP exhibited stronger protection against colonic infections than STAMPs alone. Moreover, 16S ribosomal RNA sequencing showed that both STAMPs and EPV@STAMP facilitated the recovery of disturbed gut microflora. Collectively, our work may accelerate the development of the discovery and delivery of precise antimicrobials.
Collapse
Affiliation(s)
- Bocheng Xu
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Weike Shaoyong
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Tingjun Chen
- College of Animal Science, Zhejiang University; Hangzhou 310058, China
| | - Xiao Jiang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Rong Yan
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Zipeng Jiang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Pan Zhang
- College of Animal Science, Zhejiang University; Hangzhou 310058, China
| | - Mingliang Jin
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Guo M, Zhang X, Ismail BB, He Q, Yang Z, Xianyu Y, Liu W, Zhou J, Ye X, Liu D. Super Antibacterial Capacity and Cell Envelope-Disruptive Mechanism of Ultrasonically Grafted N-Halamine PBAT/PBF Films against Escherichia coli. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38910-38929. [PMID: 37550824 DOI: 10.1021/acsami.3c05378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Antibacterial materials are urgently needed to combat bacterial contamination, growth, or attachment on contact surfaces, as bacterial infections remain a public health crisis worldwide. Here, a novel ultrasound-assisted method is utilized for the first time to fabricate oxidative chlorine-loaded AH@PBAT/PBF-Cl films with more superior grafting efficiency and rechargeable antibacterial effect than those from conventional techniques. The films remarkably inactivate 99.9999% Escherichia coli and Staphylococcus aureus cells, inducing noticeable cell deformations and mechanical instability. The specific antibacterial mechanism against E. coli used as a model organism is unveiled using several cell envelope structural and functional analyses combined with proteomics, peptidoglycomics, and fluorescence probe techniques. Film treatment partially neutralizes the bacterial surface charge, induces oxidative stress and cytoskeleton deformity, alters membrane properties, and disrupts the expression of key proteins involved in the synthesis and transport of the lipopolysaccharide and peptidoglycan, indicating the cell envelope as the primary target. The films specifically target lipopolysaccharides, resulting in structural impairment of the polysaccharide and lipid A components, and inhibit peptidoglycan precursor synthesis. Together, these lead to metabolic disorders, membrane dysfunction, structural collapse, and eventual death. Given the films' antibacterial effects via the disruption of key cell envelope components, they can potentially combat a wide range of bacteria. These findings lay a theoretical basis for developing efficient antibacterial materials for food safety or biomedical applications.
Collapse
Affiliation(s)
- Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianwei Zhou
- School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
25
|
Shi Z, Zhang X, Yang X, Zhang X, Ma F, Gan H, Chen J, Wang D, Sun W, Wang J, Wang C, Lyu L, Yang K, Deng L, Qing G. Specific Clearance of Lipopolysaccharide from Blood Based on Peptide Bottlebrush Polymer for Sepsis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302560. [PMID: 37247257 DOI: 10.1002/adma.202302560] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Lipopolysaccharide (LPS) is the primary bacterial toxin that is vital to the pathogenesis and progression of sepsis associated with extremely high morbidity and mortality worldwide. However, specific clearance of LPS from circulating blood is highly challenging because of the structural complexity and its variation between/within bacterial species. Herein, a robust strategy based on phage display screening and hemocompatible peptide bottlebrush polymer design for specific clearance of targeted LPS from circulating blood is proposed. Using LPS extracted from Escherichia coli as an example, a novel peptide (HWKAVNWLKPWT) with high affinity (KD < 1.0 nм), specificity, and neutralization activity (95.9 ± 0.1%) against the targeted LPS is discovered via iterative affinity selection coupled with endotoxin detoxification screening. A hemocompatible bottlebrush polymer bearing the short peptide [poly(PEGMEA-co-PEP-1)] exhibits high LPS selectivity to reduce circulating LPS level from 2.63 ± 0.01 to 0.78 ± 0.05 EU mL-1 in sepsis rabbits via extracorporeal hemoperfusion (LPS clearance ratio > 70%), reversing the LPS-induced leukocytopenia and multiple organ damages significantly. This work provides a universal paradigm for developing a highly selective hemoadsorbent library fully covering the LPS family, which is promising to create a new era of precision medicine in sepsis therapy.
Collapse
Affiliation(s)
- Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Xiancheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Fei Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Junjun Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Wenjing Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jingxia Wang
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu, 610101, P.R. China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Liting Lyu
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Lijing Deng
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
26
|
Yao J, Zou P, Cui Y, Quan L, Gao C, Li Z, Gong W, Yang M. Recent Advances in Strategies to Combat Bacterial Drug Resistance: Antimicrobial Materials and Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041188. [PMID: 37111673 PMCID: PMC10141387 DOI: 10.3390/pharmaceutics15041188] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial infection is a common clinical disease. Antibiotics have saved countless lives since their discovery and are a powerful weapon in the fight against bacteria. However, with the widespread use of antibiotics, the problem of drug resistance now poses a great threat to human health. In recent years, studies have investigated approaches to combat bacterial resistance. Several antimicrobial materials and drug delivery systems have emerged as promising strategies. Nano-drug delivery systems for antibiotics can reduce the resistance to antibiotics and extend the lifespan of novel antibiotics, and they allow targeting drug delivery compared to conventional antibiotics. This review highlights the mechanistic insights of using different strategies to combat drug-resistant bacteria and summarizes the recent advancements in antimicrobial materials and drug delivery systems for different carriers. Furthermore, the fundamental properties of combating antimicrobial resistance are discussed, and the current challenges and future perspectives in this field are proposed.
Collapse
Affiliation(s)
- Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Pengfei Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liangzhu Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
27
|
Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023; 64:7004-7027. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, β-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Melissa Aslan
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
28
|
The synergy of thanatin and cathelicidin-BF-15a3 combats Escherichia coli O157:H7. Int J Food Microbiol 2023; 386:110018. [PMID: 36459817 DOI: 10.1016/j.ijfoodmicro.2022.110018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/04/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Escherichia coli O157:H7 is a pathogen that commonly causes foodborne illness and represents a health hazard to consumers. The combined use of synergistic antimicrobial peptides (AMPs) is a promising way to improve the microbiological safety of foods. In this study, we detected the synergistic interactions between thanatin and BF-15a3 to reduce their usage and obtain more efficient antibacterial activity. The minimal inhibitory concentrations (MICs) of thanatin and BF-15a3 against 49 E. coli O157:H7 strains were ranged from 2 to 8 μg/mL and 4-32 μg/mL, showed a general inhibitory effect on E. coli O157:H7 strains, respectively, even multidrug-resistant strains. Their fractional inhibitory concentration index (FICI) was 0.375, which suggested that their combination presented synergistic antibacterial effect against E. coli O157:H7. The killing kinetic curves indicated that the 0.25 × MIC combination had equivalent bactericidal effects to 1 × MIC thanatin or BF-15a3. When AMP combinations were used to treat eukaryotic cells to evaluate the hemolytic characteristics against rabbit erythrocytes and cytotoxicity against human embryonic kidney 293T (HEK-293T) cells and intestinal porcine enterocyte J2 (IPEC-J2) cells, no magnified adverse effects were observed, exhibiting higher specificity to bacteria and lower toxicity to eukaryotic cells. Compared with bacteriostasis of thanatin or BF-15a3 alone, the proportion of membrane-damaged bacteria treated with the synergetic combination did not appear a significant rise, interestingly the Zeta potential of them greatly decreased and their cell membrane permeability significantly increased. Besides, more release of ions and cytoplasm were detected, confirming a more severe loss of membrane integrity. These results suggested that the synergistic action mode of thanatin and BF-15a3 is likely attributed to damage aggravation to E. coli membrane. When applying in fresh-cut lettuce and cucumber, their combination allowed for 2.5 log CFU/piece reductions of E. coli O157:H7 in 24 h. In conclusion, the combination of thanatin and BF-15a3 showed excellent synthetic efficacy to kill E. coli O157:H7 in vitro under lower MICs than single use of them.
Collapse
|
29
|
Hydrophobic modification improves the delivery of cell-penetrating peptides to eliminate intracellular pathogens in animals. Acta Biomater 2023; 157:210-224. [PMID: 36503077 DOI: 10.1016/j.actbio.2022.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Infections induced by intracellular pathogens are difficult to eradicate due to poor penetration of antimicrobials into cell membranes. It is of great importance to develop a new generation of antibacterial agents with dual functions of efficient cell penetration and bacterial inhibition. In this study, the association between hydrophobicity and cell-penetrating peptide delivery efficiency was investigated by fragment interception and hydrophobicity modification of natural porcine antimicrobial peptide PR-39 and the combination of cationic cell-penetrating peptide (R6) with antimicrobial peptide fragments modified with hydrophobic residues. The chimeric peptides P3I7 and P3L7, obtained through biofunctional screening, exhibited potent broad-spectrum antibacterial activity and low cytotoxicity. Moreover, P3I7 and P3L7 can effectively penetrate cells to eliminate intracellular pathogens mainly through endocytosis. The membrane destruction mechanism makes the peptides fast sterilizers and less prone to developing drug resistance. Finally, their good biocompatibility and antibacterial infection effects were verified in mice and piglets. To conclude, the chimeric peptides P3I7 and P3L7 show great potential as affordable and effective antimicrobial agents and may serve as ideal candidates for the treatment of intracellular bacterial infections. STATEMENT OF SIGNIFICANCE: The low permeability of antibacterial drugs makes infections induced by intracellular bacteria extremely difficult to treat. To address this issue, we designed chimeric peptides with dual cell-penetrating and antibacterial functions. The active peptides P3I7 and P3L7, acquired through functional screening have strong broad-spectrum antibacterial activity and powerful bactericidal effects against intracellular Staphylococcus aureus. The membrane permeation mechanism of P3I7 and P3L7 against bacteria endows fast bactericidal activity with low drug resistance. The biosafety and antibacterial activity of P3I7 and P3L7 were also validated by in vivo trials. This study provides an ideal drug candidate against intracellular bacterial infections.
Collapse
|
30
|
Liao M, Gong H, Quan X, Wang Z, Hu X, Chen Z, Li Z, Liu H, Zhang L, McBain AJ, Waigh TA, Zhou J, Lu JR. Intramembrane Nanoaggregates of Antimicrobial Peptides Play a Vital Role in Bacterial Killing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204428. [PMID: 36417574 DOI: 10.1002/smll.202204428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Ziwei Wang
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zheng Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Zongyi Li
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Lin Zhang
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Thomas A Waigh
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
31
|
Smaoui S, Agriopoulou S, D'Amore T, Tavares L, Mousavi Khaneghah A. The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11125-11152. [PMID: 35708071 DOI: 10.1080/10408398.2022.2087594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global crop and food contamination with mycotoxins are one of the primary worldwide concerns, while there are several restrictions regarding approaching conventional physical and chemical mycotoxins decontamination methods due to nutrition loss, sensory attribute reduction in foods, chemical residual, inconvenient operation, high cost of equipment, and high energy consumption of some methods. In this regard, the overarching challenges of mycotoxin contamination in food and food crops require the development of biological decontamination strategies. Using certain lactic acid bacteria (LAB) as generally recognized safe (GRAS) compounds is one of the most effective alternatives due to their potential to release antifungal metabolites against various fungal factors species. This review highlights the potential applications of LAB as biodetoxificant agents and summarizes their decontamination activities against Fusarium growth and Fusarium mycotoxins released into food/feed. Firstly, the occurrence of Fusarium and the instrumental and bioanalytical methods for the analysis of mycotoxins were in-depth discussed. Upgraded knowledge on the biosynthesis pathway of mycotoxins produced by Fusarium offers new insightful ideas clarifying the function of these secondary metabolites. Moreover, the characterization of LAB metabolites and their impact on the decontamination of the mycotoxin from Fusarium, besides the main mechanisms of mycotoxin decontamination, are covered. While the thematic growth inhibition of Fusarium and decontamination of their mycotoxin by LAB is very complex, approaching certain lactic acid bacteria (LAB) is worth deeper investigations.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, Kalamata, Greece
| | - Teresa D'Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Foggia, Italy
| | - Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
32
|
Zhang Y, Tan P, Zhao Y, Ma X. Enterotoxigenic Escherichia coli: intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes 2022; 14:2055943. [PMID: 35358002 PMCID: PMC8973357 DOI: 10.1080/19490976.2022.2055943] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers in developing countries. ETEC is characterized by the ability to produce major virulence factors including colonization factors (CFs) and enterotoxins, that bind to specific receptors on epithelial cells and induce diarrhea. The gut microbiota is a stable and sophisticated ecosystem that performs a range of beneficial functions for the host, including protection against pathogen colonization. Understanding the pathogenic mechanisms of ETEC and the interaction between the gut microbiota and ETEC represents not only a research need but also an opportunity and challenge to develop precautions for ETEC infection. Herein, this review focuses on recent discoveries about ETEC etiology, pathogenesis and clinical manifestation, and discusses the colonization resistances mediated by gut microbiota, as well as preventative strategies against ETEC with an aim to provide novel insights that can reduce the adverse effect on human health.
Collapse
Affiliation(s)
- Yucheng Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China,CONTACT Xi Ma State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| |
Collapse
|