1
|
Jin J, Zhang H, Lu Q, Tian L, Yao S, Lai F, Liang Y, Liu C, Lu Y, Tian S, Zhao Y, Ren W. Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease. Neural Regen Res 2025; 20:2538-2555. [PMID: 39314170 DOI: 10.4103/nrr.nrr-d-24-00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
Collapse
Affiliation(s)
- Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Huajing Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Chuanchuan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yujia Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, China
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China
| |
Collapse
|
2
|
Tan J, Feng L, Ragavan ND, Chai Theam O, Li X. The promotive effect of Caspase-11 overexpression in a rat model of chronic kidney disease and the therapeutic efficacy of exosome-delivered siRNA in inhibiting Caspase-11. Biochem Biophys Res Commun 2024; 741:151013. [PMID: 39591906 DOI: 10.1016/j.bbrc.2024.151013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
This study investigates the role of Caspase-11 in Chronic Kidney Disease (CKD) and examines the therapeutic potential of inhibiting Caspase-11 using exosome-mediated siRNA. We established a CKD rat model and analyzed the expression of Caspase-11 through immunohistochemistry. The study involved overexpressing Caspase-11 using an adeno-associated virus (AAV) and constructing exosomes loaded with siRNA targeting Caspase-11 (exo-si-Caspase-11). Renal tissue damage and fibrosis were assessed using H&E staining, Masson's trichrome, TUNEL assay, and Sirius Red staining. Additionally, urinary protein and blood urea nitrogen (BUN) levels were measured, alongside analyses of serum calcium and phosphorus levels. H&E staining was performed to evaluate the effects of exo-si-Caspase-11 on damage to the heart, liver, spleen, and lungs. The results showed that the CKD model group experienced significant weight loss, increased blood pressure, and elevated Caspase-11 expression. AAV-mediated Caspase-11 overexpression led to substantial renal fibrosis, increased apoptosis, and elevated urinary protein and BUN levels. Additionally, the group with Caspase-11 overexpression exhibited elevated serum calcium and phosphorus levels. Conversely, treatment with exo-si-Caspase-11 reduced these pathological changes in renal tissue without causing damage to other major organs. These findings suggest that exosome-mediated siRNA delivery targeting Caspase-11 is an effective therapeutic strategy for CKD.
Collapse
MESH Headings
- Animals
- Renal Insufficiency, Chronic/therapy
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Exosomes/metabolism
- Exosomes/genetics
- Disease Models, Animal
- Male
- Rats
- Rats, Sprague-Dawley
- Caspases, Initiator/genetics
- Caspases, Initiator/metabolism
- Kidney/pathology
- Kidney/metabolism
- Apoptosis/genetics
- Fibrosis
- Dependovirus/genetics
- Caspase 12
Collapse
Affiliation(s)
- Junhua Tan
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China; Faculty of Medicine, MAHSA University, Jalan SP 2, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia; Key Laboratory of Medical Research Basic Guaranteefor Immune-Related Diseases Research of Guangxi (Cultivation), Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Liyin Feng
- Graduate School of Youjiang Medical College for Nationalities, Baise, Guangxi, 533000, China
| | - Nanthiney Devi Ragavan
- School of Bioscience, Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Jalan SP2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Ooi Chai Theam
- Departmental of Preclinical Science,Faculty of Dentistry, MAHSA University Jalan SP 2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia.
| | - Xuebin Li
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China; Department of Neurology, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| |
Collapse
|
3
|
Bhom N, Somandi K, Ramburrun P, Choonara YE. Extracellular nanovesicles as neurotherapeutics for central nervous system disorders. Expert Opin Drug Deliv 2024:1-16. [PMID: 39644485 DOI: 10.1080/17425247.2024.2440099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a highly selective structure that protects the central nervous system (CNS) while hindering the delivery of many therapeutic agents. This presents a major challenge in treating neurological disorders, such as multiple sclerosis, where effective drug delivery to the brain is crucial for improving patient outcomes. Innovative strategies are urgently needed to address this limitation. AREAS COVERED This review explores the potential of extracellular vesicles (EVs) as innovative drug delivery systems capable of crossing the BBB. EVs are membrane-bound vesicles derived from cells, tissues, or plant materials, offering natural biocompatibility and therapeutic potential. Recent studies investigating the permeability of EVs and their mechanisms for crossing the BBB, such as transcytosis, are summarized. Special emphasis is placed on plant-derived EVs (PDEVs) due to their unique advantages in drug delivery. Challenges related to the large-scale production and therapeutic consistency of EVs are also discussed. EXPERT OPINION EVs, particularly PDEVs, hold significant promise as scalable and noninvasive systems for CNS drug delivery. However, critical barriers such as improving standardization techniques, manufacturing processes and addressing scalability must be overcome to facilitate clinical translation. Collaborative efforts in research and innovation will be pivotal in realizing the therapeutic potential of EVs for neurological conditions.
Collapse
Affiliation(s)
- Naznin Bhom
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Khonzisizwe Somandi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Hu X, Li P, Xu D, Liu H, Hao Q, Zhang M, Wang Z, Wei T, Dai Z. Facile Alkyne Assembly-Enabled Functional Au Nanosheets for Photoacoustic Imaging-Guided Photothermal/Gene Therapy of Orthotopic Glioblastoma. J Am Chem Soc 2024. [PMID: 39563602 DOI: 10.1021/jacs.4c08990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Treatment of glioblastoma (GBM) remains challenging due to the presence of blood-brain barrier (BBB) and tumor heterogeneity. Herein, Au nanosheets (AuNSs) functionalized with RGD peptides and small interfering RNA (siRNA), referred to as AuNSs-RGD-C≡C-siRNA (ARCR), are prepared to achieve multimodal therapy for GBM. The AuNSs with a large modifiable surface area, intriguing photothermal conversion efficiency (50.26%), and remarkable photothermal stability (44 cycles over 7 h) are created using a well-designed amphiphilic surfactant. Furthermore, alkynyl groups are assembled onto the Au surface within 1 min, enabling strong covalent binding of siRNA to AuNSs and thereby avoiding the interference from biological thiols. Owing to the lipophilicity of the surfactant and the targeting property of RGD, ARCR effectively passes through the BBB and accumulates in GBM tumor regions, allowing near-infrared photoacoustic imaging-guided photothermal/gene therapy. This work proposes a facile strategy to construct theranostic Au-based materials, highlighting the potential of multifunctional nanoagents for GBM therapy.
Collapse
Affiliation(s)
- Xixi Hu
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Peiling Li
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Dongdong Xu
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hua Liu
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiaoqiao Hao
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Mengyang Zhang
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
5
|
Lu H, Wang J, Chen Z, Wang J, Jiang Y, Xia Z, Hou Y, Shang P, Li R, Liu Y, Xie J. Engineered Macrophage Membrane-Coated S100A9-siRNA for Ameliorating Myocardial Ischemia-Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403542. [PMID: 39264262 PMCID: PMC11538685 DOI: 10.1002/advs.202403542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Despite the widespread adoption of emergency coronary reperfusion therapy, reperfusion-induced myocardial injury remains a challenging issue in clinical practice. Following myocardial reperfusion, S100A8/A9 molecules are considered pivotal in initiating and regulating tissue inflammatory damage. Effectively reducing the S100A8/A9 level in ischemic myocardial tissue holds significant therapeutic value in salvaging damaged myocardium. In this study, HA (hemagglutinin)- and RAGE (receptor for advanced glycation end products)- comodified macrophage membrane-coated siRNA nanoparticles (MMM/RNA NPs) with siRNA targeting S100A9 (S100A9-siRNA) are successfully prepared. This nanocarrier system is able to target effectively the injured myocardium in an inflammatory environment while evading digestive damage by lysosomes. In vivo, migration of MMM/RNA NPs to myocardial injury lesions is confirmed in a myocardial ischemia-reperfusion injury (MIRI) mouse model. Intravenous injection of MMM/RNA NPs significantly reduced S100A9 levels in serum and myocardial tissues, further decreasing myocardial infarction area and improving cardiac function. Targeted reduction of S100A8/A9 by genetically modified macrophage membrane-coated nanoparticles may represent a new therapeutic intervention for MIRI.
Collapse
Affiliation(s)
- He Lu
- Nanjing Drum Tower HospitalDrum Tower Clinical CollegeNanjing University of Chinese MedicineNo. 321 Zhongshan RoadNanjing210008China
| | - Junzhuo Wang
- Nanjing Drum Tower HospitalDrum Tower Clinical CollegeNanjing University of Chinese MedicineNo. 321 Zhongshan RoadNanjing210008China
| | - Ziwei Chen
- Department of CardiologyAffiliated Hospital of Nantong UniversityNantong226001China
| | - Jing Wang
- Nanjing Drum Tower HospitalDrum Tower Clinical CollegeNanjing University of Chinese MedicineNo. 321 Zhongshan RoadNanjing210008China
| | - Yaohui Jiang
- Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNo. 321 Zhongshan RoadNanjing210008China
| | - Zequn Xia
- Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNo. 321 Zhongshan RoadNanjing210008China
| | - Ya Hou
- Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNo. 321 Zhongshan RoadNanjing210008China
| | - Pingping Shang
- Department of CardiologyThe People's Hospital of Jiawang District of XuzhouXuzhou221011China
| | - Rutian Li
- Department of OncologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNo. 321 Zhongshan RoadNanjing210008China
| | - Yuyong Liu
- Department of Cardiac SurgeryNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
- Beijing Institute of HeartLung, and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijing100029China
| | - Jun Xie
- Nanjing Drum Tower HospitalDrum Tower Clinical CollegeNanjing University of Chinese MedicineNo. 321 Zhongshan RoadNanjing210008China
- Department of Cardiac SurgeryNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| |
Collapse
|
6
|
Prabhakaran R, Thamarai R, Sivasamy S, Dhandayuthapani S, Batra J, Kamaraj C, Karthik K, Shah MA, Mallik S. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Epigenetics Chromatin 2024; 17:31. [PMID: 39415281 PMCID: PMC11484394 DOI: 10.1186/s13072-024-00554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Cancer has arisen from both genetic mutations and epigenetic changes, making epigenetics a crucial area of research for innovative cancer prevention and treatment strategies. This dual perspective has propelled epigenetics into the forefront of cancer research. This review highlights the important roles of DNA methylation, histone modifications and non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs, which are key regulators of cancer-related gene expression. It explores the potential of epigenetic-based therapies to revolutionize patient outcomes by selectively modulating specific epigenetic markers involved in tumorigenesis. The review examines promising epigenetic biomarkers for early cancer detection and prognosis. It also highlights recent progress in oligonucleotide-based therapies, including antisense oligonucleotides (ASOs) and antimiRs, to precisely modulate epigenetic processes. Furthermore, the concept of epigenetic editing is discussed, providing insight into the future role of precision medicine for cancer patients. The integration of nanomedicine into cancer therapy has been explored and offers innovative approaches to improve therapeutic efficacy. This comprehensive review of recent advances in epigenetic-based cancer therapy seeks to advance the field of precision oncology, ultimately culminating in improved patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Rajkumar Thamarai
- UGC Dr. D.S. Kothari Postdoctoral Fellow, Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | | | - Jyoti Batra
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Krishnasamy Karthik
- Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du, 1001, Kabul, Afghanistan.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, Massachusetts, 02115, United States.
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
7
|
Xia B, Hu R, Chen J, Shan S, Xu F, Zhang G, Zhou Z, Fan Y, Hu Z, Liang XJ. Oral Administration Properties Evaluation of Three Milk-Derived Extracellular Vesicles Based on Ultracentrifugation Extraction Methods. Adv Healthc Mater 2024; 13:e2401370. [PMID: 38767497 DOI: 10.1002/adhm.202401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Milk-derived extracellular vesicles (M-EVs) are low-cost, can be prepared in large quantities, and can cross the gastrointestinal barrier for oral administration. However, the composition of milk is complex, and M-EVs obtained by different extraction methods may affect their oral delivery. Based on this, a new method for extracting M-EVs based on cryogenic freezing treatment (Cryo-M-EVs) is proposed and compared with the previously reported acetic acid treatment (Acid-M-EVs) method and the conventional ultracentrifugation method (Ulltr-M-EVs). The new method simplifies the pretreatment step and achieves 25-fold and twofold higher yields than Acid-M-EVs and Ulltr-M-EVs. And it is interesting to note that Cryo-M-EVs and Acid-M-EVs have higher cellular uptake efficiency, and Cryo-M-EVs present the best transepithelial transport effect. After oral administration of the three M-EVs extracted by three methods in mice, Cryo-M-EVs effectively successfully cross the gastrointestinal barrier and achieve hepatic accumulation, whereas Acid-M-EVs and Ultr-M-EVs mostly reside in the intestine. The M-EVs obtained by the three extraction methods show a favorable safety profile at the cellular as well as animal level. Therefore, when M-EVs obtained by different extraction methods are used for oral drug delivery, their accumulation properties at different sites can be utilized to better deal with different diseases.
Collapse
Affiliation(s)
- Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Runjing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junge Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing, 100083, China
| | - Shaobo Shan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing, 100083, China
| | - Zhongbo Hu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Liu X, Wu F, Pan W, Liu G, Zhang H, Yan D, Zheng S, Ma Z, Ren X. Tumor-associated exosomes in cancer progression and therapeutic targets. MedComm (Beijing) 2024; 5:e709. [PMID: 39247621 PMCID: PMC11380050 DOI: 10.1002/mco2.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Exosomes are small membrane vesicles that are released by cells into the extracellular environment. Tumor-associated exosomes (TAEs) are extracellular vesicles that play a significant role in cancer progression by mediating intercellular communication and contributing to various hallmarks of cancer. These vesicles carry a cargo of proteins, lipids, nucleic acids, and other biomolecules that can be transferred to recipient cells, modifying their behavior and promoting tumor growth, angiogenesis, immune modulation, and drug resistance. Several potential therapeutic targets within the TAEs cargo have been identified, including oncogenic proteins, miRNAs, tumor-associated antigens, immune checkpoint proteins, drug resistance proteins, and tissue factor. In this review, we will systematically summarize the biogenesis, composition, and function of TAEs in cancer progression and highlight potential therapeutic targets. Considering the complexity of exosome-mediated signaling and the pleiotropic effects of exosome cargoes has challenge in developing effective therapeutic strategies. Further research is needed to fully understand the role of TAEs in cancer and to develop effective therapies that target them. In particular, the development of strategies to block TAEs release, target TAEs cargo, inhibit TAEs uptake, and modulate TAEs content could provide novel approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaomin Liu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Guangchao Liu
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Hui Zhang
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Dawei Yan
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Saijing Zheng
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Xiaojun Ren
- Department of Chemistry College of Chemistry and Life Sciences Beijing University of Technology Beijing China
| |
Collapse
|
9
|
Wei B, Huang H, Cao Q, Song X, Zhang Z. Bibliometric and visualized analysis of the applications of exosomes based drug delivery. Biomed Pharmacother 2024; 176:116803. [PMID: 38788602 DOI: 10.1016/j.biopha.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
Exosomes, endogenous vesicles secreted by cells, possess unique properties like high biocompatibility, low immunogenicity, targeting ability, long half-life, and blood-brain barrier permeability. They serve as crucial intercellular communication vectors in physiological processes and disease occurrence. Our comprehensive analysis of exosome-based drug delivery research from 2013 to 2023 revealed 2,476 authors from 717 institutions across 33 countries. Keyword clustering identified five research areas: drug delivery, mesenchymal stem cells, cancer immunotherapy, targeting ligands, surface modifications, and macrophages. The combination of exosome drug delivery technology with a proven clinical model enables the precise targeting of tumors with chemotherapy or radiosensitising agents, as well as facilitating gene therapy. This bibliometric analysis aims to characterize the current state and advance the clinical application of exosome-based drug delivery systems.
Collapse
Affiliation(s)
- Bohua Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Haonan Huang
- China Medical University, Shenyang, Liaoning Province 110122, China
| | - Qian Cao
- Department of cardiology, Shengjing hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
10
|
Yang Z, Wu H, Wang Z, Bian E, Zhao B. The role and application of small extracellular vesicles in glioma. Cancer Cell Int 2024; 24:229. [PMID: 38951882 PMCID: PMC11218314 DOI: 10.1186/s12935-024-03389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Small extracellular vesicles (sEVs) are cell-derived, nanometer-sized particles enclosed by a lipid bilayer. All kinds of biological molecules, including proteins, DNA fragments, RNA, lipids, and metabolites, can be selectively loaded into sEVs and transmitted to recipient cells that are near and distant. Growing shreds of evidence show the significant biological function and the clinical significance of sEVs in cancers. Numerous recent studies have validated that sEVs play an important role in tumor progression and can be utilized to diagnose, stage, grading, and monitor early tumors. In addition, sEVs have also served as drug delivery nanocarriers and cancer vaccines. Although it is still infancy, the field of basic and translational research based on sEVs has grown rapidly. In this review, we summarize the latest research on sEVs in gliomas, including their role in the malignant biological function of gliomas, and the potential of sEVs in non-invasive diagnostic and therapeutic approaches, i.e., as nanocarriers for drug or gene delivery and cancer vaccines.
Collapse
Affiliation(s)
- Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - HaoYuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - ZhiWei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - ErBao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China.
| |
Collapse
|
11
|
Chen W, Tang C, Chen G, Li J, Li N, Zhang H, Di L, Wang R. Boosting Checkpoint Immunotherapy with Biomimetic Nanodrug Delivery Systems. Adv Healthc Mater 2024; 13:e2304284. [PMID: 38319961 DOI: 10.1002/adhm.202304284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Immune checkpoint blockade (ICB) has achieved unprecedented progress in tumor immunotherapy by blocking specific immune checkpoint molecules. However, the high biodistribution of the drug prevents it from specifically targeting tumor tissues, leading to immune-related adverse events. Biomimetic nanodrug delivery systems (BNDSs) readily applicable to ICB therapy have been widely developed at the preclinical stage to avoid immune-related adverse events. By exploiting or mimicking complex biological structures, the constructed BNDS as a novel drug delivery system has good biocompatibility and certain tumor-targeting properties. Herein, the latest findings regarding the aforementioned therapies associated with ICB therapy are highlighted. Simultaneously, prospective bioinspired engineering strategies can be designed to overcome the four-level barriers to drug entry into lesion sites. In future clinical translation, BNDS-based ICB combination therapy represents a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Chenlu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Guijin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Jiale Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Nengjin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Hanwen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| |
Collapse
|
12
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
13
|
Geng Y, Xie L, Li J, Wang Y, Li X. Bibliometric analysis of emerging trends and research foci in brainstem tumor field over 30 years (1992-2023). Childs Nerv Syst 2024; 40:1901-1917. [PMID: 38630267 DOI: 10.1007/s00381-024-06404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE Over the past several decades, numerous articles have been published on brainstem tumors. However, there has been limited bibliometric analysis in this field. Therefore, we conducted a bibliometric analysis to elucidate the evolution and current status of brainstem tumor research. METHODS We retrieved 5525 studies published in English between 1992 and 2023 from the Web of Science Core Collection database. We employed bibliometric tools and VOSviewer to conduct the analysis. RESULTS We included a total of 5525 publications for further analysis. The annual publications have exhibited steady growth over time. The United States accounted for the highest number of publications and total citations. Among individual researchers, Liwei Zhang had the highest number of publications, while Cynthia Hawkins and Chris Jones shared the most citations, closely followed by Eric Bouffet in this field. The study titled "Diffuse brainstem glioma in children: critical review of clinical trials" stood out as the most cited work in this field. Keyword analysis revealed that immune therapy and epigenetic research are the focal points of this field. CONCLUSIONS Our bibliometric analysis underscores the enduring significance of brainstem tumors in the realm of neuro-oncology research. The field's hotspots have transitioned from surgery and radiochemotherapy to investigating epigenetic mechanisms and immune therapy.
Collapse
Affiliation(s)
- Yibo Geng
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Worker Stadium South Road, Chaoyang District, Beijing, China
| | - Luyang Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinping Li
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Worker Stadium South Road, Chaoyang District, Beijing, China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Worker Stadium South Road, Chaoyang District, Beijing, China
| | - Xiong Li
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Worker Stadium South Road, Chaoyang District, Beijing, China.
| |
Collapse
|
14
|
Wang H, Zhang N, Wang X, Tian J, Yi J, Yao L, Huang G. Emerging role of mesenchymal stem cell-derived exosome microRNA in radiation injury. Int J Radiat Biol 2024; 100:996-1008. [PMID: 38776447 DOI: 10.1080/09553002.2024.2347348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Radiation injury (RI) is a common occurrence in malignant tumors patients receiving radiation therapy. While killing tumor cells, normal tissue surrounding the target area is inevitably irradiated at a certain dose, which can cause varying results of radiation injury. Currently, there are limited clinical treatments available for radiation injuries. In recent years, the negative effects of stem cell therapy have been reported more clearly and non-cellular therapies such as exosomes have become a focus of attention for researchers. As a type of vesicle-like substances secreted by mesenchymal stem cells (MSC), MSC derived exosomes (MSC-exo) carry DNA, mRNA, microRNA (miRNAs), specific proteins, lipids, and other active substances involved in intercellular information exchange. miRNAs released by MSC-exo are capable of alleviating and repairing damaged tissues through anti-apoptosis, modulating immune response, regulating inflammatory response and promoting angiogenesis, which indicates that MSC-exo miRNAs have great potential for application in the prevention and treatment of radiation injury. Therefore, it is necessary to explore the underlying therapeutic mechanisms of MSC-exo miRNAs in this process, which may shed new lights on the treatment of radiation injury. CONCLUSIONS Increasing evidence confirms that MSC-exo has shown encouraging applications in tissue repair due to the anti-apoptotic, immunoreactive, and pro-angiogenesis effects of the miRNAs it carries as intercellular communication carriers. However, miRNA-based therapeutics are still in their infancy and many practical issues remain to be addressed for clinical applications.
Collapse
Affiliation(s)
- Huike Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Nini Zhang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Xue Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jia Tian
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jie Yi
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | | | - Guilin Huang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
15
|
Li F, Ouyang J, Chen Z, Zhou Z, Milon Essola J, Ali B, Wu X, Zhu M, Guo W, Liang XJ. Nanomedicine for T-Cell Mediated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301770. [PMID: 36964936 DOI: 10.1002/adma.202301770] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
T-cell immunotherapy offers outstanding advantages in the treatment of various diseases, and with the selection of appropriate targets, efficient disease treatment can be achieved. T-cell immunotherapy has made great progress, but clinical results show that only a small proportion of patients can benefit from T-cell immunotherapy. The extensive mechanistic work outlines a blueprint for using T cells as a new option for immunotherapy, but also presents new challenges, including the balance between different fractions of T cells, the inherent T-cell suppression patterns in the disease microenvironment, the acquired loss of targets, and the decline of T-cell viability. The diversity, flexibility, and intelligence of nanomedicines give them great potential for enhancing T-cell immunotherapy. Here, how T-cell immunotherapy strategies can be adapted with different nanomaterials to enhance therapeutic efficacy is discussed. For two different pathological states, immunosuppression and immune activation, recent advances in nanomedicines for T-cell immunotherapy in diseases such as cancers, rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, and diabetes are summarized. With a focus on T-cell immunotherapy, this review highlights the outstanding advantages of nanomedicines in disease treatment, and helps advance one's understanding of the use of nanotechnology to enhance T-cell immunotherapy.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jiang Ouyang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Zuqin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Julien Milon Essola
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Barkat Ali
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- Food Sciences Research Institute, Pakistan Agricultural Research Council, 44000, Islamabad, Pakistan
| | - Xinyue Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengliang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Xing-Jie Liang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Zhang SS, Li RQ, Chen Z, Wang XY, Dumont AS, Fan X. Immune cells: potential carriers or agents for drug delivery to the central nervous system. Mil Med Res 2024; 11:19. [PMID: 38549161 PMCID: PMC10979586 DOI: 10.1186/s40779-024-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
Drug delivery systems (DDS) have recently emerged as a promising approach for the unique advantages of drug protection and targeted delivery. However, the access of nanoparticles/drugs to the central nervous system (CNS) remains a challenge mainly due to the obstruction from brain barriers. Immune cells infiltrating the CNS in the pathological state have inspired the development of strategies for CNS foundation drug delivery. Herein, we outline the three major brain barriers in the CNS and the mechanisms by which immune cells migrate across the blood-brain barrier. We subsequently review biomimetic strategies utilizing immune cell-based nanoparticles for the delivery of nanoparticles/drugs to the CNS, as well as recent progress in rationally engineering immune cell-based DDS for CNS diseases. Finally, we discuss the challenges and opportunities of immune cell-based DDS in CNS diseases to promote their clinical development.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Ruo-Qi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Zhong Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiao-Ying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA.
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
17
|
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, Liang Y, Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med 2024; 9:e10623. [PMID: 38435823 PMCID: PMC10905561 DOI: 10.1002/btm2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 μm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, SouthportGold CoastQueenslandAustralia
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Bin Jiang
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- R&D Division, Eureka Biotech Inc, PhiladelphiaPennsylvaniaUSA
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning HospitalShenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhenGuangdongChina
| | - Li Duan
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
18
|
Li H, Yuan Y, Xie Q, Dong Z. Exosomes: potential targets for the diagnosis and treatment of neuropsychiatric disorders. J Transl Med 2024; 22:115. [PMID: 38287384 PMCID: PMC10826005 DOI: 10.1186/s12967-024-04893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
The field of neuropsychiatry is considered a middle ground between neurological and psychiatric disorders, thereby bridging the conventional boundaries between matter and mind, consciousness, and function. Neuropsychiatry aims to evaluate and treat cognitive, behavioral, and emotional disorders in individuals with neurological conditions. However, the pathophysiology of these disorders is not yet fully understood, and objective biological indicators for these conditions are currently lacking. Treatment options are also limited due to the blood-brain barrier, which results in poor treatment effects. Additionally, many drugs, particularly antipsychotic drugs, have adverse reactions, which make them difficult to tolerate for patients. As a result, patients often abandon treatment owing to these adverse reactions. Since the discovery of exosomes in 1983, they have been extensively studied in various diseases owing to their potential as nanocellulators for information exchange between cells. Because exosomes can freely travel between the center and periphery, brain-derived exosomes can reflect the state of the brain, which has considerable advantages in diagnosis and treatment. In addition, administration of engineered exosomes can improve therapeutic efficacy, allow lesion targeting, ensure drug stability, and prevent systemic adverse effects. Therefore, this article reviews the source and biological function of exosomes, relationship between exosomes and the blood-brain barrier, relationship between exosomes and the pathological mechanism of neuropsychiatric disorders, exosomes in the diagnosis and treatment of neuropsychiatric disorders, and application of engineered exosomes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Haorao Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zaiquan Dong
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
19
|
Hou Y, Qiu W, Ling Y, Qi X, Liu J, Yang H, Chu L. The role of tumor-associated macrophages in glioma cohort: through both traditional RNA sequencing and single cell RNA sequencing. Front Oncol 2023; 13:1249448. [PMID: 37781198 PMCID: PMC10539593 DOI: 10.3389/fonc.2023.1249448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas are the leading cause in more than 50% of malignant brain tumor cases. Prognoses, recurrences, and mortality are usually poor for gliomas that have malignant features. In gliomas, there are four grades, with grade IV gliomas known as glioblastomas (GBM). Currently, the primary methods employed for glioma treatment include surgical removal, followed by chemotherapy after the operation, and targeted therapy. However, the outcomes of these treatments are unsatisfactory. Gliomas have a high number of tumor-associated macrophages (TAM), which consist of brain microglia and macrophages, making them the predominant cell group in the tumor microenvironment (TME). The glioma cohort was analyzed using single-cell RNA sequencing to quantify the genes related to TAMs in this study. Furthermore, the ssGSEA analysis was utilized to assess the TAM-associated score in the glioma group. In the glioma cohort, we have successfully developed a prognostic model consisting of 12 genes, which is derived from the TAM-associated genes. The glioma cohort demonstrated the predictive significance of the TAM-based risk model through survival analysis and time-dependent ROC curve. Furthermore, the correlation analysis revealed the significance of the TAM-based risk model in the application of immunotherapy for individuals diagnosed with GBM. Ultimately, the additional examination unveiled the prognostic significance of PTX3 in the glioma group, establishing it as the utmost valuable prognostic indicator in patients with GBM. The PCR assay revealed the PTX3 is significantly up-regulated in GBM cohort. Additionally, the assessment of cell growth further confirms the involvement of PTX3 in the GBM group. The analysis of cell proliferation showed that the increased expression of PTX3 enhanced the ability of glioma cells to proliferate. The prognosis of glioblastomas and glioma is influenced by the proliferation of tumor-associated macrophages.
Collapse
Affiliation(s)
- Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanguo Ling
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
20
|
Luo M, Luan X, Jiang G, Yang L, Yan K, Li S, Xiang W, Zhou J. The Dual Effects of Exosomes on Glioma: A Comprehensive Review. J Cancer 2023; 14:2707-2719. [PMID: 37779868 PMCID: PMC10539397 DOI: 10.7150/jca.86996] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Glioma is a frequently occurring type of cancer that affects the central nervous system. Despite the availability of standardized treatment options including surgical resection, concurrent radiotherapy, and adjuvant temozolomide (TMZ) therapy, the prognosis for glioma patients is often unfavorable. Exosomes act as vehicles for intercellular communication, contributing to tissue repair, immune modulation, and the transfer of metabolic cargo to recipient cells. However, the transmission of abnormal substances can also contribute to pathologic states such as cancer, metabolic diseases, and neurodegenerative disorders. The field of exosome research in oncology has seen significant advancements, with exosomes identified as dynamic modulators of tumor cell proliferation, migration, and invasion, as well as angiogenesis and drug resistance. Exosomes have negligible cytotoxicity, low immunogenicity, and small size, rendering them an ideal therapeutic candidate for glioma. This comprehensive review discusses the dual effects of exosomes in glioma, with an emphasis on their role in facilitating drug resistance. Furthermore, the clinical applications and current limitations of exosomes in glioma therapy are also discussed in detail.
Collapse
Affiliation(s)
- Maowen Luo
- Southwest Medical University, Luzhou 646000, China
| | - Xingzhao Luan
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Neurosurgery, the Affiliated Hospital of PanZhiHua University, PanZhiHua 617000, China
| | - Gen Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Luxia Yang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Kekun Yan
- Department of Neurosurgery, the Affiliated Hospital of PanZhiHua University, PanZhiHua 617000, China
| | - Shenjie Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Wei Xiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Jie Zhou
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
21
|
Nguyen Cao TG, Kang JH, Kang SJ, Truong Hoang Q, Kang HC, Rhee WJ, Zhang YS, Ko YT, Shim MS. Brain endothelial cell-derived extracellular vesicles with a mitochondria-targeting photosensitizer effectively treat glioblastoma by hijacking the blood‒brain barrier. Acta Pharm Sin B 2023; 13:3834-3848. [PMID: 37719366 PMCID: PMC10502277 DOI: 10.1016/j.apsb.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant brain tumor and has a high mortality rate. Photodynamic therapy (PDT) has emerged as a promising approach for the treatment of malignant brain tumors. However, the use of PDT for the treatment of GBM has been limited by its low blood‒brain barrier (BBB) permeability and lack of cancer-targeting ability. Herein, brain endothelial cell-derived extracellular vesicles (bEVs) were used as a biocompatible nanoplatform to transport photosensitizers into brain tumors across the BBB. To enhance PDT efficacy, the photosensitizer chlorin e6 (Ce6) was linked to mitochondria-targeting triphenylphosphonium (TPP) and entrapped into bEVs. TPP-conjugated Ce6 (TPP-Ce6) selectively accumulated in the mitochondria, which rendered brain tumor cells more susceptible to reactive oxygen species-induced apoptosis under light irradiation. Moreover, the encapsulation of TPP-Ce6 into bEVs markedly improved the aqueous stability and cellular internalization of TPP-Ce6, leading to significantly enhanced PDT efficacy in U87MG GBM cells. An in vivo biodistribution study using orthotopic GBM-xenografted mice showed that bEVs containing TPP-Ce6 [bEV(TPP-Ce6)] substantially accumulated in brain tumors after BBB penetration via transferrin receptor-mediated transcytosis. As such, bEV(TPP-Ce6)-mediated PDT considerably inhibited the growth of GBM without causing adverse systemic toxicity, suggesting that mitochondria are an effective target for photodynamic GBM therapy.
Collapse
Affiliation(s)
- Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, the Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
22
|
Li CY, Liu SP, Dai XF, Lan DF, Song T, Wang XY, Kong QH, Tan J, Zhang JD. The emerging role of exosomes in the development of testicular. Asian J Androl 2023; 25:547-555. [PMID: 37040218 PMCID: PMC10521952 DOI: 10.4103/aja2022126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/04/2023] [Indexed: 04/12/2023] Open
Abstract
The mechanisms of testicular development in mammals are complex. Testis is an organ that produces sperm and secretes androgens. It is rich in exosomes and cytokines that mediate signal transduction between tubule germ cells and distal cells, promoting testicular development and spermatogenesis. Exosomes are nanoscale extracellular vesicles that transmit information between cells. By transmitting information, exosomes play an important role in male infertility diseases such as azoospermia, varicocele, and testicular torsion. However, due to the wide range of sources of exosomes, extraction methods are numerous and complex. Therefore, there are many difficulties in studying the mechanisms of exosomal effects on normal development and male infertility. Therefore, in this review, first, we introduce the formation of exosomes and methods for culturing testis and sperm. Then, we introduce the effects of exosomes on different stages of testicular development. Finally, we summarize the prospects and shortcomings of exosomes when used in clinical applications. We lay the theoretical foundation for the mechanism of the influence of exosomes on normal development and male infertility.
Collapse
Affiliation(s)
- Chun-Yang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Song-Po Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Fang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Dong-Feng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xian-Yao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Qing-Hong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China
| | - Ji-Dong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
23
|
Wang Y, Barrett A, Hu Q. Targeting Macrophages for Tumor Therapy. AAPS J 2023; 25:80. [PMID: 37589825 DOI: 10.1208/s12248-023-00845-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Macrophages, as one of the most abundant tumor-infiltrating cells, play an important role in tumor development and metastasis. The frequency and polarization of tumor-associated macrophages (TAMs) correlate with disease progression, tumor metastasis, and resistance to various treatments. Pro-inflammatory M1 macrophages hold the potential to engulf tumor cells. In contrast, anti-inflammatory M2 macrophages, which are predominantly present in tumors, potentiate tumor progression and immune escape. Targeting macrophages to modulate the tumor immune microenvironment can ameliorate the tumor-associated immunosuppression and elicit an anti-tumor immune response. Strategies to repolarize TAMs, deplete TAMs, and block inhibitory signaling hold great potential in tumor therapy. Besides, biomimetic carriers based on macrophages have been extensively explored to prolong circulation, enhance tumor-targeted delivery, and reduce the immunogenicity of therapeutics to augment therapeutic efficacy. Moreover, the genetic engineering of macrophages with chimeric antigen receptor (CAR) allows them to recognize tumor antigens and perform tumor cell-specific phagocytosis. These strategies will expand the toolkit for treating tumors, especially for solid tumors, drug-resistant tumors, and metastatic tumors. Herein, we introduce the role of macrophages in tumor progression, summarize the recent advances in macrophage-centered anticancer therapy, and discuss their challenges as well as future applications. Graphical abstract.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A
| | - Allie Barrett
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A..
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A..
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A..
| |
Collapse
|
24
|
Zhang X, Yang Z, Jiang J, Tang M, Guan L, Lee H, Wang H, Xu J. Engineering exosomes and their application in cardiovascular field: Bibliometric analysis from 2002 to 2022. Heliyon 2023; 9:e18809. [PMID: 37576273 PMCID: PMC10415707 DOI: 10.1016/j.heliyon.2023.e18809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death around the world, warranting an increasing number of studies for its treatment. Among all of its therapeutical strategies, engineered exosomes are attracting growing attention due to their excellent biocompatibility, non-immunogenicity, and favorable plasticity. Despite its increasing popularity, there is yet to be a bibliometric analysis regarding the application of exosomes in CVD treatment. Therefore, the present study assessed the current trends in engineered exosomes in treating CVD by conducting a bibliometric analysis. All associated literatures published between years 2002-2022 were collected, through the Web of Science Core Collection. Our results showed that related studies robustly increased in 2020, followed by a gradual increase from 2020 to 2022, indicating that this field attracted growing attention. Additionally, we described critical network of countries, institutions, authors, top-cited references, and keywords. The present bibliometric study provides systematic observations on engineering exosomes in treating CVD, reveals potential challenges and future direction for additional studies, and may inspire more researchers to commit to investigating treatments for CVD.
Collapse
Affiliation(s)
- Xiao Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, School of Medicine and School of Life Science, Shanghai University, Nantong, 226011, China
| | - Zijiang Yang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, School of Medicine and School of Life Science, Shanghai University, Nantong, 226011, China
| | - Jizong Jiang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, School of Medicine and School of Life Science, Shanghai University, Nantong, 226011, China
| | - Ming Tang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, School of Medicine and School of Life Science, Shanghai University, Nantong, 226011, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, School of Medicine and School of Life Science, Shanghai University, Nantong, 226011, China
| | - Jiahong Xu
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| |
Collapse
|
25
|
Abouelnazar FA, Zhang X, Zhang J, Wang M, Yu D, Zang X, Zhang J, Li Y, Xu J, Yang Q, Zhou Y, Tang H, Wang Y, Gu J, Zhang X. SALL4 promotes angiogenesis in gastric cancer by regulating VEGF expression and targeting SALL4/VEGF pathway inhibits cancer progression. Cancer Cell Int 2023; 23:149. [PMID: 37525212 PMCID: PMC10388482 DOI: 10.1186/s12935-023-02985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Spalt-like protein 4 (SALL4) is a stemness-related transcription factor whose abnormal re-expression contributes to cancer initiation and progression. However, the role of SALL4 in cancer angiogenesis remains unknown. METHODS Analyses of clinical specimens via TCGA datasets were performed to determine the expression level and clinical significance of SALL4 in STAD (Stomach Adenocarcinoma). SALL4 knockdown, knockout, and overexpression were achieved by siRNA, CRISPR/Cas9, and plasmid transfection. The effects of conditioned medium (CM) from SALL4 knockdown or overexpression of gastric cancer cells on endothelial cell proliferation, migration, and tube formation were investigated by CCK-8 assay, transwell migration assay, and tube formation assay. The regulation of VEGF gene expression by SALL4 was studied by qRT-PCR, western blot, chromatin immunoprecipitation (ChIP) assay, and electrophoretic mobility shift assay (EMSA). Engineered exosomes from 293T cells loaded with si-SALL4-B and thalidomide were produced to test their therapeutic effect on gastric cancer progression. RESULTS SALL4 expression was increased in STAD and positively correlated with tumor progression and poor prognosis. SALL4-B knockdown or knockout decreased while over-expression increased the promotion of human umbilical vein endothelial cells (HUVEC) cell proliferation, migration, and tube formation by gastric cancer cell-derived CM. Further investigation revealed a widespread association of SALL4 with angiogenic gene transcription through the TCGA datasets. Additionally, SALL4-B knockdown reduced, while over-expression enhanced the expression levels of VEGF-A, B, and C genes. The results of ChIP and EMSA assays indicated that SALL4 could directly bind to the promoters of VEGF-A, B, and C genes and activate their transcription, which may be associated with increased histone H3-K79 and H3-K4 modifications in their promoter regions. Furthermore, si-SALL4-B and thalidomide-loaded exosomes could be efficiently uptaken by gastric cancer cells and significantly reduced SALL4-B and Vascular Endothelial Growth Factor (VEGF) expression levels in gastric cancer cells, thus inhibiting the pro-angiogenic role of their derived CM. CONCLUSION These findings suggest that SALL4 plays an important role in angiogenesis by transcriptionally regulating VEGF expression. Co-delivery of the functional siRNA and anticancer drug via exosomes represents a useful approach to inhibiting cancer angiogenesis by targeting SALL4/VEGF pathway.
Collapse
Grants
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (2019GSZDSYS01, 2019GSZDSYS02) Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical On-cology in Gansu Province
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (NLDTG2020002) Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (PAPD) Priority Academic Program Development of Jiangsu Higher Education Institutions
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (JC2021092) Nantong Science and Technology Bureau Project
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
- (KYCX21_3405, KYCX22_3713) Postgraduate Research & Practice Innovation Program of Jiangsu Province
Collapse
Affiliation(s)
- Fatma A Abouelnazar
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xueyan Zang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yixin Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jing Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qiurong Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yue Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Haozhou Tang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yanzheng Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Affiliated Cancer Hospital of Nantong University, Nantong, 226300, China.
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
26
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
27
|
Russo E, Grondona C, Brullo C, Spallarossa A, Villa C, Tasso B. Indole Antitumor Agents in Nanotechnology Formulations: An Overview. Pharmaceutics 2023; 15:1815. [PMID: 37514002 PMCID: PMC10385756 DOI: 10.3390/pharmaceutics15071815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The indole heterocycle represents one of the most important scaffolds in medicinal chemistry and is shared among a number of drugs clinically used in different therapeutic areas. Due to its varied biological activities, high unique chemical properties and significant pharmacological behaviors, indole derivatives have drawn considerable interest in the last decade as antitumor agents active against different types of cancers. The research of novel antiproliferative drugs endowed with enhanced efficacy and reduced toxicity led to the approval by U.S. Food and Drug Administration of the indole-based anticancer agents Sunitinib, Nintedanib, Osimertinib, Panobinostat, Alectinib and Anlotinib. Additionally, new drug delivery systems have been developed to protect the active principle from degradation and to direct the drug to the specific site for clinical use, thus reducing its toxicity. In the present work is an updated review of the recently approved indole-based anti-cancer agents and the nanotechnology systems developed for their delivery.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Carola Grondona
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Chiara Brullo
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Andrea Spallarossa
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Carla Villa
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Bruno Tasso
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
28
|
Avgoulas DI, Tasioulis KS, Papi RM, Pantazaki AA. Therapeutic and Diagnostic Potential of Exosomes as Drug Delivery Systems in Brain Cancer. Pharmaceutics 2023; 15:pharmaceutics15051439. [PMID: 37242681 DOI: 10.3390/pharmaceutics15051439] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is designated as one of the principal causes of mortality universally. Among different types of cancer, brain cancer remains the most challenging one due to its aggressiveness, the ineffective permeation ability of drugs through the blood-brain barrier (BBB), and drug resistance. To overcome the aforementioned issues in fighting brain cancer, there is an imperative need for designing novel therapeutic approaches. Exosomes have been proposed as prospective "Trojan horse" nanocarriers of anticancer theranostics owing to their biocompatibility, increased stability, permeability, negligible immunogenicity, prolonged circulation time, and high loading capacity. This review provides a comprehensive discussion on the biological properties, physicochemical characteristics, isolation methods, biogenesis and internalization of exosomes, while it emphasizes their therapeutic and diagnostic potential as drug vehicle systems in brain cancer, highlighting recent advances in the research field. A comparison of the biological activity and therapeutic effectiveness of several exosome-encapsulated cargo including drugs and biomacromolecules underlines their great supremacy over the non-exosomal encapsulated cargo in the delivery, accumulation, and biological potency. Various studies on cell lines and animals give prominence to exosome-based nanoparticles (NPs) as a promising and alternative approach in the management of brain cancer.
Collapse
Affiliation(s)
- Dimitrios I Avgoulas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos S Tasioulis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
29
|
Zhong Y, Wang X, Zhao X, Shen J, Wu X, Gao P, Yang P, Chen J, An W. Multifunctional Milk-Derived Small Extracellular Vesicles and Their Biomedical Applications. Pharmaceutics 2023; 15:1418. [PMID: 37242660 PMCID: PMC10223436 DOI: 10.3390/pharmaceutics15051418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, small extracellular vesicles (sEVs) have been regarded as the next generation of novel delivery systems after lipid nanoparticles because of their advantages and huge prospects in drug delivery. Studies have shown that sEVs are abundant in milk and therefore can be a large and economical source of sEVs. Natural milk-derived small extracellular vesicles (msEVs) have important functions such as immune regulation, anti-bacterial infection, anti-oxidative, etc., and play a beneficial role in human health at multiple levels, including intestinal health, bone/muscle metabolism, and microbiota regulation. In addition, because they can pass the gastrointestinal barrier and have low immunogenicity, good biocompatibility, and stability, msEVs are considered a crucial oral drug delivery vehicle. Moreover, msEVs can be further engineered for targeted delivery to prolong the circulation time or enhance local drug concentrations. However, msEVs separation and purification, complex contents, and quality control hinder their application in drug delivery. This paper provides a comprehensive review of the biogenesis and characteristics, isolation and purification, composition, loading methods, and function of msEVs, based on which their applications in biomedical fields are further explored.
Collapse
Affiliation(s)
- Youxiu Zhong
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xudong Wang
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xian Zhao
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Jiuheng Shen
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xue Wu
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Peifen Gao
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Peng Yang
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 100083, China
| | - Wenlin An
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
30
|
Lyu Y, Guo Y, Okeoma CM, Yan Z, Hu N, Li Z, Zhou S, Zhao X, Li J, Wang X. Engineered extracellular vesicles (EVs): Promising diagnostic/therapeutic tools for pediatric high-grade glioma. Biomed Pharmacother 2023; 163:114630. [PMID: 37094548 DOI: 10.1016/j.biopha.2023.114630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly malignant brain tumor that mainly occurs in children with extremely low overall survival. Traditional therapeutic strategies, such as surgical resection and chemotherapy, are not feasible mostly due to the special location and highly diffused features. Radiotherapy turns out to be the standard treatment method but with limited benefits of overall survival. A broad search for novel and targeted therapies is in the progress of both preclinical investigations and clinical trials. Extracellular vesicles (EVs) emerged as a promising diagnostic and therapeutic candidate due to their distinct biocompatibility, excellent cargo-loading-delivery capacity, high biological barrier penetration efficiency, and ease of modification. The utilization of EVs in various diseases as biomarker diagnoses or therapeutic agents is revolutionizing modern medical research and practice. In this review, we will briefly talk about the research development of DIPG, and present a detailed description of EVs in medical applications, with a discussion on the application of engineered peptides on EVs. The possibility of applying EVs as a diagnostic tool and drug delivery system in DIPG is also discussed.
Collapse
Affiliation(s)
- Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yupei Guo
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Zhaoyue Yan
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Nan Hu
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zian Li
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shaolong Zhou
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junqi Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xinjun Wang
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
31
|
Ou A, Wang Y, Zhang J, Huang Y. Living Cells and Cell-Derived Vesicles: A Trojan Horse Technique for Brain Delivery. Pharmaceutics 2023; 15:pharmaceutics15041257. [PMID: 37111742 PMCID: PMC10145830 DOI: 10.3390/pharmaceutics15041257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Brain diseases remain a significant global healthcare burden. Conventional pharmacological therapy for brain diseases encounters huge challenges because of the blood-brain barrier (BBB) limiting the delivery of therapeutics into the brain parenchyma. To address this issue, researchers have explored various types of drug delivery systems. Cells and cell derivatives have attracted increasing interest as "Trojan horse" delivery systems for brain diseases, owing to their superior biocompatibility, low immunogenicity, and BBB penetration properties. This review provided an overview of recent advancements in cell- and cell-derivative-based delivery systems for the diagnosis and treatment of brain diseases. Additionally, it discussed the challenges and potential solutions for clinical translation.
Collapse
Affiliation(s)
- Ante Ou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuewei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
32
|
Hashemi M, Roshanzamir SM, Paskeh MDA, Karimian SS, Mahdavi MS, Kheirabad SK, Naeemi S, Taheriazam A, Salimimoghaddam S, Entezari M, Mirzaei S, Samarghandian S. Non-coding RNAs and exosomal ncRNAs in multiple myeloma: An emphasis on molecular pathways. Eur J Pharmacol 2023; 941:175380. [PMID: 36627099 DOI: 10.1016/j.ejphar.2022.175380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 01/08/2023]
Abstract
One of the most common hematological malignancies is multiple myeloma (MM) that its mortality and morbidity have increased. The incidence rate of MM is suggested to be higher in Europe and various kinds of therapeutic strategies including stem cell transplantation. However, MM treatment is still challenging and gene therapy has been shown to be promising. The non-coding RNAs (ncRNAs) including miRNAs, lncRNAs and circRNAs are considered as key players in initiation, development and progression of MM. In the present review, the role of ncRNAs in MM progression and drug resistance is highlighted to provide new insights for future experiments for their targeting and treatment of MM. The miRNAs affect proliferation and invasion of MM cells, and targeting tumor-promoting miRNAs can induce apoptosis and cell cycle arrest, and reduces proliferation of MM cells. Furthermore, miRNA regulation is of importance for modulating metastasis and chemotherapy response of tumor cells. The lncRNAs exert the same function and determine proliferation, migration and therapy response of MM cells. Notably, lncRNAs mainly target miRNAs in regulating MM progression. The circRNAs also target different molecular pathways in regulating MM malignancy that miRNAs are the most well-known ones. Furthermore, clinical application of ncRNAs in MM is discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Sadat Mahdavi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Naeemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shokooh Salimimoghaddam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
33
|
Hasan I, Roy S, Guo B, Du S, Tao W, Chang C. Recent progress in nanomedicines for imaging and therapy of brain tumors. Biomater Sci 2023; 11:1270-1310. [PMID: 36648496 DOI: 10.1039/d2bm01572b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nowadays, a malignant brain tumor is one of the most life-threatening diseases with poor prognosis, high risk of recurrence, and low survival rate for patients because of the existence of the blood-brain barrier (BBB) and the lack of efficient diagnostic and therapeutic paradigms. So far, many researchers have devoted their efforts to innovating advanced drugs to efficiently cross the BBB and selectively target brain tumors for optimal imaging and therapy outcomes. Herein, we update the most recent developments in nanomedicines for the diagnosis and treatment of brain tumors in preclinical mouse models. The special focus is on burgeoning drug delivery carriers to improve the specificity of visualization and to enhance the efficacy of brain tumor treatment. Also, we highlight the challenges and perspectives for the future development of brain tumor theranostics. This review is expected to receive wide attention from researchers, professors, and students in various fields to participate in future advancements in preclinical research and clinical translation of brain tumor nanomedicines.
Collapse
Affiliation(s)
- Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, 518116, P. R. China
| | - Wei Tao
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, 518116, P. R. China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
34
|
Muhammad SA, Jaafaru MS, Rabiu S. A Meta-analysis on the Effectiveness of Extracellular Vesicles as Nanosystems for Targeted Delivery of Anticancer Drugs. Mol Pharm 2023; 20:1168-1188. [PMID: 36594882 DOI: 10.1021/acs.molpharmaceut.2c00878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
While the efficacy of anticancer drugs is hampered by low bioavailability and systemic toxicity, the uncertainty remains whether encapsulation of these drugs into natural nanovesicles such as extracellular vesicles (EVs) could improve controlled drug release and efficacy for targeted tumor therapy. Thus, we performed a meta-analysis for studies reporting the efficacy of EVs as nanosystems to deliver drugs and nucleic acid, protein, and virus (NPV) to tumors using the random-effects model. The electronic search of articles was conducted through Cochrane, PubMed, Scopus, Science Direct, and Clinical Trials Registry from inception up till September 2022. The pooled summary estimate and 95% confidence interval of tumor growth inhibition, survival, and tumor targeting were obtained to assess the efficacy. The search yielded a total of 119 studies that met the inclusion criteria having only 1 clinical study. It was observed that the drug-loaded EV was more efficacious than the free drug in reducing tumor volume and weight with the standardized mean difference (SMD) of -1.99 (95% CI: -2.36, -1.63; p < 0.00001) and -2.12 (95% CI: -2.48, -1.77; p < 0.00001). Similarly, the mean estimate of tumor volume and weight for NPV were the following: SMD: -2.30, 95% CI: -3.03, -1.58; p < 0.00001 and SMD: -2.05, 95% CI: -2.79, -1.30; p < 0.00001. Treatment of tumors with EV-loaded anticancer agents also prolonged survival (HR: 0.15, 95% CI: 0.10, 0.22, p < 0.00001). Furthermore, EVs significantly delivered drugs to tumors as revealed by the higher concentration at the tumor site (SMD: -2.73, 95% CI: -3.77, -1.69; p < 0.00001). This meta-analysis revealed that EV-loaded drugs and NPV performed significantly better in tumor growth inhibition with improved survival than the free anticancer agents, suggesting EVs as safe nanoplatforms for targeted tumor therapy.
Collapse
Affiliation(s)
- Suleiman Alhaji Muhammad
- Department of Biochemistry & Molecular Biology, Usmanu Danfodiyo University, 840104 Sokoto, Nigeria
| | - Mohammed Sani Jaafaru
- Medical Analysis Department, Faculty of Applied Science, Tishk International University-Erbil, Kurdistan Region 44001, Iraq
| | - Sulaiman Rabiu
- Department of Biochemistry & Molecular Biology, Usmanu Danfodiyo University, 840104 Sokoto, Nigeria
| |
Collapse
|
35
|
Cui J, Wang X, Li J, Zhu A, Du Y, Zeng W, Guo Y, Di L, Wang R. Immune Exosomes Loading Self-Assembled Nanomicelles Traverse the Blood-Brain Barrier for Chemo-immunotherapy against Glioblastoma. ACS NANO 2023; 17:1464-1484. [PMID: 36626296 DOI: 10.1021/acsnano.2c10219] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Effective drug delivery and prevention of postoperative recurrence are significant challenges for current glioblastoma (GBM) treatment. Poor drug delivery is mainly due to the presence of the blood-brain barrier (BBB), and postoperative recurrence is primarily due to the resistance of GBM cells to chemotherapeutic drugs and the presence of an immunosuppressive microenvironment. Herein, a biomimetic nanodrug delivery platform based on endogenous exosomes that could efficiently target the brain without targeting modifications and co-deliver pure drug nanomicelles and immune adjuvants for safe and efficient chemo-immunotherapy against GBM is prepared. Inspired by the self-assembly technology of small molecules, tanshinone IIA (TanIIA) and glycyrrhizic acid (GL), which are the inhibitors of signal transducers and activators of transcription 3 from traditional Chinese medicine (TCM), self-assembled to form TanIIA-GL nanomicelles (TGM). Endogenous serum exosomes are selected to coat the pure drug nanomicelles, and the CpG oligonucleotides, agonists of Toll-like receptor 9, are anchored on the exosome membrane to obtain immune exosomes loaded with TCM self-assembled nanomicelles (CpG-EXO/TGM). Our results demonstrate that CpG-EXO/TGM can bind free transferrin in blood, prolong blood circulation, and maintain intact structures when traversing the BBB and targeting GBM cells. In the GBM microenvironment, the strong anti-GBM effect of CpG-EXO/TGM is mainly attributed to two factors: (i) highly efficient uptake by GBM cells and sufficient intracellular release of drugs to induce apoptosis and (ii) stimulation of dendritic cell maturation and induction of tumor-associated macrophages polarization by CpG oligonucleotides to generate anti-GBM immune responses. Further research found that CpG-EXO/TGM can not only produce better efficacy in combination with temozolomide but also prevent a postoperative recurrence.
Collapse
Affiliation(s)
- Jiwei Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Xue Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Jinge Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Anran Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Yingjiang Du
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Wei Zeng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Yumiao Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| |
Collapse
|
36
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
37
|
Stępień EŁ, Rząca C, Moskal P. Radiovesicolomics-new approach in medical imaging. Front Physiol 2022; 13:996985. [DOI: 10.3389/fphys.2022.996985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
This review introduce extracellular vesicles (EVs) to a molecular imaging field. The idea of modern analyses based on the use of omics studies, using high-throughput methods to characterize the molecular content of a single biological system, vesicolomics seems to be the new approach to collect molecular data about EV content, to find novel biomarkers or therapeutic targets. The use of various imaging techniques, including those based on radionuclides as positron emission tomography (PET) or single photon emission computed tomography (SPECT), combining molecular data on EVs, opens up the new space for radiovesicolomics—a new approach to be used in theranostics.
Collapse
|
38
|
Cheng J, Sun Y, Ma Y, Ao Y, Hu X, Meng Q. Engineering of MSC-Derived Exosomes: A Promising Cell-Free Therapy for Osteoarthritis. MEMBRANES 2022; 12:membranes12080739. [PMID: 36005656 PMCID: PMC9413347 DOI: 10.3390/membranes12080739] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is characterized by progressive cartilage degeneration with increasing prevalence and unsatisfactory treatment efficacy. Exosomes derived from mesenchymal stem cells play an important role in alleviating OA by promoting cartilage regeneration, inhibiting synovial inflammation and mediating subchondral bone remodeling without the risk of immune rejection and tumorigenesis. However, low yield, weak activity, inefficient targeting ability and unpredictable side effects of natural exosomes have limited their clinical application. At present, various approaches have been applied in exosome engineering to regulate their production and function, such as pretreatment of parental cells, drug loading, genetic engineering and surface modification. Biomaterials have also been proved to facilitate efficient delivery of exosomes and enhance treatment effectiveness. Here, we summarize the current understanding of the biogenesis, isolation and characterization of natural exosomes, and focus on the large-scale production and preparation of engineered exosomes, as well as their therapeutic potential in OA, thus providing novel insights into exploring advanced MSC-derived exosome-based cell-free therapy for the treatment of OA.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (J.C.); (Y.M.); (Y.A.)
| | - Yixin Sun
- Peking Unversity First Hospital, Peking University Health Science Center, Beijing 100034, China;
| | - Yong Ma
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (J.C.); (Y.M.); (Y.A.)
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (J.C.); (Y.M.); (Y.A.)
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (J.C.); (Y.M.); (Y.A.)
- Correspondence: (X.H.); (Q.M.); Tel.: +86-010-8226-5680 (Q.M.)
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (J.C.); (Y.M.); (Y.A.)
- Correspondence: (X.H.); (Q.M.); Tel.: +86-010-8226-5680 (Q.M.)
| |
Collapse
|