1
|
Yılmaz E, Kacaroglu D, Ozden AK, Aydogan N. Gold nanoparticles decorated FOLFIRINOX loaded liposomes for synergistic therapy of pancreatic cancer. Int J Pharm 2025; 669:125067. [PMID: 39672312 DOI: 10.1016/j.ijpharm.2024.125067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Pancreatic cancer is predicted to be the second highest cause of cancer deaths by 2030, with a mortality rate of 98 % and a 5-year survival rate of only 4-8 %. FOLFIRINOX which consists of four main ingredients has shown superior efficacy in treating patients with pancreatic cancer compared to other agents and combinations. However, toxicities have prevented full-dose use of FOLFIRINOX. In this study, we present the design of a liposome nanosystem that enables the sequential release of a drug combination that is called FOLFIRINOX using lipid-based nanosystem synergistic chemo/photothermal therapy approaches. The co-eccentric liposome allowed us to locate the drug molecules in different locations giving us the flexibility to release them in a selected order. Core liposome (L2) has a melting temperature of 53.63 °C, it was decorated by gold nanoparticle (L2@AuNP) to bring photothermal responsiveness. The outer liposome structure had a lower melting temperature, which facilitated the sequential release process. The efficacy of photothermal therapy for nanosystem was calculated. The results indicate that coating L2@AuNP nanostructure with L1 liposomes improves efficacy by stabilizing gold nanoparticles. FOLFIRINOX components are encapsulated in a concentric liposome structure according to the order of administration into the body. The concentric liposome structure enables the sequential release of multiple drugs due to the varying phase transition temperatures of the liposomes. The cytotoxic effect of these formulations was evaluated on Panc-1 pancreatic cancer cells; the lowest cell viability was obtained in 4 Liposome(L) under 5 min NIR irradiation. Combination therapy has a higher therapeutic efficacy (70.45 %) when compared to chemotherapy and photothermal therapy used separately. The study's results show the potential of combination therapies to improve therapeutic outcomes, providing a promising path for future research and clinical application.
Collapse
Affiliation(s)
- Emine Yılmaz
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Demet Kacaroglu
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Ayse Kevser Ozden
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Nihal Aydogan
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey; Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara, 06800, Turkey.
| |
Collapse
|
2
|
Tian Z, Xuan H, Yao Y, Hao S, Zhang Z, Zhang B, Zhang J, Zhang L, Sang X, Yuan J, Farrell G, Wu Q. Fast detection of protein kinase B in chrysin treated colorectal cancer cells using a novel multicore microfiber biosensor. COMMUNICATIONS ENGINEERING 2024; 3:185. [PMID: 39725710 DOI: 10.1038/s44172-024-00332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Rapid and accurate determination of target proteins in cells provide essential diagnostic information for early detection of diseases, evaluation of drug responses, and the study of pathophysiological mechanisms. Traditional Western blotting method has been used for the determination, but it is complex, time-consuming, and semi-quantitative. Here, a tapered seven-core fiber (TSCF) biosensor was designed and fabricated. By immobilizing protein kinase B (PKB), also known as AKT, antibody onto TSCF surface, the microfiber biosensor can be used for quantitatively detecting the AKT level in solution concentrations as low as 0.26 ng/mL. To test the reliability of the TSCF sensing method in a medical application, the TSCF biosensor was used to study the relationship between chrysin's anticancer effect and the concentration of AKT in a human colorectal cancer cell line (LoVo cells). The results reveal that the inhibitory effect of chrysin on LoVo cells is positively correlated with the dose, agreeing well with the equivalent results using the traditional Western blotting method.
Collapse
Affiliation(s)
- Zhen Tian
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
- School of Physics Sciences and Information Technology, Liaocheng University, Liaocheng, China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng, China
| | - Yicun Yao
- School of Physics Sciences and Information Technology, Liaocheng University, Liaocheng, China
| | - Shengyu Hao
- School of Physics Sciences and Information Technology, Liaocheng University, Liaocheng, China
| | - Zhichao Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
| | - Bingyuan Zhang
- School of Physics Sciences and Information Technology, Liaocheng University, Liaocheng, China
| | - Jingao Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
| | - Liqiang Zhang
- School of Physics Sciences and Information Technology, Liaocheng University, Liaocheng, China
| | - Xinzhu Sang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
| | - Jinhui Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Gerald Farrell
- Photonics Research Centre, School of Electrical and Electronic Engineering, City Campus, Technological University Dublin, Dublin, Ireland
| | - Qiang Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China.
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, United Kingdom.
- Key Laboratory of Optoelectronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, China.
| |
Collapse
|
3
|
Vrabcová M, Spasovová M, Forinová M, Giannetti A, Houska M, Lynn NS, Baldini F, Kopeček J, Chiavaioli F, Vaisocherová-Lísalová H. Optical fibre long-period grating sensors modified with antifouling bio-functional nano-brushes. Biomater Sci 2024. [PMID: 39711143 DOI: 10.1039/d4bm01447b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Recent advances in optical sensing technologies underpin the development of high-performance, surface-sensitive analytical tools capable of reliable and precise detection of molecular targets in complex biological media in non-laboratory settings. Optical fibre sensors guide light to and from a region of interest, enabling sensitive measurements of localized environments. This positions optical fibre sensors as a highly promising technology for a wide range of biochemical and healthcare applications. However, their performance in real-world biological media is often limited by the absence of robust post-modification strategies that provide both high biorecognition and antifouling capabilities. In this study, we present the proof-of-concept antifouling and biorecognition performance of a polymer brush nano-coating synthesized at the sensing region of optical fibre long-period grating (LPG) sensors. Using a newly developed antifouling terpolymer brush (ATB) composed of carboxybetaine methacrylamide, sulfobetaine methacrylamide, and N-(2-hydroxypropyl)methacrylamide, we achieve state-of-the-art antifouling properties. The successful on-fibre ATB synthesis is confirmed through scanning electron microscopy (SEM), fluorescence microscopy, and label-free bio-detection experiments based on antibody-functionalized ATB-coated LPG optical fibres. Despite the challenges in handling optical fibres during polymerization, the resulting nano-coating retains its remarkable antifouling properties upon exposure to blood plasma and enables biorecognition element functionalization. These capabilities are demonstrated through the detection of IgG in buffer and diluted blood plasma using anti-IgG-functionalized ATB-coated sensing regions of LPG fibres in both label-based (fluorescence) and label-free real-time detection experiments. The results show the potential of ATB-coated LPG fibres for use in analytical biosensing applications.
Collapse
Affiliation(s)
- Markéta Vrabcová
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16, Czechia
| | - Monika Spasovová
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16, Czechia
| | - Michala Forinová
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16, Czechia
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Milan Houska
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
| | - N Scott Lynn
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Jaromír Kopeček
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
| | - Francesco Chiavaioli
- Institute of Applied Physics "Nello Carrara", National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | | |
Collapse
|
4
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
5
|
Zhang W, Kang M, Li X, Pan Y, Li Z, Zhang Y, Liao C, Xu G, Zhang Z, Tang BZ, Xu Z, Wang D. Fiber Optic-Mediated Type I Photodynamic Therapy of Brain Glioblastoma Based on an Aggregation-Induced Emission Photosensitizer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410142. [PMID: 39344926 DOI: 10.1002/adma.202410142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Glioblastoma (GBM) is one of the most lethal human malignancies. The current standard-of-care is highly invasive with strong toxic side effects, leading to poor prognosis and high mortality. As a safe and effective clinical approach, photodynamic therapy (PDT) has emerged as a suitable option for GBM. Nevertheless, its implementation is significantly impeded by the limits of light penetration depth and the firm reliance on oxygen. To overcome these challenges, herein, a promising strategy that harnesses a modified optical fiber and less oxygen-dependent Type I aggregation-induced emission (AIE) photosensitizer (PS) is developed for the first time to realize in vivo GBM treatments. The proposed AIE PS, namely TTTMN, characterized by a highly twisted molecular architecture and a bulky spacer, exhibits enhanced near-infrared emission and strong production of hydroxyl and superoxide radicals at the aggregated state, thus affording efficient fluorescence imaging-guided PDT once formulated into nanoparticles. The inhibition of orthotopic and subcutaneous GBM xenografts provides compelling evidence of the treatment efficacy of Type I PDT irradiated through a tumor-inserted optical fiber. These findings highlight the substantially improved therapeutic outcomes achieved through fiber optic-mediated Type I PDT, positioning it as a promising therapeutic modality for GBM.
Collapse
Affiliation(s)
- Wenguang Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yinzhen Pan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhuorong Li
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yibin Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Changrui Liao
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
6
|
Xu Z, Jin L, Yang B, Wang W, Yang Y, Wang G, Wu J, Sun D, Ma J. An advanced optic-fiber differential sensing system enhanced by molecularly imprinted polymer for specific sodium benzoate detection. Food Chem 2024; 455:139773. [PMID: 38833856 DOI: 10.1016/j.foodchem.2024.139773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
A molecularly imprinted polymer (MIP) based microfiber differential demodulation sensing system for sodium benzoate (SB) concentration detection is proposed. The specific binding of MIP on the surface of microfibers with SB can lead to changes in local refractive index (RI). RI change induces a drift in the interference wavelength, which can be monitored by the power difference between two fiber Bragg gratings (FBGs). The sensing system can detect SB in the concentration range of 0.1-50 μg/ml, and interference wavelength and FBG power difference sensitivities are 0.55 nm/(μg/ml) and 2.64 dB/(μg/ml) in the low concentration range of 0.1-1 μg/ml, respectively, with a limit of detection (LOD) of 0.1 μg/ml. This microfiber differential demodulation sensing system is not only simple to fabricate, but also simplifies the demodulation equipment to reduce the cost, which providing a simple, reliable and low-cost technique for the quantitative detection of SB concentration in beverages and flavoured foods.
Collapse
Affiliation(s)
- Ze Xu
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Li Jin
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Bowen Yang
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Wenwen Wang
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Guanjun Wang
- School of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Jizhou Wu
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Dandan Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China.
| | - Jie Ma
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Zhang Y, Zheng J, Jin F, Xiao J, Lan N, Xu Z, Yue X, Li Z, Li C, Cao D, Wang Y, Zhong W, Ran Y, Guan BO. Fiber-optic drug delivery strategy for synergistic cancer photothermal-chemotherapy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:228. [PMID: 39227591 PMCID: PMC11372069 DOI: 10.1038/s41377-024-01586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Chemotherapy is one of the conventional treatments for cancer in clinical practice. However, poor delivery efficiency, systemic toxicity, and the lack of pharmacokinetic monitoring during treatment are the critical limitations of current chemotherapy. Herein, we reported a brand-new antitumor drug delivery strategy that harnesses an optical fiber endoscopically therapeutic probe. The fiber probe carries photosensitizers in the fiber core and antitumor agents on the fiber surface mediated by a temperature-responsive hydrogel film, giving rise to an activable photothermal-chemotherapy that orchestrates the localized hyperthermia and thermal-stimuli drug release to the tumor lesion. Furthermore, the dynamical drug release and in-situ temperature can be real-time supervised through the built-in fiber sensors, including the reflective Mach-Zehnder interferometer and fiber Bragg grating, to visualize the therapy process and thus improve the safety of treatment. Compared with conventional methods, the fiber-optic drug delivery can adequately take advantage of the chemotherapeutics through collaboratively recruiting the photoheating-mediated enhanced permeability and the hydrogel particle-assisted high drug retention, shedding new light on a "central-to-peripheral" drug pervasion and retention mechanism to destroy tumors completely. The fiber-optic chemotherapy strategy incorporates precise drug delivery, accurate controllability of drug release, high drug permeability and retention in tumor, low off-target rate, and real-time drug release and temperature feedback, performing a straightforward and precise photothermal-chemotherapy pathway. More than that, the proposed strategy holds tremendous promise to provide a revolutionized on-demand drug delivery platform for the highly efficient evaluation and screening of antitumor pharmaceuticals.
Collapse
Affiliation(s)
- Yongkang Zhang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Jie Zheng
- The MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Fangzhou Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Jie Xiao
- The MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Ni Lan
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhiyuan Xu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
- Department of Laboratory Medicine, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Xu Yue
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Zesen Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Chengzhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Donglin Cao
- Department of Laboratory Medicine, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenbin Zhong
- The MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China.
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China.
- Department of Laboratory Medicine, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China.
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Zhang W, Kang M, Li X, Yang H, Zhang Z, Li Z, Zhang Y, Fan M, Liao C, Liu C, Xu G, Wang D, Xu Z, Tang BZ. Interstitial Optical Fiber-Mediated Multimodal Phototheranostics Based on an Aggregation-Induced NIR-II Emission Luminogen for Orthotopic Breast Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406474. [PMID: 39054931 DOI: 10.1002/adma.202406474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Indexed: 07/27/2024]
Abstract
One-for-all phototheranostics based on a single molecule is recognized as a convenient approach for cancer treatment, whose efficacy relies on precise lesion localization through multimodal imaging, coupled with the efficient exertion of phototherapy. To unleash the full potential of phototheranostics, advancement in both phototheranostic agents and light delivery methods is essential. Herein, an integrated strategy combining a versatile molecule featuring aggregation-induced emission, namely tBuTTBD, with a modified optical fiber to realize comprehensive tumor diagnosis and "inside-out" irradiation in the orthotopic breast tumor, is proposed for the first time. Attributed to the intense donor-acceptor interaction, highly distorted conformation, abundant molecular rotors, and loose intermolecular packing upon aggregation, tBuTTBD can synchronously undergo second near-infrared (NIR-II) fluorescence emission, photothermal and photodynamic generation under laser irradiation, contributing to a trimodal NIR-II fluorescence-photoacoustic (PA)-photothermal imaging-guided phototherapy. The tumor treatment is further carried out following the insertion of a modified optical fiber, which is fabricated by splicing a flat-end fiber with an air-core fiber. This configuration aims to enable effective in situ phototherapy by maximizing energy utilization for therapeutic benefits. This work not only enriches the palette of NIR-II phototheranostic agents but also provides valuable insight for exploring an integrated phototheranostic protocol for practical cancer treatment.
Collapse
Affiliation(s)
- Wenguang Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Yang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhuorong Li
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yibin Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Miaozhuang Fan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Changrui Liao
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
9
|
Bissen A, Yunussova N, Myrkhiyeva Z, Salken A, Tosi D, Bekmurzayeva A. Unpacking the packaged optical fiber bio-sensors: understanding the obstacle for biomedical application. Front Bioeng Biotechnol 2024; 12:1401613. [PMID: 39144482 PMCID: PMC11322460 DOI: 10.3389/fbioe.2024.1401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
A biosensor is a promising alternative tool for the detection of clinically relevant analytes. Optical fiber as a transducer element in biosensors offers low cost, biocompatibility, and lack of electromagnetic interference. Moreover, due to the miniature size of optical fibers, they have the potential to be used in microfluidic chips and in vivo applications. The number of optical fiber biosensors are extensively growing: they have been developed to detect different analytes ranging from small molecules to whole cells. Yet the widespread applications of optical fiber biosensor have been hindered; one of the reasons is the lack of suitable packaging for their real-life application. In order to translate optical fiber biosensors into clinical practice, a proper embedding of biosensors into medical devices or portable chips is often required. A proper packaging approach is frequently as challenging as the sensor architecture itself. Therefore, this review aims to give an unpack different aspects of the integration of optical fiber biosensors into packaging platforms to bring them closer to actual clinical use. Particularly, the paper discusses how optical fiber sensors are integrated into flow cells, organized into microfluidic chips, inserted into catheters, or otherwise encased in medical devices to meet requirements of the prospective applications.
Collapse
Affiliation(s)
- Aidana Bissen
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Nigara Yunussova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | | | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | | |
Collapse
|
10
|
Kim H, Jung SO, Lee S, Lee Y. Bioluminescent Systems for Theranostic Applications. Int J Mol Sci 2024; 25:7563. [PMID: 39062805 PMCID: PMC11277111 DOI: 10.3390/ijms25147563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bioluminescence, the light produced by biochemical reactions involving luciferases in living organisms, has been extensively investigated for various applications. It has attracted particular interest as an internal light source for theranostic applications due to its safe and efficient characteristics that overcome the limited penetration of conventional external light sources. Recent advancements in protein engineering technologies and protein delivery platforms have expanded the application of bioluminescence to a wide range of theranostic areas, including bioimaging, biosensing, photodynamic therapy, and optogenetics. This comprehensive review presents the fundamental concepts of bioluminescence and explores its recent applications across diverse fields. Moreover, it discusses future research directions based on the current status of bioluminescent systems for further expansion of their potential.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.O.J.); (S.L.); (Y.L.)
| | | | | | | |
Collapse
|
11
|
Li J, Chen Q, Zhou J, Cao Z, Li T, Liu F, Yang Z, Chang S, Zhou K, Ming Y, Yan T, Zheng W. Radiation Damage Mechanisms and Research Status of Radiation-Resistant Optical Fibers: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3235. [PMID: 38794089 PMCID: PMC11125778 DOI: 10.3390/s24103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In recent years, optical fibers have found extensive use in special environments, including high-energy radiation scenarios like nuclear explosion diagnostics and reactor monitoring. However, radiation exposure, such as X-rays, gamma rays, and neutrons, can compromise fiber safety and reliability. Consequently, researchers worldwide are focusing on radiation-resistant fiber optic technology. This paper examines optical fiber radiation damage mechanisms, encompassing ionization damage, displacement damage, and defect centers. It also surveys the current research on radiation-resistant fiber optic design, including doping and manufacturing process improvements. Ultimately, it summarizes the effectiveness of various approaches and forecasts the future of radiation-resistant optical fibers.
Collapse
Affiliation(s)
| | | | | | | | - Tianchi Li
- China Institute of Atomic Energy, P.O. Box 275 (26), Beijing 102413, China; (J.L.); (Q.C.); (J.Z.); (Z.C.); (F.L.); (Z.Y.); (S.C.); (K.Z.); (Y.M.); (T.Y.)
| | | | | | | | | | | | | | - Weifang Zheng
- China Institute of Atomic Energy, P.O. Box 275 (26), Beijing 102413, China; (J.L.); (Q.C.); (J.Z.); (Z.C.); (F.L.); (Z.Y.); (S.C.); (K.Z.); (Y.M.); (T.Y.)
| |
Collapse
|
12
|
Wu Y, Liu P, Mehrjou B, Chu PK. Interdisciplinary-Inspired Smart Antibacterial Materials and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305940. [PMID: 37469232 DOI: 10.1002/adma.202305940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
The discovery of antibiotics has saved millions of lives, but the emergence of antibiotic-resistant bacteria has become another problem in modern medicine. To avoid or reduce the overuse of antibiotics in antibacterial treatments, stimuli-responsive materials, pathogen-targeting nanoparticles, immunogenic nano-toxoids, and biomimetic materials are being developed to make sterilization better and smarter than conventional therapies. The common goal of smart antibacterial materials (SAMs) is to increase the antibiotic efficacy or function via an antibacterial mechanism different from that of antibiotics in order to increase the antibacterial and biological properties while reducing the risk of drug resistance. The research and development of SAMs are increasingly interdisciplinary because new designs require the knowledge of different fields and input/collaboration from scientists in different fields. A good understanding of energy conversion in materials, physiological characteristics in cells and bacteria, and bactericidal structures and components in nature are expected to promote the development of SAMs. In this review, the importance of multidisciplinary insights for SAMs is emphasized, and the latest advances in SAMs are categorized and discussed according to the pertinent disciplines including materials science, physiology, and biomimicry.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
13
|
Huang Y, Pu X, Qian H, Chuang CJ, Dong S, Wu J, Xue J, Cheng W, Ding S, Li S. Optical fiber surface plasmon resonance sensor using electroless-plated gold film for thrombin detection. Anal Bioanal Chem 2024; 416:1469-1483. [PMID: 38236393 DOI: 10.1007/s00216-024-05150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
This paper describes the simple and label-free detection of thrombin using optical fiber surface plasmon resonance (SPR) sensors based on gold films prepared by the cost-effective method of electroless plating. The plating conditions for simultaneously obtaining gold film on cylindrical core and end surfaces of an optical fiber suitable for measurement were optimized. The fabricated sensor exhibited a linear refractive index sensitivity of 2150 nm/RIU and 7.136 (a.u.)/RIU in the refractive index of 1.3329-1.3605 interrogated by resonance wavelength and amplitude methods respectively and a single wavelength monitoring method was proposed to investigate the sensing performance of this sensor. Polyadenine diblock and thiolated thrombin aptamers were immobilized on gold nanoparticles and gold films respectively to implement a sandwich optical fiber assay for thrombin. The developed optical fiber SPR sensors were successfully used in the determination of thrombin down to 0.56 nM over a wide range from 2 to 100 nM and showed good selectivity for thrombin, which indicated their potential clinical applications for biomedical samples.
Collapse
Affiliation(s)
- Yu Huang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xiaoyin Pu
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Husun Qian
- Department of Laboratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Chin-Jung Chuang
- Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien, 97401, Taiwan, China
| | - Shanshan Dong
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Jiangling Wu
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| | - Jianjiang Xue
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shengqiang Li
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, China.
| |
Collapse
|
14
|
Wu H, Chen P, Zhan X, Lin K, Hu T, Xiao A, Liang J, Huang Y, Huang Y, Guan BO. Marriage of a Dual-Plasmonic Interface and Optical Microfiber for NIR-II Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310571. [PMID: 38029784 DOI: 10.1002/adma.202310571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Indexed: 12/01/2023]
Abstract
The use of light as a powerful tool for disease treatment has introduced a new era in tumor treatment and provided abundant opportunities for light-based tumor theranostics. This work reports a photothermal theranostic fiber integrating cancer detection and therapeutic functions. Its self-heating effect can be tuned at ultralow powers and used for self-heating detection and tumor ablation. The fiber, consisting of a dual-plasmonic nanointerface and an optical microfiber, can be used to distinguish cancer cells from normal cells, quantify cancer cells, perform hyperthermal ablation of cancer cells, and evaluate the ablation efficacy. Its cancer cell ablation rate reaches 89% in a single treatment. In vitro and in vivo studies reveal quick, deep-tissue photonic hyperthermia in the NIR-II window, which can markedly ablate tumors. The marriage of a dual-plasmonic nanointerface and an optical microfiber presents a novel paradigm in photothermal therapy, offering the potential to surmount the challenges posed by limited light penetration depth, nonspecific accumulation in normal tissues, and inadvertent damage in current methods. This work thus provides insight for the exploration of an integrated theranostic platform with simultaneous functions in cancer diagnostics, therapeutics, and postoperative monitoring for future practical applications.
Collapse
Affiliation(s)
- Haotian Wu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Xundi Zhan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Kaiyue Lin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Tao Hu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Aoxiang Xiao
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The first Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Jiaxuan Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Yugang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The first Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
15
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
16
|
Ferreira MFS, Brambilla G, Thévenaz L, Feng X, Zhang L, Sumetsky M, Jones C, Pedireddy S, Vollmer F, Dragic PD, Henderson-Sapir O, Ottaway DJ, Strupiechonski E, Hernandez-Cardoso GG, Hernandez-Serrano AI, González FJ, Castro Camus E, Méndez A, Saccomandi P, Quan Q, Xie Z, Reinhard BM, Diem M. Roadmap on optical sensors. JOURNAL OF OPTICS (2010) 2024; 26:013001. [PMID: 38116399 PMCID: PMC10726224 DOI: 10.1088/2040-8986/ad0e85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/09/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Optical sensors and sensing technologies are playing a more and more important role in our modern world. From micro-probes to large devices used in such diverse areas like medical diagnosis, defence, monitoring of industrial and environmental conditions, optics can be used in a variety of ways to achieve compact, low cost, stand-off sensing with extreme sensitivity and selectivity. Actually, the challenges to the design and functioning of an optical sensor for a particular application requires intimate knowledge of the optical, material, and environmental properties that can affect its performance. This roadmap on optical sensors addresses different technologies and application areas. It is constituted by twelve contributions authored by world-leading experts, providing insight into the current state-of-the-art and the challenges their respective fields face. Two articles address the area of optical fibre sensors, encompassing both conventional and specialty optical fibres. Several other articles are dedicated to laser-based sensors, micro- and nano-engineered sensors, whispering-gallery mode and plasmonic sensors. The use of optical sensors in chemical, biological and biomedical areas is discussed in some other papers. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed.
Collapse
Affiliation(s)
| | | | | | - Xian Feng
- Jiangsu Normal University, People’s Republic of China
| | - Lei Zhang
- Zhejiang University, People’s Republic of China
| | - Misha Sumetsky
- Aston Institute of Photonic Technologies, Aston University, Birmingham, United Kingdom
| | - Callum Jones
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, United Kingdom
| | - Srikanth Pedireddy
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, United Kingdom
| | - Frank Vollmer
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, United Kingdom
| | - Peter D Dragic
- University of Illinois at Urbana-Champaign, United States of America
| | - Ori Henderson-Sapir
- Department of Physics and Institute of Photonics and Advanced Sensing, The University of Adelaide, SA, Australia
- OzGrav, University of Adelaide, Adelaide, SA, Australia
- Mirage Photonics, Oaklands Park, SA, Australia
| | - David J Ottaway
- Department of Physics and Institute of Photonics and Advanced Sensing, The University of Adelaide, SA, Australia
- OzGrav, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | | | | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Italy
| | - Qimin Quan
- NanoMosaic Inc., United States of America
| | - Zhongcong Xie
- Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, United States of America
| | - Max Diem
- Northeastern University and CIRECA LLC, United States of America
| |
Collapse
|
17
|
Zeng X, Yang M, Liu H, Zhang Z, Hu Y, Shi J, Wang ZH. Light-driven micro/nanomotors in biomedical applications. NANOSCALE 2023; 15:18550-18570. [PMID: 37962424 DOI: 10.1039/d3nr03760f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanotechnology brings hope for targeted drug delivery. However, most current drug delivery systems use passive delivery strategies with limited therapeutic efficiency. Over the past two decades, research on micro/nanomotors (MNMs) has flourished in the biomedical field. Compared with other driven methods, light-driven MNMs have the advantages of being reversible, simple to control, clean, and efficient. Under light irradiation, the MNMs can overcome several barriers in the body and show great potential in the treatment of various diseases, such as tumors, and gastrointestinal, cardiovascular and cerebrovascular diseases. Herein, the classification and mechanism of light-driven MNMs are introduced briefly. Subsequently, the applications of light-driven MNMs in overcoming physiological and pathological barriers in the past five years are highlighted. Finally, the future prospects and challenges of light-driven MNMs are discussed as well. This review will provide inspiration and direction for light-driven MNMs to overcome biological barriers in vivo and promote the clinical application of light-driven MNMs in the biomedical field.
Collapse
Affiliation(s)
- Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| |
Collapse
|
18
|
Cui X, Li X, Peng C, Qiu Y, Shi Y, Liu Y, Fei JF. Beyond External Light: On-Spot Light Generation or Light Delivery for Highly Penetrated Photodynamic Therapy. ACS NANO 2023; 17:20776-20803. [PMID: 37874930 DOI: 10.1021/acsnano.3c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
External light sources, such as lasers, light emitting diodes (LEDs) and lamps, are widely applied in photodynamic therapy (PDT); however, their use is severely limited by the nature of shallow tissue penetration depth. The recent exploration of light delivery or local generation on tumor sites has attracted much attention, owing to the fact that these systems are significantly endowed with high tissue penetration. In this review, we briefly introduced the principle of "on-spot light generation or delivery systems" in PDT. These systems are divided into different categories: (1) implantable luminescence, (2) mechanoluminescence, (3) electrochemiluminescence, (4) Cerenkov luminescence, (5) chemiluminescence, and (6) bioluminescence. Finally, their applications, advantages, and disadvantages in PDT will be appropriately summarized and further discussed in detail. We believe that this review will provide general guidance for the further design of light generation or delivery systems and clinical studies for PDT-mediated cancer treatments with unparalleled merits.
Collapse
Affiliation(s)
- Xiao Cui
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Xiang Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Cheng Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yuanhui Qiu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Ji-Feng Fei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
19
|
Hu J, Song E, Liu Y, Yang Q, Sun J, Chen J, Meng Y, Jia Y, Yu Z, Ran Y, Shao L, Shum PP. Fiber Laser-Based Lasso-Shaped Biosensor for High Precision Detection of Cancer Biomarker-CEACAM5 in Serum. BIOSENSORS 2023; 13:674. [PMID: 37504073 PMCID: PMC10377356 DOI: 10.3390/bios13070674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Detection of trace tumor markers in blood/serum is essential for the early screening and prognosis of cancer diseases, which requires high sensitivity and specificity of the assays and biosensors. A variety of label-free optical fiber-based biosensors has been developed and yielded great opportunities for Point-of-Care Testing (POCT) of cancer biomarkers. The fiber biosensor, however, suffers from a compromise between the responsivity and stability of the sensing signal, which would deteriorate the sensing performance. In addition, the sophistication of sensor preparation hinders the reproduction and scale-up fabrication. To address these issues, in this study, a straightforward lasso-shaped fiber laser biosensor was proposed for the specific determination of carcinoembryonic antigen (CEA)-related cell adhesion molecules 5 (CEACAM5) protein in serum. Due to the ultra-narrow linewidth of the laser, a very small variation of lasing signal caused by biomolecular bonding can be clearly distinguished via high-resolution spectral analysis. The limit of detection (LOD) of the proposed biosensor could reach 9.6 ng/mL according to the buffer test. The sensing capability was further validated by a human serum-based cancer diagnosis trial, enabling great potential for clinical use. The high reproduction of fabrication allowed the mass production of the sensor and extended its utility to a broader biosensing field.
Collapse
Affiliation(s)
- Jie Hu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Enlai Song
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Yuhui Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiaochu Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Junhui Sun
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinna Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yue Meng
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 511436, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, Faculty of Science and Technology-ECE, Faculty of Health Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Zhiguang Yu
- Medcaptain Medical Technology Co., Ltd., Shenzhen 518055, China
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Liyang Shao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Perry Ping Shum
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Zhu Y, Li Q, Wang C, Hao Y, Yang N, Chen M, Ji J, Feng L, Liu Z. Rational Design of Biomaterials to Potentiate Cancer Thermal Therapy. Chem Rev 2023. [PMID: 36912061 DOI: 10.1021/acs.chemrev.2c00822] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cancer thermal therapy, also known as hyperthermia therapy, has long been exploited to eradicate mass lesions that are now defined as cancer. With the development of corresponding technologies and equipment, local hyperthermia therapies such as radiofrequency ablation, microwave ablation, and high-intensity focused ultrasound, have has been validated to effectively ablate tumors in modern clinical practice. However, they still face many shortcomings, including nonspecific damages to adjacent normal tissues and incomplete ablation particularly for large tumors, restricting their wide clinical usage. Attributed to their versatile physiochemical properties, biomaterials have been specially designed to potentiate local hyperthermia treatments according to their unique working principles. Meanwhile, biomaterial-based delivery systems are able to bridge hyperthermia therapies with other types of treatment strategies such as chemotherapy, radiotherapy and immunotherapy. Therefore, in this review, we discuss recent progress in the development of functional biomaterials to reinforce local hyperthermia by functioning as thermal sensitizers to endow more efficient tumor-localized thermal ablation and/or as delivery vehicles to synergize with other therapeutic modalities for combined cancer treatments. Thereafter, we provide a critical perspective on the further development of biomaterial-assisted local hyperthermia toward clinical applications.
Collapse
Affiliation(s)
- Yujie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| |
Collapse
|
21
|
Zheng S, Chen M, Chen K, Wu Y, Yu J, Jiang T, Wu M. Solar-Light-Responsive Zinc-Air Battery with Self-Regulated Charge-Discharge Performance based on Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2985-2995. [PMID: 36622791 DOI: 10.1021/acsami.2c19663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is extremely challenging to significantly increase the voltaic efficiency, power density, and cycle stability of a Zn-air battery by just adjusting the catalytic performance of the cathode with nanometers/atomistic engineering because of the restriction of thermodynamic equilibrium potential. Herein, inspired by solar batteries, the S-atom-bridged FeNi particles and N-doped hollow carbon nanosphere composite configuration (FeNi-S,N-HCS) is presented as a prototype of muti-functional air electrode material (intrinsic electrocatalytic function and additional photothermal function) for designing photoresponsive all-solid-state Zn-air batteries (PR-ZABs) based on the photothermal effect. The local temperature of the FeNi-S,N-HCS electrode can well respond to the stimuli of sunlight irradiation because of their superior photothermal effect. As expected, under illumination, the power density of the as-fabricated PR-ZABs based on the FeNi-S,N-HCS electrode can be improved from 77 mW cm-2 to 126 mW cm-2. Simultaneously, charge voltage can be dramatically reduced, and cycle lifetime is also prolonged under illumination, because of the expedited electrocatalytic kinetics, the increased electrical conductivity, and the accelerated desorption rate of O2 bubbles from the electrode. By exerting the intrinsic electrocatalytic and photothermal efficiency of the electrode materials, this research paves new ways to improve battery performance from kinetic and thermodynamic perspectives.
Collapse
Affiliation(s)
- Shushan Zheng
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
- Institute of Energy, Hefei Comprehensive Nation Science Center, Hefei, Anhui 230031, P.R. China
| | - Mengyu Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Kui Chen
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Yongjian Wu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, P. R. China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Mingzai Wu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
- Institute of Energy, Hefei Comprehensive Nation Science Center, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
22
|
Zhou C, Lin Z, Huang S, Li B, Gao A. Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis. BIOSENSORS 2022; 12:943. [PMID: 36354452 PMCID: PMC9688418 DOI: 10.3390/bios12110943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Advancements in robotic surgery help to improve the endoluminal diagnosis and treatment with minimally invasive or non-invasive intervention in a precise and safe manner. Miniaturized probe-based sensors can be used to obtain information about endoluminal anatomy, and they can be integrated with medical robots to augment the convenience of robotic operations. The tremendous benefit of having this physiological information during the intervention has led to the development of a variety of in vivo sensing technologies over the past decades. In this paper, we review the probe-based sensing techniques for the in vivo physical and biochemical sensing in China in recent years, especially on in vivo force sensing, temperature sensing, optical coherence tomography/photoacoustic/ultrasound imaging, chemical sensing, and biomarker sensing.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zecai Lin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoping Huang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Li
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Wang Q, Li F, Yang H, Wang Y, Ding W, Dai F, Wei L, Cao S, Song W. Simultaneous self-supply of H 2O 2 and GSH-depleted intracellular oxidative stress for enhanced photodynamic/photothermal/chemodynamic therapy. Chem Commun (Camb) 2022; 58:8536-8539. [PMID: 35811481 DOI: 10.1039/d2cc02961h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein, we designed a new nanoplatform for combined PDT/PTT/CDT through simultaneously self-supplying H2O2 and depleting GSH using one single laser irradiation. The nanoplatform was capable of generating multiple reactive oxygen species (ROS), such as 1O2, O2-˙ and ˙OH, resulting in cell death. Moreover, the nanoplatform demonstrated low dark toxicity, high phototoxicity and better biosafety. In vivo animal experiments showed that the tumor growth was efficiently inhibited.
Collapse
Affiliation(s)
- Qian Wang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China.
| | - Fahui Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China.
| | - Hekai Yang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China.
| | - Ying Wang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China.
| | - Wenshuo Ding
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China.
| | - Fengxu Dai
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China.
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China.
| | - Shuhua Cao
- College of Chemistry, Chemical and Environmental Engineering, Weifang University, Weifang, 261061, China.
| | - Weiguo Song
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|