1
|
Mu Y, Ma L, Yao J, Luo D, Ding X. Bioengineered Extracellular Vesicle Hydrogel Modulating Inflammatory Microenvironment for Wound Management. Int J Mol Sci 2024; 25:13093. [PMID: 39684803 DOI: 10.3390/ijms252313093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic wounds, frequently arising from conditions like diabetes, trauma, or chronic inflammation, represent a significant medical challenge due to persistent inflammation, heightened infection risk, and limited treatment solutions. This study presents a novel bioengineered approach to promote tissue repair and improve the healing environment. We developed a bioactive hydrogel patch, encapsulated zeolitic imidazolate framework-8 (ZIF-8) into extracellular vesicles (EVs) derived from anti-inflammatory M2 macrophages, and synthesized ZIF@EV, then embedded it in the sodium alginate matrix. This hydrogel structure enables the controlled release of therapeutic agents directly into the wound site, where it stimulates endothelial cell proliferation and promotes new blood vessel formation. These processes are key components of effective tissue regeneration. Crucially, the EV-infused patch influences the immune response by polarizing macrophages towards an M2 phenotype, shifting the wound environment from inflammation toward regenerative healing. When applied in a murine model of chronic wounds, the EV hydrogel patch demonstrated notable improvements in healing speed, quality, and tissue integration compared to traditional approaches such as growth factor therapies and foam dressings. These promising findings suggest that this bioactive hydrogel patch could serve as a versatile, practical solution for chronic wound management, providing an adaptable platform that addresses both the biological and logistical needs of wound care in clinical settings.
Collapse
Affiliation(s)
- Yunfei Mu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Liwen Ma
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing 211100, China
| | - Jia Yao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Dan Luo
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing 211100, China
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Choromańska A, Szwedowicz U, Szewczyk A, Daczewska M, Saczko J, Kruszakin R, Pawlik KJ, Baczyńska D, Kulbacka J. Electroporation-derived melanoma extracellular particles activate fibroblasts. Biochim Biophys Acta Gen Subj 2024; 1868:130723. [PMID: 39426760 DOI: 10.1016/j.bbagen.2024.130723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Although the pulse electric field (PEF) has been used in electrochemotherapy (ECT) for many years, the kinetics and profile of extracellular particles (EPs) released as a result of reversible electroporation have yet to be studied. It also needs to be clarified whether and how the profile of released EPs depends on the parameters of the applied PEF. The presented studies investigated the effect of EPs released from human melanoma cells after various parameters of reversible electroporation on markers indicating EP-mediated transformation of normal fibroblasts into tumor-associated fibroblasts. The expression levels of the vascular cell adhesion molecule-1 (VCAM-1) and changes in the expression of phosphor-histone H3 (pHH3), a biomarker specific for cells in mitosis, cell viability, and the migration capacity of the studied fibroblast cells, were analyzed. EPs were isolated from two commercial malignant melanoma cell lines previously subjected to reversible electroporation. Human primary fibroblasts (HPFs) were selected for EPs exposure. It was observed that after incubation with melanoma-derived EPs, HPFs showed differences in cell viability, migration capacity, VCAM-1, pHH3, and N-cadherin expression, depending on PEF parameters and the grade of melanoma cells. This study highlights that small extracellular particles (sEPs) from cancer cells can promote metastasis by carrying specific signals that lead to the upregulation of molecules like FAK, MMP-9, and N-cadherin in recipient cells.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Roksana Kruszakin
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Krzysztof J Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
3
|
Li M, Wu H, Gao K, Wang Y, Hu J, Guo Z, Hu R, Zhang M, Pang X, Guo M, Liu Y, Zhao L, He W, Ding S, Li W, Cheng W. Smart Implantable Hydrogel for Large Segmental Bone Regeneration. Adv Healthc Mater 2024; 13:e2402916. [PMID: 39344873 DOI: 10.1002/adhm.202402916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Large segmental bone defects often lead to nonunion and dysfunction, posing a significant challenge for clinicians. Inspired by the intrinsic bone defect repair logic of "vascularization and then osteogenesis", this study originally reports a smart implantable hydrogel (PDS-DC) with high mechanical properties, controllable scaffold degradation, and timing drug release that can proactively match different bone healing cycles to efficiently promote bone regeneration. The main scaffold of PDS-DC consists of polyacrylamide, polydopamine, and silk fibroin, which endows it with superior interfacial adhesion, structural toughness, and mechanical stiffness. In particular, the adjustment of scaffold cross-linking agent mixing ratio can effectively regulate the in vivo degradation rate of PDS-DC and intelligently satisfy the requirements of different bone defect healing cycles. Ultimately, PDS hydrogel loaded with free desferrioxamine (DFO) and CaCO3 mineralized ZIF-90 loaded bone morphogenetic protein-2 (BMP-2) to stimulate efficient angiogenesis and osteogenesis. Notably, DFO is released rapidly by free diffusion, whereas BMP-2 is released slowly by pH-dependent layer-by-layer disintegration, resulting in a significant difference in release time, thus matching the intrinsic logic of bone defect repair. In vivo and in vitro results confirm that PDS-DC can effectively realize high-quality bone generation and intelligently regulate to adapt to different demands of bone defects.
Collapse
Affiliation(s)
- Menghan Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Haiping Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Ke Gao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yubo Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Jiaqi Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Ziling Guo
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing Key Laboratory of Forensic Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Ruiwei Hu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Mengxuan Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Minghui Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yuanjie Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Lina Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Wen He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Wenyang Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
4
|
Yadav S, Maity P, Kapat K. The Opportunities and Challenges of Mesenchymal Stem Cells-Derived Exosomes in Theranostics and Regenerative Medicine. Cells 2024; 13:1956. [PMID: 39682706 DOI: 10.3390/cells13231956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Cell-secreted nanovesicles of endosomal origin, called exosomes, are vital for mediating intracellular communication. As local or distal transporters of intracellular cargo, they reflect the unique characteristics of secretory cells and establish cell-specific interactions via characteristic surface proteins and receptors. With the advent of rapid isolation, purification, and identification techniques, exosomes have become an attractive choice for disease diagnosis (exosomal content as biomarkers), cell-free therapy, and tissue regeneration. Mesenchymal stem cell (MSC)-derived exosomes (MSC-exosomes) display angiogenic, immune-modulatory, and other therapeutic effects crucial for cytoprotection, ischemic wound repair, myocardial regeneration, etc. The primary focus of this review is to highlight the widespread application of MSC-exosomes in therapeutics, theranostics, and tissue regeneration. After a brief introduction of exosome properties, biogenesis, isolation, and functions, recent studies on therapeutic and regenerative applications of MSC-exosomes are described, focusing on bone, cartilage, periodontal, cardiovascular, skin, and nerve regeneration. Finally, the review highlights the theranostic potential of exosomes followed by challenges, summary, and outlook.
Collapse
Affiliation(s)
- Sachin Yadav
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Pritiprasanna Maity
- School of Medicine, University of California Riverside, Riverside, CA 92525, USA
| | - Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| |
Collapse
|
5
|
Deng L, Liu Y, Wu Q, Lai S, Yang Q, Mu Y, Dong M. Exosomes to exosome-functionalized scaffolds: a novel approach to stimulate bone regeneration. Stem Cell Res Ther 2024; 15:407. [PMID: 39521993 PMCID: PMC11550564 DOI: 10.1186/s13287-024-04024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bone regeneration is a complex biological process that relies on the orchestrated interplay of various cellular and molecular events. Bone tissue engineering is currently the most promising method for treating bone regeneration. However, the immunogenicity, stable and cell quantity of seed cells limited their application. Recently, exosomes, which are small extracellular vesicles released by cells, have been found to effectively address these problems and better induce bone regeneration. Meanwhile, a growing line of research has shown the cargos of exosomes may provide effective therapeutic and biomarker tools for bone repair, including miRNA, lncRNA, and proteins. Moreover, engineered scaffolds loaded with exosomes can offer a cell-free bone repair strategy, addressing immunogenicity concerns and providing a more stable functional performance. Herein, we provide a comprehensive summary of the role played by scaffolds loaded with exosomes in bone regeneration, drawing on a systematic analysis of relevant literature available on PubMed, Scopus, and Google Scholar database.
Collapse
Affiliation(s)
- Li Deng
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yang Liu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Qian Wu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China.
| |
Collapse
|
6
|
Brezgin S, Danilik O, Yudaeva A, Kachanov A, Kostyusheva A, Karandashov I, Ponomareva N, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. Basic Guide for Approaching Drug Delivery with Extracellular Vesicles. Int J Mol Sci 2024; 25:10401. [PMID: 39408730 PMCID: PMC11476574 DOI: 10.3390/ijms251910401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are natural carriers of biomolecules that play a crucial role in cell-to-cell communication and tissue homeostasis under normal and pathological conditions, including inflammatory diseases and cancer. Since the discovery of the pro-regenerative and immune-modulating properties of EVs, EV-based therapeutics have entered clinical trials for conditions such as myocardial infarction and autoimmune diseases, among others. Due to their unique advantages-such as superior bioavailability, substantial packaging capacity, and the ability to traverse biological barriers-EVs are regarded as a promising platform for targeted drug delivery. However, achieving a sufficient accumulation of therapeutic agents at the target site necessitates a larger quantity of EVs per dose compared to using EVs as standalone drugs. This challenge can be addressed by administering larger doses of EVs, increasing the drug dosage per administration, or enhancing the selective accumulation of EVs at target cells. In this review, we will discuss methods to improve the isolation and purification of EVs, approaches to enhance cargo packaging-including proteins, RNAs, and small-molecule drugs-and technologies for displaying targeting ligands on the surface of EVs to facilitate improved targeting. Ultimately, this guide can be applied to the development of novel classes of EV-based therapeutics and to overcoming existing technological challenges.
Collapse
Affiliation(s)
- Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
7
|
Ma Y, Dong S, Grippin AJ, Teng L, Lee AS, Kim BYS, Jiang W. Engineering therapeutical extracellular vesicles for clinical translation. Trends Biotechnol 2024:S0167-7799(24)00218-X. [PMID: 39227240 DOI: 10.1016/j.tibtech.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Cell-based therapies are revolutionizing medicine by replacing or modifying dysfunctional cells with healthy cells or engineered derivatives, offering disease reversal and cure. One promising approach is using cell-derived extracellular vesicles (EVs), which offer therapeutic benefits similar to cell transplants without the biosafety risks. Although EV applications face challenges like limited production, inadequate therapeutic loading, and poor targeting efficiency, recent advances in bioengineering have enhanced their effectiveness. Herein, we summarize technological breakthroughs in EV bioengineering over the past 5 years, highlighting their improved therapeutic functionalities and potential clinical prospects. We also discuss biomanufacturing processes, regulation, and safety considerations for bioengineered EV therapies, emphasizing the significance of establishing robust frameworks to ensure translation capability, safety, and therapeutic effectiveness for successful clinical adoption.
Collapse
Affiliation(s)
- Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Andrew S Lee
- Peking University Shenzhen Graduate School, Shenzhen, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Zhao W, Li K, Li L, Wang R, Lei Y, Yang H, Sun L. Mesenchymal Stem Cell-Derived Exosomes as Drug Delivery Vehicles in Disease Therapy. Int J Mol Sci 2024; 25:7715. [PMID: 39062956 PMCID: PMC11277139 DOI: 10.3390/ijms25147715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs.
Collapse
Affiliation(s)
- Wenzhe Zhao
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Kaixuan Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Liangbo Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Ruichen Wang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Hui Yang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
| | - Leming Sun
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| |
Collapse
|
9
|
Souza ILM, Suzukawa AA, Josino R, Marcon BH, Robert AW, Shigunov P, Correa A, Stimamiglio MA. Cellular In Vitro Responses Induced by Human Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles Obtained from Suspension Culture. Int J Mol Sci 2024; 25:7605. [PMID: 39062847 PMCID: PMC11277484 DOI: 10.3390/ijms25147605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have been described to have important roles in tissue regeneration, including tissue repair, control of inflammation, enhancing angiogenesis, and regulating extracellular matrix remodeling. MSC-EVs have many advantages for use in regeneration therapies such as facility for dosage, histocompatibility, and low immunogenicity, thus possessing a lower possibility of rejection. In this work, we address the potential activity of MSC-EVs isolated from adipose-derived MSCs (ADMSC-EVs) cultured on cross-linked dextran microcarriers, applied to test the scalability and reproducibility of EV production. Isolated ADMSC-EVs were added into cultured human dermal fibroblasts (NHDF-1), keratinocytes (HaCat), endothelial cells (HUVEC), and THP-1 cell-derived macrophages to evaluate cellular responses (i.e., cell proliferation, cell migration, angiogenesis induction, and macrophage phenotype-switching). ADMSC viability and phenotype were assessed during cell culture and isolated ADMSC-EVs were monitored by nanotracking particle analysis, electron microscopy, and immunophenotyping. We observed an enhancement of HaCat proliferation; NHDF-1 and HaCat migration; endothelial tube formation on HUVEC; and the expression of inflammatory cytokines in THP-1-derived macrophages. The increased expression of TGF-β and IL-1β was observed in M1 macrophages treated with higher doses of ADMSC-EVs. Hence, EVs from microcarrier-cultivated ADMSCs are shown to modulate cell behavior, being able to induce skin tissue related cells to migrate and proliferate as well as stimulate angiogenesis and cause balance between pro- and anti-inflammatory responses in macrophages. Based on these findings, we suggest that the isolation of EVs from ADMSC suspension cultures makes it possible to induce in vitro cellular responses of interest and obtain sufficient particle numbers for the development of in vivo concept tests for tissue regeneration studies.
Collapse
Affiliation(s)
- Ingrid L. M. Souza
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Andreia A. Suzukawa
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Raphaella Josino
- Albert Einstein Israelite Hospital, São Paulo 05652-900, SP, Brazil
| | - Bruna H. Marcon
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
- Confocal and Electronic Microscopy Facility (RPT07C), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil
| | - Anny W. Robert
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
- Confocal and Electronic Microscopy Facility (RPT07C), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil
| | - Patrícia Shigunov
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| | - Marco A. Stimamiglio
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, PR, Brazil (A.A.S.); (B.H.M.); (A.W.R.); (P.S.)
| |
Collapse
|
10
|
Yang Y, Chen H, Li Y, Liang J, Huang F, Wang L, Miao H, Nanda HS, Wu J, Peng X, Zhou Y. Hydrogel Loaded with Extracellular Vesicles: An Emerging Strategy for Wound Healing. Pharmaceuticals (Basel) 2024; 17:923. [PMID: 39065772 PMCID: PMC11280375 DOI: 10.3390/ph17070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
An increasing number of novel biomaterials have been applied in wound healing therapy. Creating beneficial environments and containing various bioactive molecules, hydrogel- and extracellular vesicle (EV)-based therapies have respectively emerged as effective approaches for wound healing. Moreover, the synergistic combination of these two components demonstrates more favorable outcomes in both chronic and acute wound healing. This review provides a comprehensive discussion and summary of the combined application of EVs and hydrogels to address the intricate scenario of wounds. The wound healing process and related biological mechanisms are outlined in the first section. Subsequently, the utilization of EV-loaded hydrogels during the wound healing process is evaluated and discussed. The moist environment created by hydrogels is conducive to wound tissue regeneration. Additionally, the continuous and controlled release of EVs from various origins could be achieved by hydrogel encapsulation. Finally, recent in vitro and in vivo studies reported on hydrogel dressings loaded with EVs are summarized and challenges and opportunities for the future clinical application of this therapeutic approach are outlined.
Collapse
Affiliation(s)
- Yucan Yang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Huizhi Chen
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yunjie Li
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Junting Liang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Feng Huang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Liyan Wang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Huilai Miao
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, Madhya Pradesh, India;
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xinsheng Peng
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yubin Zhou
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
11
|
Choudhery MS, Arif T, Mahmood R, Harris DT. Stem Cell-Based Acellular Therapy: Insight into Biogenesis, Bioengineering and Therapeutic Applications of Exosomes. Biomolecules 2024; 14:792. [PMID: 39062506 PMCID: PMC11275160 DOI: 10.3390/biom14070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The vast regenerative potential of stem cells has laid the foundation for stem cell-based therapies. However, certain challenges limit the application of cell-based therapies. The therapeutic use of cell-free therapy can avoid limitations associated with cell-based therapies. Acellular stem cell-based therapies rely on the use of biological factors released by stem cells, including growth factors and extracellular vesicles such as exosomes. Due to their comparable regenerative potential, acellular therapies may provide a feasible and scalable alternative to stem cell-based therapies. Exosomes are small vesicles secreted by various types of cells, including stem cells. Exosomes contain parent cell-derived nucleic acids, proteins, lipids, and other bioactive molecules. They play an important role in intra-cellular communication and influence the biological characteristics of cells. Exosomes inherit the properties of their parent cells; therefore, stem cell-derived exosomes are of particular interest for applications of regenerative medicine. In comparison to stem cell-based therapy, exosome therapy offers several benefits, such as easy transport and storage, no risk of immunological rejection, and few ethical dilemmas. Unlike stem cells, exosomes can be lyophilized and stored off-the-shelf, making acellular therapies standardized and more accessible while reducing overall treatment costs. Exosome-based acellular treatments are therefore readily available for applications in patients at the time of care. The current review discusses the use of exosomes as an acellular therapy. The review explores the molecular mechanism of exosome biogenesis, various methods for exosome isolation, and characterization. In addition, the latest advancements in bioengineering techniques to enhance exosome potential for acellular therapies have been discussed. The challenges in the use of exosomes as well as their diverse applications for the diagnosis and treatment of diseases have been reviewed in detail.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan; (M.S.C.); (T.A.)
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan; (M.S.C.); (T.A.)
| | - Ruhma Mahmood
- Allama Iqbal Medical College, Jinnah Hospital, Lahore 54700, Pakistan;
| | - David T. Harris
- Department of Immunobiology, College of Medicine, University of Arizona Health Sciences Biorepository, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Sun H, Yu L, Chen Y, Yang H, Sun L. Analysis of In Situ Electroporation Utilizing Induced Electric Field at a Wireless Janus Microelectrode. MICROMACHINES 2024; 15:819. [PMID: 39064330 PMCID: PMC11279304 DOI: 10.3390/mi15070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In situ electroporation, a non-invasive technique for enhancing the permeability of cell membranes, has emerged as a powerful tool for intracellular delivery and manipulation. This method allows for the precise introduction of therapeutic agents, such as nucleic acids, drugs, and proteins, directly into target cells within their native tissue environment. Herein, we introduce an innovative electroporation strategy that employs a Janus particle (JP)-based microelectrode to generate a localized and controllable electric field within a microfluidic chip. The microfluidic device is engineered with an indium tin oxide (ITO)-sandwiched microchannel, where the electric field is applied, and suspended JP microelectrodes that induce a stronger localized electric field. The corresponding simulation model is developed to better understand the dynamic electroporation process. Numerical simulations for both single-cell and chain-assembled cell electroporation have been successfully conducted. The effects of various parameters, including pulse voltage, duration medium conductivity, and radius of Janus microelectrode, on cell membrane permeabilization are systematically investigated. Our findings indicate that the enhanced electric intensity near the poles of the JP microelectrode significantly contributes to the electroporation process. In addition, the distribution for both transmembrane voltage and the resultant nanopores can be altered by conveniently adjusting the relative position of the JP microelectrode, demonstrating a selective and in situ electroporation technique for spatial control over the delivery area. Moreover, the obtained differences in the distribution of electroporation between chain cells can offer insightful directives for the electroporation of tissues or cell populations, enabling the precise and targeted modulation of specific cell populations. As a proof of concept, this work can provide a robust alternative technique for the study of complex and personalized cellular processes.
Collapse
Affiliation(s)
- Haizhen Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Linkai Yu
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Yifan Chen
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Hao Yang
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Lining Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
14
|
Stawarska A, Bamburowicz-Klimkowska M, Runden-Pran E, Dusinska M, Cimpan MR, Rios-Mondragon I, Grudzinski IP. Extracellular Vesicles as Next-Generation Diagnostics and Advanced Therapy Medicinal Products. Int J Mol Sci 2024; 25:6533. [PMID: 38928240 PMCID: PMC11204223 DOI: 10.3390/ijms25126533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Extracellular vesicles (EVs) hold great promise for clinical application as new diagnostic and therapeutic modalities. This paper describes major GMP-based upstream and downstream manufacturing processes for EV large-scale production, also focusing on post-processing technologies such as surface bioengineering and uploading studies to yield novel EV-based diagnostics and advanced therapy medicinal products. This paper also focuses on the quality, safety, and efficacy issues of the bioengineered EV drug candidates before first-in-human studies. Because clinical trials involving extracellular vesicles are on the global rise, this paper encompasses different clinical studies registered on clinical-trial register platforms, with varying levels of advancement, highlighting the growing interest in EV-related clinical programs. Navigating the regulatory affairs of EVs poses real challenges, and obtaining marketing authorization for EV-based medicines remains complex due to the lack of specific regulatory guidelines for such novel products. This paper discusses the state-of-the-art regulatory knowledge to date on EV-based diagnostics and medicinal products, highlighting further research and global regulatory needs for the safe and reliable implementation of bioengineered EVs as diagnostic and therapeutic tools in clinical settings. Post-marketing pharmacovigilance for EV-based medicinal products is also presented, mainly addressing such topics as risk assessment and risk management.
Collapse
Affiliation(s)
- Agnieszka Stawarska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Magdalena Bamburowicz-Klimkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Elise Runden-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Mihaela Roxana Cimpan
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ivan Rios-Mondragon
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ireneusz P. Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| |
Collapse
|
15
|
Liu F, Su R, Jiang X, Wang S, Mu W, Chang L. Advanced micro/nano-electroporation for gene therapy: recent advances and future outlook. NANOSCALE 2024; 16:10500-10521. [PMID: 38757536 DOI: 10.1039/d4nr01408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Gene therapy is a promising disease treatment approach by editing target genes, and thus plays a fundamental role in precision medicine. To ensure gene therapy efficacy, the effective delivery of therapeutic genes into specific cells is a key challenge. Electroporation utilizes short electric pulses to physically break the cell membrane barrier, allowing gene transfer into the cells. It dodges the off-target risks associated with viral vectors, and also stands out from other physical-based gene delivery methods with its high-throughput and cargo-accelerating features. In recent years, with the help of advanced micro/nanotechnology, micro/nanostructure-integrated electroporation (micro/nano-electroporation) techniques and devices have significantly improved cell viability, transfection efficiency and dose controllability of the electroporation strategy, enhancing its application practicality especially in vivo. This technical advancement makes micro/nano-electroporation an effective and versatile tool for gene therapy. In this review, we first introduce the evolution of electroporation technique with a brief explanation of the perforation mechanism, and then provide an overview of the recent advancements and prospects of micro/nano-electroporation technology in the field of gene therapy. To comprehensively showcase the latest developments of micro/nano-electroporation technology in gene therapy, we focus on discussing micro/nano-electroporation devices and current applications at both in vitro and in vivo levels. Additionally, we outline the ongoing clinical studies of gene electrotransfer (GET), revealing the tremendous potential of electroporation-based gene delivery in disease treatment and healthcare. Lastly, the challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Rongtai Su
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Siqi Wang
- Department of General Surgery and Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Mu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
16
|
Manganelli V, Dini L, Tacconi S, Dinarelli S, Capozzi A, Riitano G, Recalchi S, Caglar TR, Fratini F, Misasi R, Sorice M, Garofalo T. Autophagy Promotes Enrichment of Raft Components within Extracellular Vesicles Secreted by Human 2FTGH Cells. Int J Mol Sci 2024; 25:6175. [PMID: 38892363 PMCID: PMC11172899 DOI: 10.3390/ijms25116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Autophagy plays a key role in removing protein aggregates and damaged organelles. In addition to its conventional degradative functions, autophagy machinery contributes to the release of cytosolic proteins through an unconventional secretion pathway. In this research, we analyzed autophagy-induced extracellular vesicles (EVs) in HT1080-derived human fibrosarcoma 2FTGH cells using transmission electron microscopy and atomic force microscopy (AFM). We preliminary observed that autophagy induces the formation of a subset of large heterogeneous intracellular vesicular structures. Moreover, AFM showed that autophagy triggering led to a more visible smooth cell surface with a reduced amount of plasma membrane protrusions. Next, we characterized EVs secreted by cells following autophagy induction, demonstrating that cells release both plasma membrane-derived microvesicles and exosomes. A self-forming iodixanol gradient was performed for cell subfractionation. Western blot analysis showed that endogenous LC3-II co-fractionated with CD63 and CD81. Then, we analyzed whether raft components are enriched within EV cargoes following autophagy triggering. We observed that the raft marker GD3 and ER marker ERLIN1 co-fractionated with LC3-II; dual staining by immunogold electron microscopy and coimmunoprecipitation revealed GD3-LC3-II association, indicating that autophagy promotes enrichment of raft components within EVs. Introducing a new brick in the crosstalk between autophagy and the endolysosomal system may have important implications for the knowledge of pathogenic mechanisms, suggesting alternative raft target therapies in diseases in which the generation of EV is active.
Collapse
Affiliation(s)
- Valeria Manganelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Luciana Dini
- Department of Biology and Biotechnology C. Darwin, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060-INRAE 1397, Department of Human Nutrition, Lyon Sud Hospital, University of Lyon, 69310 Lyon, France;
| | - Simone Dinarelli
- Institute for the Structure of Matter (ISM), National Research Council (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Antonella Capozzi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Serena Recalchi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Tuba Rana Caglar
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Federica Fratini
- Proteomics Core Facility, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| |
Collapse
|
17
|
Papadopoulos KS, Piperi C, Korkolopoulou P. Clinical Applications of Adipose-Derived Stem Cell (ADSC) Exosomes in Tissue Regeneration. Int J Mol Sci 2024; 25:5916. [PMID: 38892103 PMCID: PMC11172884 DOI: 10.3390/ijms25115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are mesenchymal stem cells with a great potential for self-renewal and differentiation. Exosomes derived from ADSCs (ADSC-exos) can imitate their functions, carrying cargoes of bioactive molecules that may affect specific cellular targets and signaling processes. Recent evidence has shown that ADSC-exos can mediate tissue regeneration through the regulation of the inflammatory response, enhancement of cell proliferation, and induction of angiogenesis. At the same time, they may promote wound healing as well as the remodeling of the extracellular matrix. In combination with scaffolds, they present the future of cell-free therapies and promising adjuncts to reconstructive surgery with diverse tissue-specific functions and minimal adverse effects. In this review, we address the main characteristics and functional properties of ADSC-exos in tissue regeneration and explore their most recent clinical application in wound healing, musculoskeletal regeneration, dermatology, and plastic surgery as well as in tissue engineering.
Collapse
Affiliation(s)
- Konstantinos S. Papadopoulos
- Department of Plastic and Reconstructive Surgery, 401 General Military Hospital of Athens, 11525 Athens, Greece;
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
18
|
Porcu C, Dobrowolny G, Scicchitano BM. Exploring the Role of Extracellular Vesicles in Skeletal Muscle Regeneration. Int J Mol Sci 2024; 25:5811. [PMID: 38892005 PMCID: PMC11171935 DOI: 10.3390/ijms25115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Skeletal muscle regeneration entails a multifaceted process marked by distinct phases, encompassing inflammation, regeneration, and remodeling. The coordination of these phases hinges upon precise intercellular communication orchestrated by diverse cell types and signaling molecules. Recent focus has turned towards extracellular vesicles (EVs), particularly small EVs, as pivotal mediators facilitating intercellular communication throughout muscle regeneration. Notably, injured muscle provokes the release of EVs originating from myofibers and various cell types, including mesenchymal stem cells, satellite cells, and immune cells such as M2 macrophages, which exhibit anti-inflammatory and promyogenic properties. EVs harbor a specific cargo comprising functional proteins, lipids, and nucleic acids, including microRNAs (miRNAs), which intricately regulate gene expression in target cells and activate downstream pathways crucial for skeletal muscle homeostasis and repair. Furthermore, EVs foster angiogenesis, muscle reinnervation, and extracellular matrix remodeling, thereby modulating the tissue microenvironment and promoting effective tissue regeneration. This review consolidates the current understanding on EVs released by cells and damaged tissues throughout various phases of muscle regeneration with a focus on EV cargo, providing new insights on potential therapeutic interventions to mitigate muscle-related pathologies.
Collapse
Affiliation(s)
- Cristiana Porcu
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy;
| | - Gabriella Dobrowolny
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy;
| | - Bianca Maria Scicchitano
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| |
Collapse
|
19
|
Chen X, Yang N, Li B, Gao X, Wang Y, Wang Q, Liu X, Zhang Z, Zhang R. Visualization Analysis of Small Extracellular Vesicles in the Application of Bone-Related Diseases. Cells 2024; 13:904. [PMID: 38891036 PMCID: PMC11171653 DOI: 10.3390/cells13110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Small extracellular vesicles were shown to have similar functional roles to their parent cells without the defect of potential tumorigenicity, which made them a great candidate for regenerative medicine. The last twenty years have witnessed the rapid development of research on small extracellular vesicles. In this paper, we employed a scientometric synthesis method to conduct a retrospective analysis of small extracellular vesicles in the field of bone-related diseases. The overall background analysis consisted the visualization of the countries, institutions, journals, and authors involved in research. The current status of the research direction and future trends were presented through the analysis of references and keywords, which showed that engineering strategies, mesenchymal stem cell derived exosomes, and cartilage damage were the most concerning topics, and scaffold, osteoarthritis, platelet-rich plasma, and senescence were the future trends. We also discussed the current problems and challenges in practical applications, including the in-sight mechanisms, the building of relevant animal models, and the problems in clinical trials. By using CiteSpace, VOSviewer, and Bibliometrix, the presented data avoided subjective selectivity and tendency well, which made the conclusion more reliable and comprehensive. We hope that the findings can provide new perspectives for researchers to understand the evolution of this field over time and to search for novel research directions.
Collapse
Affiliation(s)
- Xinjiani Chen
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Yang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
| | - Bailei Li
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinyu Gao
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
| | - Yayu Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
| | - Zhen Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
| | - Rongqing Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
| |
Collapse
|
20
|
Lange M, Babczyk P, Tobiasch E. Exosomes: A New Hope for Angiogenesis-Mediated Bone Regeneration. Int J Mol Sci 2024; 25:5204. [PMID: 38791243 PMCID: PMC11120942 DOI: 10.3390/ijms25105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Bone is a metabolically dynamic structure that is generally remodeled throughout the lifetime of an individual but often causes problems with increasing age. A key player for bone development and homeostasis, but also under pathological conditions, is the bone vasculature. This complex system of arteries, veins, and capillaries forms distinct structures where each subset of endothelial cells has important functions. Starting with the basic process of angiogenesis and bone-specific blood vessel formation, coupled with initial bone formation, the importance of different vascular structures is highlighted with respect to how these structures are maintained or changed during homeostasis, aging, and pathological conditions. After exemplifying the current knowledge on bone vasculature, this review will move on to exosomes, a novel hotspot of scientific research. Exosomes will be introduced starting from their discovery via current isolation procedures and state-of-the-art characterization to their role in bone vascular development, homeostasis, and bone regeneration and repair while summarizing the underlying signal transduction pathways. With respect to their role in these processes, especially mesenchymal stem cell-derived extracellular vesicles are of interest, which leads to a discussion on patented applications and an update on ongoing clinical trials. Taken together, this review provides an overview of bone vasculature and bone regeneration, with a major focus on how exosomes influence this intricate system, as they might be useful for therapeutic purposes in the near future.
Collapse
Affiliation(s)
- Martin Lange
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Patrick Babczyk
- Department of Natural Sciences, University Bonn-Rhein-Sieg, D-53559 Rheinbach, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, University Bonn-Rhein-Sieg, D-53559 Rheinbach, Germany
| |
Collapse
|
21
|
Sun L, Niu H, Wu Y, Dong S, Li X, Kim BY, Liu C, Ma Y, Jiang W, Yuan Y. Bio-integrated scaffold facilitates large bone regeneration dominated by endochondral ossification. Bioact Mater 2024; 35:208-227. [PMID: 38327823 PMCID: PMC10847751 DOI: 10.1016/j.bioactmat.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Repair of large bone defects caused by severe trauma, non-union fractures, or tumor resection remains challenging because of limited regenerative ability. Typically, these defects heal through mixed routines, including intramembranous ossification (IMO) and endochondral ossification (ECO), with ECO considered more efficient. Current strategies to promote large bone healing via ECO are unstable and require high-dose growth factors or complex cell therapy that cause side effects and raise expense while providing only limited benefit. Herein, we report a bio-integrated scaffold capable of initiating an early hypoxia microenvironment with controllable release of low-dose recombinant bone morphogenetic protein-2 (rhBMP-2), aiming to induce ECO-dominated repair. Specifically, we apply a mesoporous structure to accelerate iron chelation, this promoting early chondrogenesis via deferoxamine (DFO)-induced hypoxia-inducible factor-1α (HIF-1α). Through the delicate segmentation of click-crosslinked PEGylated Poly (glycerol sebacate) (PEGS) layers, we achieve programmed release of low-dose rhBMP-2, which can facilitate cartilage-to-bone transformation while reducing side effect risks. We demonstrate this system can strengthen the ECO healing and convert mixed or mixed or IMO-guided routes to ECO-dominated approach in large-size models with clinical relevance. Collectively, these findings demonstrate a biomaterial-based strategy for driving ECO-dominated healing, paving a promising pave towards its clinical use in addressing large bone defects.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haoyi Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuqiong Wu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Shiyan Dong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y.S. Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
22
|
Singh G, Mehra A, Arora S, Gugulothu D, Vora LK, Prasad R, Khatri DK. Exosome-mediated delivery and regulation in neurological disease progression. Int J Biol Macromol 2024; 264:130728. [PMID: 38467209 DOI: 10.1016/j.ijbiomac.2024.130728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Exosomes (EXOs), membranous structures originating from diverse biological sources, have recently seized the attention of researchers due to their theranostic potential for neurological diseases. Released actively by various cells, including stem cells, adipose tissue, and immune cells, EXOs wield substantial regulatory influence over the intricate landscape of neurological complications, exhibiting both positive and negative modulatory effects. In AD, EXOs play a pivotal role in disseminating and breaking down amyloid-β protein. Moreover, EXOs derived from mesenchymal stem cells showcase a remarkable capacity to mitigate pro-inflammatory phenotypes by regulating miRNAs in neurodegenerative diseases. These vesicles possess the unique ability to traverse the blood-brain barrier, governing the aggregation of mutant huntingtin protein. Understanding the exosomal functions within the CNS holds significant promise for enhancing treatment efficacy in neurological diseases. This review intricately examines the regulatory mechanisms involving EXOs in neurological disease development, highlighting therapeutic prospects and exploring their utility in exosome-based nanomedicine for various neurological complications. Additionally, the review highlights the challenges associated with drug delivery to the brain, emphasizing the complexities inherent in this critical aspect of neurotherapeutics.
Collapse
Affiliation(s)
- Gurpreet Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, India
| | - Ankit Mehra
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, India
| | - Sanchit Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), M.B. Road, Pushp Vihar, Sector-3, New Delhi 110017, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), M.B. Road, Pushp Vihar, Sector-3, New Delhi 110017, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Renuka Prasad
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 516, 5th floor, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, India; Department of Pharmacology, Shobhaben Pratapbai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India.
| |
Collapse
|
23
|
Maevskaia E, Guerrero J, Ghayor C, Bhattacharya I, Weber FE. Functionalization of Ceramic Scaffolds with Exosomes from Bone Marrow Mesenchymal Stromal Cells for Bone Tissue Engineering. Int J Mol Sci 2024; 25:3826. [PMID: 38612634 PMCID: PMC11011713 DOI: 10.3390/ijms25073826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The functionalization of bone substitutes with exosomes appears to be a promising technique to enhance bone tissue formation. This study investigates the potential of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) to improve bone healing and bone augmentation when incorporated into wide open-porous 3D-printed ceramic Gyroid scaffolds. We demonstrated the multipotent characteristics of BMSCs and characterized the extracted exosomes using nanoparticle tracking analysis and proteomic profiling. Through cell culture experimentation, we demonstrated that BMSC-derived exosomes possess the ability to attract cells and significantly facilitate their differentiation into the osteogenic lineage. Furthermore, we observed that scaffold architecture influences exosome release kinetics, with Gyroid scaffolds exhibiting slower release rates compared to Lattice scaffolds. Nevertheless, in vivo implantation did not show increased bone ingrowth in scaffolds loaded with exosomes, suggesting that the scaffold microarchitecture and material were already optimized for osteoconduction and bone augmentation. These findings highlight the lack of understanding about the optimal delivery of exosomes for osteoconduction and bone augmentation by advanced ceramic scaffolds.
Collapse
Affiliation(s)
- Ekaterina Maevskaia
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland (J.G.); (C.G.); (I.B.)
| | - Julien Guerrero
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland (J.G.); (C.G.); (I.B.)
| | - Chafik Ghayor
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland (J.G.); (C.G.); (I.B.)
| | - Indranil Bhattacharya
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland (J.G.); (C.G.); (I.B.)
| | - Franz E. Weber
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland (J.G.); (C.G.); (I.B.)
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
24
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
25
|
Zubkova E, Kalinin A, Bolotskaya A, Beloglazova I, Menshikov M. Autophagy-Dependent Secretion: Crosstalk between Autophagy and Exosome Biogenesis. Curr Issues Mol Biol 2024; 46:2209-2235. [PMID: 38534758 DOI: 10.3390/cimb46030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
The cellular secretome is pivotal in mediating intercellular communication and coordinating responses to stressors. Exosomes, initially recognized for their role in waste disposal, have now emerged as key intercellular messengers with significant therapeutic and diagnostic potential. Similarly, autophagy has transcended its traditional role as a waste removal mechanism, emerging as a regulator of intracellular communication pathways and a contributor to a unique autophagy-dependent secretome. Secretory authophagy, initiated by various stress stimuli, prompts the selective release of proteins implicated in inflammation, including leaderless proteins that bypass the conventional endoplasmic reticulum-Golgi secretory pathway. This reflects the significant impact of stress-induced autophagy on cellular secretion profiles, including the modulation of exosome release. The convergence of exosome biogenesis and autophagy is exemplified by the formation of amphisomes, vesicles that integrate autophagic and endosomal pathways, indicating their synergistic interplay. Regulatory proteins common to both pathways, particularly mTORC1, emerge as potential therapeutic targets to alter cellular secretion profiles involved in various diseases. This review explores the dynamic interplay between autophagy and exosome formation, highlighting the potential to influence the secretome composition. While the modulation of exosome secretion and cytokine preconditioning is well-established in regenerative medicine, the strategic manipulation of autophagy is still underexplored, presenting a promising but uncharted therapeutic landscape.
Collapse
Affiliation(s)
- Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasya Bolotskaya
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Institute of Clinical Medicine, Sechenov University, 119435 Moscow, Russia
| | - Irina Beloglazova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| |
Collapse
|
26
|
Du S, Zhou X, Zheng B. Beyond Traditional Medicine: EVs-Loaded Hydrogels as a Game Changer in Disease Therapeutics. Gels 2024; 10:162. [PMID: 38534580 DOI: 10.3390/gels10030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/28/2024] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, have shown great therapeutic potential in the treatment of diseases, as they can target cells or tissues. However, the therapeutic effect of EVs is limited due to the susceptibility of EVs to immune system clearance during transport in vivo. Hydrogels have become an ideal delivery platform for EVs due to their good biocompatibility and porous structure. This article reviews the preparation and application of EVs-loaded hydrogels as a cell-free therapy strategy in the treatment of diseases. The article also discusses the challenges and future outlook of EVs-loaded hydrogels.
Collapse
Affiliation(s)
- Shutong Du
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
27
|
Pan J, Wang X, Chiang CL, Ma Y, Cheng J, Bertani P, Lu W, Lee LJ. Joule heating and electroosmotic flow in cellular micro/nano electroporation. LAB ON A CHIP 2024; 24:819-831. [PMID: 38235543 DOI: 10.1039/d3lc00568b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Localized micro/nano-electroporation (MEP/NEP) shows tremendous potential in cell transfection with high cell viability, precise dose control, and good transfection efficacy. In MEP/NEP, micro or nanochannels are used to tailor the electric field distribution. Cells are positioned tightly by a micron or nanochannel, and the cargoes are delivered into the cell via the channel by electrophoresis (EP). Such confined geometries with micro and nanochannels are also widely used in sorting, isolation, and condensing of biomolecules and cells. Theoretical studies on the electrokinetic phenomena in these applications have been well established. However, for MEP/NEP applications, electrokinetic phenomena and their impact on the cell transfection efficiency and cell survival rate have not been studied comprehensively. In this work, we reveal the coupling between electric field, Joule heating, electroosmosis (EO), and EP in MEP/NEP at different channel sizes. A microfluidic biochip is used to investigate the electrokinetic phenomena in MEP/NEP on a single cell level. Bubble formation is observed at a threshold voltage due to Joule heating. The bubble is pushed to the cargo side due to EO and grows at the outlet of the nanochannel. As the voltage increases, the cargo transport efficiency decreases due to more intense EO, particularly for plasmid DNAs (3.5 kbp) with a low EP mobility. An 'electroporation zone' is defined for NEP/MEP systems with different channel sizes to avoid bubble formation and excessive EO velocity that may reduce the cargo delivery efficiency.
Collapse
Affiliation(s)
- Junjie Pan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Xinyu Wang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Chi-Ling Chiang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Junao Cheng
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Paul Bertani
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Wu Lu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
28
|
Zhang X, Li Y, Zhou Z. Lipid Nanoparticle-Based Delivery System-A Competing Place for mRNA Vaccines. ACS OMEGA 2024; 9:6219-6234. [PMID: 38371811 PMCID: PMC10870384 DOI: 10.1021/acsomega.3c08353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
mRNA, as one of the foci of biomedical research in the past decade, has become a candidate vaccine solution for various infectious diseases and tumors and for regenerative medicine and immunotherapy due to its high efficiency, safety, and effectiveness. A stable and effective delivery system is needed to protect mRNAs from nuclease degradation while also enhancing immunogenicity. The success of mRNA lipid nanoparticles in treating COVID-19, to a certain extent, marks a milestone for mRNA vaccines and also promotes further research on mRNA delivery systems. Here, we explore mRNA vaccine delivery systems, especially lipid nanoparticles (LNPs), considering the current research status, prospects, and challenges of lipid nanoparticles, and explore other mRNA delivery systems.
Collapse
Affiliation(s)
- Xinyu Zhang
- Research
Center for Infectious Diseases, Tianjin
University of Traditional Chinese Medicine, 300193 Tianjin, China
- Institute
for Biological Product Control, National
Institutes for Food and Drug Control (NIFDC) and WHO Collaborating
Center for Standardization and Evaluation of Biologicals, No.31 Huatuo Street, Daxing District, 102629 Beijing, China
- College
of Life Science, Jilin University, 130012 Changchun, China
| | - Yuanfang Li
- Department
of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, 361015 Xiamen, Fujian China
| | - Zehua Zhou
- Research
Center for Infectious Diseases, Tianjin
University of Traditional Chinese Medicine, 300193 Tianjin, China
| |
Collapse
|
29
|
Ateeq M, Broadwin M, Sellke FW, Abid MR. Extracellular Vesicles' Role in Angiogenesis and Altering Angiogenic Signaling. Med Sci (Basel) 2024; 12:4. [PMID: 38249080 PMCID: PMC10801520 DOI: 10.3390/medsci12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Angiogenesis, the process of new blood vessels formation from existing vasculature, plays a vital role in development, wound healing, and various pathophysiological conditions. In recent years, extracellular vesicles (EVs) have emerged as crucial mediators in intercellular communication and have gained significant attention for their role in modulating angiogenic processes. This review explores the multifaceted role of EVs in angiogenesis and their capacity to modulate angiogenic signaling pathways. Through comprehensive analysis of a vast body of literature, this review highlights the potential of utilizing EVs as therapeutic tools to modulate angiogenesis for both physiological and pathological purposes. A good understanding of these concepts holds promise for the development of novel therapeutic interventions targeting angiogenesis-related disorders.
Collapse
Affiliation(s)
- Maryam Ateeq
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| |
Collapse
|
30
|
Shi H, Yang Y, Xing H, Jia J, Xiong W, Guo S, Yang S. Exosomal non-coding RNAs: Emerging insights into therapeutic potential and mechanisms in bone healing. J Tissue Eng 2024; 15:20417314241286606. [PMID: 39371940 PMCID: PMC11456177 DOI: 10.1177/20417314241286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Rehabilitation, The First Hospital of China Medical University, Shenyang, China
| | - Hao Xing
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jialin Jia
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Nebogatova J, Härk HH, Puskar A, Porosk L, Guazzi P, Dowaidar M, Langel Ü, Kurrikoff K. A Method for Using Cell-Penetrating Peptides for Loading Plasmid DNA into Secreted Extracellular Vesicles. Biomolecules 2023; 13:1751. [PMID: 38136622 PMCID: PMC10741998 DOI: 10.3390/biom13121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The low bioavailability and high toxicity of plasmid DNA (pDNA)-based therapeutics pose challenges for their in vivo application. Extracellular vesicles (EVs) have great potential to overcome these limitations, as they are biocompatible native cargo carriers. Various methods for loading pDNA into EVs, including electroporation, sonication, and co-incubation, have been previously investigated, but their success has been questionable. In this study, we report a unique method for loading EVs with pDNA through transient transfection using cell-penetrating peptides (CPPs). With this method, we found a 104-fold increase in the expression levels of the luciferase reporter protein in recipient cells compared to the untreated cells. These data point to the high transfection efficacy and bioavailability of the delivered encapsulated nucleic acid. Furthermore, the in vivo experimental data indicate that the use of pDNA-loaded EVs as native delivery vehicles reduces the toxic effects associated with traditional nucleic acid (NA) delivery and treatment.
Collapse
Affiliation(s)
| | - Heleri Heike Härk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Anett Puskar
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Ly Porosk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Paolo Guazzi
- HansaBioMed Life Sciences Ltd., Mäealuse 2/1, 12618 Tallinn, Estonia
| | - Moataz Dowaidar
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Ülo Langel
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Department Biochemistry and Biophysics, Stockholm University, S. Arrheniusv. 16B, Room C472, 106 91 Stockholm, Sweden
| | - Kaido Kurrikoff
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
32
|
Zhang C, Kuo JCT, Huang Y, Hu Y, Deng L, Yung BC, Zhao X, Zhang Z, Pan J, Ma Y, Lee RJ. Optimized Liposomal Delivery of Bortezomib for Advancing Treatment of Multiple Myeloma. Pharmaceutics 2023; 15:2674. [PMID: 38140015 PMCID: PMC10747406 DOI: 10.3390/pharmaceutics15122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Bortezomib (BTZ), a boronic acid-derived proteasome inhibitor, is commonly employed in treating multiple myeloma (MM). However, the applications of BTZ are limited due to its poor stability and low bioavailability. Herein, we develop an optimized liposomal formulation of BTZ (L-BTZ) by employing a remote-loading strategy. This formulation uses Tiron, a divalent anionic catechol derivative, as the internal complexing agent. Compared to earlier BTZ-related formulations, this alternative formulation showed significantly greater stability due to the Tiron-BTZ complex's higher pH stability and negative charges, compared to the meglumine-BTZ complex. Significantly, the plasma AUC of L-BTZ was found to be 30 times greater than that of free BTZ, suggesting an extended blood circulation duration. In subsequent therapeutic evaluations using two murine xenograft tumor models of MM, the NCI-H929 and OPM2 models showed tumor growth inhibition (TGI) values of 37% and 57%, respectively. In contrast, free BTZ demonstrated TGI values of 17% and 11% in these models. Further, L-BTZ presented enhanced antitumor efficacy in the Hepa1-6 HCC syngeneic model, indicating its potential broader applicability as an antineoplastic agent. These findings suggest that the optimized L-BTZ formulation offers a significant advancement in BTZ delivery, holding substantial promise for clinical investigation in not merely MM, but other cancer types.
Collapse
Affiliation(s)
- Chi Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Y.H.); (Z.Z.)
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Y.H.); (Z.Z.)
| | - Yirui Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Y.H.); (Z.Z.)
| | - Yingwen Hu
- The Whiteoak Group, Inc., Rockville, MD 20855, USA; (Y.H.); (L.D.); (B.C.Y.); (X.Z.)
| | - Lan Deng
- The Whiteoak Group, Inc., Rockville, MD 20855, USA; (Y.H.); (L.D.); (B.C.Y.); (X.Z.)
| | - Bryant C. Yung
- The Whiteoak Group, Inc., Rockville, MD 20855, USA; (Y.H.); (L.D.); (B.C.Y.); (X.Z.)
| | - Xiaobin Zhao
- The Whiteoak Group, Inc., Rockville, MD 20855, USA; (Y.H.); (L.D.); (B.C.Y.); (X.Z.)
| | - Zhongkun Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Y.H.); (Z.Z.)
| | - Junjie Pan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Yifan Ma
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Y.H.); (Z.Z.)
| |
Collapse
|