1
|
Seder I, Zheng T, Zhang J, Rojas CC, Helalat SH, Téllez RC, Sun Y. A Scalable Microfluidic Platform for Nanoparticle Formulation: For Exploratory- and Industrial-Level Scales. NANO LETTERS 2024; 24:5132-5138. [PMID: 38588326 DOI: 10.1021/acs.nanolett.3c05057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Nanoparticle synthesis on microfluidic platforms provides excellent reproducibility and control over bulk synthesis. While there have been plenty of platforms for producing nanoparticles (NPs) with controlled physicochemical properties, such platforms often operate in a narrow range of predefined flow rates. The flow rate limitation restricts either up-scalability for industrial production or down-scalability for exploratory research use. Here, we present a universal flow rate platform that operates over a wide range of flow rates (0.1-75 mL/min) for small-scale exploratory research and industrial-level synthesis of NPs without compromising the mixing capabilities. The wide range of flow rate is obtained by using a coaxial flow with a triangular microstructure to create a vortex regardless of the flow regime (Reynolds number). The chip synthesizes several types of NPs for gene and protein delivery, including polyplex, lipid NPs, and solid polymer NPs via self-assembly and precipitation, and successfully expresses GFP plasmid DNA in human T cells.
Collapse
Affiliation(s)
- Islam Seder
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Jing Zhang
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark
| | - César Cruz Rojas
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Seyed Hossein Helalat
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Rodrigo Coronel Téllez
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Bovone G, Cousin L, Steiner F, Tibbitt MW. Solvent Controls Nanoparticle Size during Nanoprecipitation by Limiting Block Copolymer Assembly. Macromolecules 2022; 55:8040-8048. [PMID: 36186573 PMCID: PMC9520972 DOI: 10.1021/acs.macromol.2c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/20/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Lucien Cousin
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Fabian Steiner
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Latocha J, Wojasiński M, Janowska O, Chojnacka U, Gierlotka S, Ciach T, Sobieszuk P. Morphology‐controlled precipitation/remodeling of plate and rod‐shaped hydroxyapatite nanoparticles. AIChE J 2022. [DOI: 10.1002/aic.17897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joanna Latocha
- Faculty of Chemical and Process Engineering Warsaw University of Technology, Waryńskiego 1 Warsaw Poland
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering Warsaw University of Technology, Waryńskiego 1 Warsaw Poland
| | - Oliwia Janowska
- Faculty of Chemical and Process Engineering Warsaw University of Technology, Waryńskiego 1 Warsaw Poland
| | - Urszula Chojnacka
- Faculty of Chemical and Process Engineering Warsaw University of Technology, Waryńskiego 1 Warsaw Poland
| | - Stanisław Gierlotka
- Laboratory of Nanostructures Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37 Warsaw Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering Warsaw University of Technology, Waryńskiego 1 Warsaw Poland
- CEZAMAT Warsaw University of Technology, Poleczki 19 Warsaw Poland
| | - Paweł Sobieszuk
- Faculty of Chemical and Process Engineering Warsaw University of Technology, Waryńskiego 1 Warsaw Poland
| |
Collapse
|
5
|
Illath K, Kar S, Gupta P, Shinde A, Wankhar S, Tseng FG, Lim KT, Nagai M, Santra TS. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2021; 280:121247. [PMID: 34801251 DOI: 10.1016/j.biomaterials.2021.121247] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Microfluidic platforms gain popularity in biomedical research due to their attractive inherent features, especially in nanomaterials synthesis. This review critically evaluates the current state of the controlled synthesis of nanomaterials using microfluidic devices. We describe nanomaterials' screening in microfluidics, which is very relevant for automating the synthesis process for biomedical applications. We discuss the latest microfluidics trends to achieve noble metal, silica, biopolymer, quantum dots, iron oxide, carbon-based, rare-earth-based, and other nanomaterials with a specific size, composition, surface modification, and morphology required for particular biomedical application. Screening nanomaterials has become an essential tool to synthesize desired nanomaterials using more automated processes with high speed and repeatability, which can't be neglected in today's microfluidic technology. Moreover, we emphasize biomedical applications of nanomaterials, including imaging, targeting, therapy, and sensing. Before clinical use, nanomaterials have to be evaluated under physiological conditions, which is possible in the microfluidic system as it stimulates chemical gradients, fluid flows, and the ability to control microenvironment and partitioning multi-organs. In this review, we emphasize the clinical evaluation of nanomaterials using microfluidics which was not covered by any other reviews. In the future, the growth of new materials or modification in existing materials using microfluidics platforms and applications in a diversity of biomedical fields by utilizing all the features of microfluidic technology is expected.
Collapse
Affiliation(s)
- Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, UK
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Syrpailyne Wankhar
- Department of Bioengineering, Christian Medical College Vellore, Vellore, India
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, South Korea
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
6
|
Guzzi EA, Bischof R, Dranseikiene D, Deshmukh DV, Wahlsten A, Bovone G, Bernhard S, Tibbitt MW. Hierarchical biomaterials via photopatterning-enhanced direct ink writing. Biofabrication 2021; 13. [PMID: 34433148 DOI: 10.1088/1758-5090/ac212f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Recent advances in additive manufacturing (AM) technologies provide tools to fabricate biological structures with complex three-dimensional (3D) organization. Deposition-based approaches have been exploited to manufacture multimaterial constructs. Stimulus-triggered approaches have been used to fabricate scaffolds with high resolution. Both features are useful to produce biomaterials that mimic the hierarchical organization of human tissues. Recently, multitechnology biofabrication approaches have been introduced that integrate benefits from different AM techniques to enable more complex materials design. However, few methods allow for tunable properties at both micro- and macro-scale in materials that are conducive for cell growth. To improve the organization of biofabricated constructs, we integrated direct ink writing (DIW) with digital light processing (DLP) to form multimaterial constructs with improved spatial control over final scaffold mechanics. Polymer-nanoparticle hydrogels were combined with methacryloyl gelatin (GelMA) to engineer dual inks that were compatible with both DIW and DLP. The shear-thinning and self-healing properties of the dual inks enabled extrusion-based 3D printing. The inclusion of GelMA provided a handle for spatiotemporal control of cross-linking with DLP. Exploiting this technique, complex multimaterial constructs were printed with defined mechanical reinforcement. In addition, the multitechnology approach was used to print live cells for biofabrication applications. Overall, the combination of DIW and DLP is a simple and efficient strategy to fabricate hierarchical biomaterials with user-defined control over material properties at both micro- and macro-scale.
Collapse
Affiliation(s)
- Elia A Guzzi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Raffaele Bischof
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Dalia Dranseikiene
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Dhananjay V Deshmukh
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland.,Institute for Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | - Adam Wahlsten
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| |
Collapse
|
7
|
Han H, Yoon JH, Yi GR, Choi WI, Lim JM. High-speed continuous production of polymeric nanoparticles with improved stability using a self-aligned coaxial turbulent jet mixer. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Bernhard S, Tibbitt MW. Supramolecular engineering of hydrogels for drug delivery. Adv Drug Deliv Rev 2021; 171:240-256. [PMID: 33561451 DOI: 10.1016/j.addr.2021.02.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Supramolecular binding motifs are increasingly employed in the design of biomaterials. The ability to rationally engineer specific yet reversible associations into polymer networks with supramolecular chemistry enables injectable or sprayable hydrogels that can be applied via minimally invasive administration. In this review, we highlight two main areas where supramolecular binding motifs are being used in the design of drug delivery systems: engineering network mechanics and tailoring drug-material affinity. Throughout, we highlight many of the established and emerging chemistries or binding motifs that are useful for the design of supramolecular hydrogels for drug delivery applications.
Collapse
|
9
|
|
10
|
Fabozzi A, Della Sala F, di Gennaro M, Solimando N, Pagliuca M, Borzacchiello A. Polymer based nanoparticles for biomedical applications by microfluidic techniques: from design to biological evaluation. Polym Chem 2021. [DOI: 10.1039/d1py01077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of microfluidic technologies represents a new strategy to produce and test drug delivery systems.
Collapse
Affiliation(s)
- Antonio Fabozzi
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Mario di Gennaro
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Nicola Solimando
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Maurizio Pagliuca
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| |
Collapse
|
11
|
Bovone G, Steiner F, Guzzi EA, Tibbitt MW. Automated and Continuous Production of Polymeric Nanoparticles. Front Bioeng Biotechnol 2019; 7:423. [PMID: 31921826 PMCID: PMC6927919 DOI: 10.3389/fbioe.2019.00423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/29/2019] [Indexed: 01/08/2023] Open
Abstract
Polymeric nanoparticles (NPs) are increasingly used as therapeutics, diagnostics, and building blocks in (bio)materials science. Current barriers to translation are limited control over NP physicochemical properties and robust scale-up of their production. Flow-based devices have emerged for controlled production of polymeric NPs, both for rapid formulation screening (~μg min-1) and on-scale production (~mg min-1). While flow-based devices have improved NP production compared to traditional batch processes, automated processes are desired for robust NP production at scale. Therefore, we engineered an automated coaxial jet mixer (CJM), which controlled the mixing of an organic stream containing block copolymer and an aqueous stream, for the continuous nanoprecipitation of polymeric NPs. The CJM was operated stably under computer control for up to 24 h and automated control over the flow conditions tuned poly(ethylene glycol)-block-polylactide (PEG5K -b-PLA20K ) NP size between ≈56 nm and ≈79 nm. In addition, the automated CJM enabled production of NPs of similar size (D h ≈ 50 nm) from chemically diverse block copolymers, PEG5K -b-PLA20K , PEG-block-poly(lactide-co-glycolide) (PEG5K -b-PLGA20K ), and PEG-block-polycaprolactone (PEG5K -b-PCL20K ), by tuning the flow conditions for each block copolymer. Further, the automated CJM was used to produce model nanotherapeutics in a reproducible manner without user intervention. Finally, NPs produced with the automated CJM were used to scale the formation of injectable polymer-nanoparticle (PNP) hydrogels, without modifying the mechanical properties of the PNP gel. In conclusion, the automated CJM enabled stable, tunable, and continuous production of polymeric NPs, which are needed for the scale-up and translation of this important class of biomaterials.
Collapse
Affiliation(s)
| | | | | | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|