1
|
Vieira CP, Martins Lara NDLE, Procópio MS, Avelar GF. Optimization of spermatozoa analysis in mice: A comprehensive protocol. Tissue Cell 2024; 89:102463. [PMID: 38981185 DOI: 10.1016/j.tice.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Sperm quality is critical to predict reproductive alterations caused by immunological factors or toxicant agents. Yet, no detailed protocol has been published focusing on analyses of sperm parameters in mice. Our aim was to evaluate the most efficient diluent for mice sperm analyses and to optimize the sperm morphology classification, through the comparison of different staining methods. The diluents assessed were PBS (baseline), HTF, DMEM, 1 % BSA in PBS and 9 % skimmed powdered milk diluted in PBS. Spermatozoa were evaluated for vitality, motility, and morphology, smears were stained with Papanicolaou, HE, Giemsa, and Rapid staining. Sperm vitality and total motility reached better scores in milk based and DMEM diluents. HE raised up as an effective option since its combination with any of the diluents we tested, resulted in a fair staining, which was appropriated to evaluate mice spermatozoa. Finally, based on WHO manual, we have updated the current morphological classification for mice sperm, since we have detailed the head defects as well as included midpiece and tail defects on it. Taken together, we presented a useful, low cost, and reliable method to assess sperm morphology that could be employed worldwide by laboratories dedicated to study reproductive biology on mice model.
Collapse
Affiliation(s)
- Carolina Pinhol Vieira
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Marcela Santos Procópio
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gleide Fernandes Avelar
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Moreno RD. Human globozoospermia-related genes and their role in acrosome biogenesis. WIREs Mech Dis 2023; 15:e1589. [PMID: 36493758 DOI: 10.1002/wsbm.1589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
The mammalian acrosome is a secretory vesicle attached to the sperm nucleus whose fusion with the overlying plasma membrane is required to achieve fertilization. Acrosome biogenesis starts during meiosis, but it lasts through the entire process of haploid cell differentiation (spermiogenesis). Acrosome biogenesis is a stepwise process that involves membrane traffic from the Golgi apparatus, but it also seems that the lysosome/endosome system participates in this process. Defective sperm head morphology is accompanied by defective acrosome shape and function, and patients with these characteristics are infertile or subfertile. The most extreme case of acrosome biogenesis failure is globozoospermia syndrome, which is primarily characterized by the presence of round-headed spermatozoa without acrosomes with cytoskeleton defects around the nucleus and infertility. Several genes participating in acrosome biogenesis have been uncovered using genetic deletions in mice, but only a few of them have been found to be deleted or modified in patients with globozoospermia. Understanding acrosome biogenesis is crucial to uncovering the molecular basis of male infertility and developing new diagnostic tools and assisted reproductive technologies that may help infertile patients through more effective treatment techniques. This article is categorized under: Reproductive System Diseases > Environmental Factors Infectious Diseases > Stem Cells and Development Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ricardo D Moreno
- Departmento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Umer N, Phadke S, Shakeri F, Arévalo L, Lohanadan K, Kirfel G, Sylvester M, Buness A, Schorle H. PFN4 is required for manchette development and acrosome biogenesis during mouse spermiogenesis. Development 2022; 149:276289. [PMID: 35950913 PMCID: PMC9481974 DOI: 10.1242/dev.200499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4−/− testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility. Summary: PFN4-deficient male mice exhibit impaired acrosome formation and malformation of the manchette, leading to amorphous sperm head shape, flagellar abnormalities and sterility.
Collapse
Affiliation(s)
- Naila Umer
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Sharang Phadke
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Lena Arévalo
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn 4 , 53121 Bonn , Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
- University of Bonn 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| |
Collapse
|
4
|
Umer N, Arévalo L, Phadke S, Lohanadan K, Kirfel G, Sons D, Sofia D, Witke W, Schorle H. Loss of Profilin3 Impairs Spermiogenesis by Affecting Acrosome Biogenesis, Autophagy, Manchette Development and Mitochondrial Organization. Front Cell Dev Biol 2021; 9:749559. [PMID: 34869336 PMCID: PMC8632698 DOI: 10.3389/fcell.2021.749559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Profilins (PFNs) are key regulatory proteins for the actin polymerization in cells and are encoded in mouse and humans by four Pfn genes. PFNs are involved in cell mobility, cell growth, neurogenesis, and metastasis of tumor cells. The testes-specific PFN3 is localized in the acroplaxome-manchette complex of developing spermatozoa. We demonstrate that PFN3 further localizes in the Golgi complex and proacrosomal vesicles during spermiogenesis, suggesting a role in vesicle transport for acrosome formation. Using CRISPR/Cas9 genome editing, we generated mice deficient for Pfn3. Pfn3-/- males are subfertile, displaying a type II globozoospermia. We revealed that Pfn3-/- sperm display abnormal manchette development leading to an amorphous sperm head shape. Additionally, Pfn3-/- sperm showed reduced sperm motility resulting from flagellum deformities. We show that acrosome biogenesis is impaired starting from the Golgi phase, and mature sperm seems to suffer from a cytoplasm removal defect. An RNA-seq analysis revealed an upregulation of Trim27 and downregulation of Atg2a. As a consequence, mTOR was activated and AMPK was suppressed, resulting in the inhibition of autophagy. This dysregulation of AMPK/mTOR affected the autophagic flux, which is hallmarked by LC3B accumulation and increased SQSTM1 protein levels. Autophagy is involved in proacrosomal vesicle fusion and transport to form the acrosome. We conclude that this disruption leads to the observed malformation of the acrosome. TRIM27 is associated with PFN3 as determined by co-immunoprecipitation from testis extracts. Further, actin-related protein ARPM1 was absent in the nuclear fraction of Pfn3-/- testes and sperm. This suggests that lack of PFN3 leads to destabilization of the PFN3-ARPM1 complex, resulting in the degradation of ARPM1. Interestingly, in the Pfn3-/- testes, we detected increased protein levels of essential actin regulatory proteins, cofilin-1 (CFL1), cofilin-2 (CFL2), and actin depolymerizing factor (ADF). Taken together, our results reveal the importance for PFN3 in male fertility and implicate this protein as a candidate for male factor infertility in humans.
Collapse
Affiliation(s)
- Naila Umer
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Sharang Phadke
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Dominik Sons
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Denise Sofia
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Walter Witke
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Mahmud MAA, Noguchi M, Domon A, Tochigi Y, Katayama K, Suzuki H. Cellular Expression and Subcellular Localization of Wwox Protein During Testicular Development and Spermatogenesis in Rats. J Histochem Cytochem 2021; 69:257-270. [PMID: 33565365 DOI: 10.1369/0022155421991629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A well-known putative tumor suppressor WW domain-containing oxidoreductase (Wwox) is highly expressed in hormonally regulated tissues and is considered important for the normal development and function of reproductive organs. In this study, we investigated the cellular and subcellular localization of Wwox in normal testes during postnatal days 0-70 using Western blotting and immunohistochemistry. Wwox is expressed in testes at all ages. Immunohistochemistry showed that fetal-type and adult-type Leydig cells, immature and mature Sertoli cells, and germ cells (from gonocytes to step 17 spermatids) expressed Wwox except peritubular myoid cells, step 18-19 spermatids, and mature sperm. Wwox localized diffusely in the cytoplasm with focal intense signals in all testicular cells. These signals gradually condensed in germ cells with their differentiation and colocalized with giantin for cis-Golgi marker and partially with golgin-97 for trans-Golgi marker. Biochemically, Wwox was detected in isolated Golgi-enriched fractions. But Wwox was undetectable in the nucleus. This subcellular localization pattern of Wwox was also confirmed in single-cell suspension. These findings indicate that Wwox is functional in most cell types of testis and might locate into Golgi apparatus via interaction with Golgi proteins. These unique localizations might be related to the function of Wwox in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Md Abdullah Al Mahmud
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Anatomy & Histology, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Maki Noguchi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Domon
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
6
|
Shi L, Zhou T, Huang Q, Zhang S, Li W, Zhang L, Hess RA, Pazour GJ, Zhang Z. Intraflagellar transport protein 74 is essential for spermatogenesis and male fertility in mice†. Biol Reprod 2020; 101:188-199. [PMID: 31004481 DOI: 10.1093/biolre/ioz071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/22/2019] [Accepted: 04/18/2019] [Indexed: 12/30/2022] Open
Abstract
Intraflagellar transport protein 74 (IFT74) is a component of the core intraflagellar transport complex, a bidirectional movement of large particles along the axoneme microtubules for cilia formation. In this study, we investigated its role in sperm flagella formation and discovered that mice deficiency in Ift74 gene in male germ cells were infertile with low sperm count and immotile sperm. The few developed spermatozoa displayed misshaped heads and short tails. Transmission electron microscopy revealed abnormal flagellar axonemes in the seminiferous tubules where sperm are made. Clusters of unassembled microtubules were present in the spermatids. Testicular expression levels of IFT27, IFT57, IFT81, IFT88, and IFT140 proteins were significantly reduced in the conditional Ift74 mutant mice, with the exception of IFT20 and IFT25. The levels of outer dense fiber 2 and sperm-associated antigen 16L proteins were also not changed. However, the processed A-Kinase anchor protein, a major component of the fibrous sheath, a unique structure of sperm tail, was significantly reduced. Our study demonstrates that IFT74 is essential for mouse sperm formation, probably through assembly of the core axoneme and fibrous sheath, and suggests that IFT74 may be a potential genetic factor affecting male reproduction in man.
Collapse
Affiliation(s)
- Lin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Ting Zhou
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Qian Huang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Shiyang Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.,Department of Obstetrics/Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
7
|
Da Costa R, Bordessoules M, Guilleman M, Carmignac V, Lhussiez V, Courot H, Bataille A, Chlémaire A, Bruno C, Fauque P, Thauvin C, Faivre L, Duplomb L. Vps13b is required for acrosome biogenesis through functions in Golgi dynamic and membrane trafficking. Cell Mol Life Sci 2020; 77:511-529. [PMID: 31218450 PMCID: PMC11104845 DOI: 10.1007/s00018-019-03192-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 01/03/2023]
Abstract
The sperm acrosome is a lysosome-related organelle that develops using membrane trafficking from the Golgi apparatus as well as the endolysosomal compartment. How vesicular trafficking is regulated in spermatids to form the acrosome remains to be elucidated. VPS13B, a RAB6-interactor, was recently shown involved in endomembrane trafficking. Here, we report the generation of the first Vps13b-knockout mouse model and show that male mutant mice are infertile due to oligoasthenoteratozoospermia. This phenotype was explained by a failure of Vps13b deficient spermatids to form an acrosome. In wild-type spermatids, immunostaining of Vps13b and Rab6 revealed that they transiently locate to the acrosomal inner membrane. Spermatids lacking Vps13b did not present with the Golgi structure that characterizes wild-type spermatids and showed abnormal targeting of PNA- and Rab6-positive Golgi-derived vesicles to Eea1- and Lamp2-positive structures. Altogether, our results uncover a function of Vps13b in the regulation of the vesicular transport between Golgi apparatus, acrosome, and endolysosome.
Collapse
Affiliation(s)
- Romain Da Costa
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France.
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France.
| | - Morgane Bordessoules
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
| | - Magali Guilleman
- Laboratoire de Biologie de la Reproduction, Hôpital François Mitterrand, Université de Bourgogne, 21000, Dijon, France
| | - Virginie Carmignac
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- Centre de Référence Maladies Génétique à Expression Cutanée MAGEC-Mosaique, CHU Dijon, Dijon, France
| | - Vincent Lhussiez
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
| | - Hortense Courot
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
| | - Amandine Bataille
- Plateforme d'Imagerie Cellulaire CellImaP/DimaCell, Inserm LNC UMR1231, 21000, Dijon, France
| | - Amandine Chlémaire
- Plateforme d'Imagerie Cellulaire CellImaP/DimaCell, Inserm LNC UMR1231, 21000, Dijon, France
| | - Céline Bruno
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- Laboratoire de Biologie de la Reproduction, Hôpital François Mitterrand, Université de Bourgogne, 21000, Dijon, France
| | - Patricia Fauque
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- Laboratoire de Biologie de la Reproduction, Hôpital François Mitterrand, Université de Bourgogne, 21000, Dijon, France
| | - Christel Thauvin
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon, 21000, Dijon, France
| | - Laurence Faivre
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Dijon, 21000, Dijon, France
| | - Laurence Duplomb
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
| |
Collapse
|
8
|
Khawar MB, Gao H, Li W. Mechanism of Acrosome Biogenesis in Mammals. Front Cell Dev Biol 2019; 7:195. [PMID: 31620437 PMCID: PMC6759486 DOI: 10.3389/fcell.2019.00195] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
During sexual reproduction, two haploid gametes fuse to form the zygote, and the acrosome is essential to this fusion process (fertilization) in animals. The acrosome is a special kind of organelle with a cap-like structure that covers the anterior portion of the head of the spermatozoon. The acrosome is derived from the Golgi apparatus and contains digestive enzymes. With the progress of our understanding of acrosome biogenesis, a number of models have been proposed to address the origin of the acrosome. The acrosome has been regarded as a lysosome-related organelle, and it has been proposed to have originated from the lysosome or the autolysosome. Our review will provide a brief historical overview and highlight recent findings on acrosome biogenesis in mammals.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Berruti G. Towards defining an ‘origin’—The case for the mammalian acrosome. Semin Cell Dev Biol 2016; 59:46-53. [DOI: 10.1016/j.semcdb.2016.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/19/2023]
|
10
|
Haraguchi CM, Mabuchi T, Hirata S, Shoda T, Hoshi K, Akasaki K, Yokota S. Chromatoid Bodies: Aggresome-like Characteristics and Degradation Sites for Organelles of Spermiogenic Cells. J Histochem Cytochem 2016; 53:455-65. [PMID: 15805420 DOI: 10.1369/jhc.4a6520.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the localization of several markers for lysosomes and aggresomes in the chromatoid bodies (CBs) by immunoelectron microscopy. We found so-called aggresomal markers such as Hsp70 and ubiquitin in the core of the CBs and vimentin and proteasome subunit around the CBs. Ubiquitin-conjugating enzyme (E2) was also found in the CBs. In tubulovesicular structures surrounding the CBs, lysosomal markers were detected but an endoplasmic reticulum retention signal (KDEL) was not. Moreover, proteins located in each subcellular compartment, including the cytosol, mitochondria, and nucleus, were detected in the CBs. Signals for cytochrome oxidase I (COXI) coded on mitochondrial DNA were also found in the CBs. Quantitative analysis of labeling density showed that all proteins examined were concentrated in the CBs to some extent. These results show that the CBs have some aggresomal features, suggesting that they are not a synthetic site as proposed previously but a degradation site where unnecessary DNA, RNA, and proteins are digested.
Collapse
|
11
|
Berruti G, Paiardi C. USP8/UBPy-regulated sorting and the development of sperm acrosome: the recruitment of MET. Reproduction 2015; 149:633-44. [DOI: 10.1530/rep-14-0671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/05/2015] [Indexed: 01/12/2023]
Abstract
The acrosome is a peculiar vacuole that at fertilization undergoes the acrosome reaction (AR), an event unique in the sperm life. Contents released promote sperm penetration through oocyte's investments; membranous components are involved in sperm–egg interaction/fusion. Therefore, both constituents play a role in fertilization. The biogenesis of this vacuole, however, has not been clarified yet; recently, it has been proposed as a novel lysosome-related organelle (LRO). Our research focuses on the involvement of the endosomal pathway in acrosomogenesis starting from the early phases. The trafficking sorted by USP8/UBPy, an endosomal regulator recently described as a compelling candidate for male fertility gene, was investigated in comparison to that of SP56, a marker of the biosynthetic pathway. Mouse spermatids were double/triple immunolabeled and examined by confocal microscopy. The contribution of the vesicular traffic assisted by the cortical microtubule array was also evaluated in nocodazole-treated spermatids. USP8/UBPy-sorted cargo contributes early to acrosomogenesis and its trafficking is microtubule mediated. It was identified, through co-immunoprecipitation/co-immunolocalization assays, that the membrane receptor MET, described herein for the first time in spermatids, as an USP8/UBPy-target substrate is delivered to the acrosome. MET and USP8/UBPy still colocalize in epididymal spermatozoa. Following the AR, MET and USP8/UBPy show a distinct fate. MET, in particular, translocates at the PAS, the post acrosomal segment known to harbor sperm-borne factors involved in oocyte activation. Overall, our results support the concept of the acrosome as a LRO and provide evidence for the identification of MET as a tyrosine kinase receptor that may play a role in fertilization.
Collapse
|
12
|
Zhang L, Li W, Ni J, Wu J, Liu J, Zhang Z, Zhang Y, Li H, Shi Y, Teves ME, Song S, Strauss JF, Zhang Z. RC/BTB2 is essential for formation of primary cilia in mammalian cells. Cytoskeleton (Hoboken) 2015; 72:171-81. [PMID: 25762510 DOI: 10.1002/cm.21214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/19/2023]
Abstract
RC/BTB2 is a binding partner of sperm associated antigen 16S (SPAG16S), which is a regulator of spermiogenesis in mice, a process during which sperm flagella are formed. The expression of Rc/btb2 is also regulated by multicilin, a protein that controls ciliogenesis. Given that mouse Rc/btb2 mRNA is not only expressed in tissues bearing motile cilia, but also in tissues without motile cilia, we investigated whether RC/BTB2 plays a role in the general process of ciliogenesis by studying two cell lines that have primary cilia, NIH3T3, and IMCD3. We discovered that the subcellular localization of RC/BTB2 in the NIH3T3 and IMCD3 cells encompasses the pathway for ciliogenesis. RC/BTB2 was found in the Golgi bodies and centrosomes, two key structures essential for normal ciliogenesis. Knockdown of Rc/btb2 gene expression in these cell lines disrupted ciliogenesis. The percentage of cells with primary cilia was significantly reduced in stable cell lines transduced with specific Rc/btb2 shRNA viruses as compared to the control cells. When cilia were formed in the knockdown cells, they were significantly shorter than those in the control cells. Knockdown of Rc/btb2 expression did not affect cell proliferation and the cell cycle. Exogenous expression of RC/BTB2 in these stable knockdown cells restored ciliogenesis. These findings suggest that RC/BTB2 is a necessary component of the process of formation of primary cilia in somatic cells, perhaps through the transportation of cargos from Golgi bodies to centrosomes for cilia assembling.
Collapse
Affiliation(s)
- Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Wei Li
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Jin Ni
- Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Jinghua Wu
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Junping Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhengang Zhang
- Department of Infectious Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
- Department of Dermatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongfei Li
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Yuqin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Maria E Teves
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Shizheng Song
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jerome F Strauss
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
13
|
Au CE, Hermo L, Byrne E, Smirle J, Fazel A, Simon PHG, Kearney RE, Cameron PH, Smith CE, Vali H, Fernandez-Rodriguez J, Ma K, Nilsson T, Bergeron JJM. Expression, sorting, and segregation of Golgi proteins during germ cell differentiation in the testis. Mol Biol Cell 2015; 26:4015-32. [PMID: 25808494 PMCID: PMC4710233 DOI: 10.1091/mbc.e14-12-1632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 12/14/2022] Open
Abstract
A total of 1318 proteins characterized in the male germ cell Golgi apparatus reveal a new germ cell–specific Golgi marker and a new pan-Golgi marker for all cells. The localization of these and other Golgi proteins reveals differential expression linked to mitosis, meiosis, acrosome formation, and postacrosome Golgi migration and destination in the late spermatid. The molecular basis of changes in structure, cellular location, and function of the Golgi apparatus during male germ cell differentiation is unknown. To deduce cognate Golgi proteins, we isolated germ cell Golgi fractions, and 1318 proteins were characterized, with 20 localized in situ. The most abundant protein, GL54D of unknown function, is characterized as a germ cell–specific Golgi-localized type II integral membrane glycoprotein. TM9SF3, also of unknown function, was revealed to be a universal Golgi marker for both somatic and germ cells. During acrosome formation, several Golgi proteins (GBF1, GPP34, GRASP55) localize to both the acrosome and Golgi, while GL54D, TM9SF3, and the Golgi trafficking protein TMED7/p27 are segregated from the acrosome. After acrosome formation, GL54D, TM9SF3, TMED4/p25, and TMED7/p27 continue to mark Golgi identity as it migrates away from the acrosome, while the others (GBF1, GPP34, GRASP55) remain in the acrosome and are progressively lost in later steps of differentiation. Cytoplasmic HSP70.2 and the endoplasmic reticulum luminal protein-folding enzyme PDILT are also Golgi recruited but only during acrosome formation. This resource identifies abundant Golgi proteins that are expressed differentially during mitosis, meiosis, and postacrosome Golgi migration, including the last step of differentiation.
Collapse
Affiliation(s)
- Catherine E Au
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Elliot Byrne
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Jeffrey Smirle
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Ali Fazel
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Paul H G Simon
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Robert E Kearney
- Department of Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada
| | - Pamela H Cameron
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Charles E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kewei Ma
- Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Tommy Nilsson
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - John J M Bergeron
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
14
|
Ayaz A, Agarwal A, Sharma R, Arafa M, Elbardisi H, Cui Z. Impact of precise modulation of reactive oxygen species levels on spermatozoa proteins in infertile men. Clin Proteomics 2015; 12:4. [PMID: 25972767 PMCID: PMC4429661 DOI: 10.1186/1559-0275-12-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/15/2015] [Indexed: 11/17/2022] Open
Abstract
Background Elevated levels of reactive oxygen species (ROS) are detected in 25% to 80% of infertile men. They are involved in the pathology of male infertility. Understanding the effect of increasing levels of ROS on the differential expression of sperm proteins is important to understand the cellular processes and or/pathways that may be implicated in male infertility. The aim of this study was to examine differentially expressed proteins (DEPs) in spermatozoa from patients with low, medium and high ROS levels. Methods A total of 42 infertile men presenting for infertility and 17 proven fertile men were enrolled in the study. ROS levels were measured by chemiluminescence assay. Infertile men were divided into Low (0- < 93 RLU/s/106 sperm) (n = 11), Medium (>93-500 RLU/s/106 sperm) (n = 17) and High ROS (>500 RLU/s/106 sperm) group (n = 14). All fertile men had ROS levels between 4-50 RLU/s/106 sperm. 4 subjects from fertile group and 4 each from the Low, Medium and High ROS were pooled. Protein extraction, protein estimation, gel separation of the proteins, in-gel digestion, LTQ-orbitrap elite hybrid mass spectrometry system was conducted. The DEPs, the cellular localization and pathways of DEPs involved were examined utilizing bioinformatics tools. Results 1035 proteins were identified in the 3 groups by global proteomic analysis. Of these, 305 were DEPs. 51 were unique to the Low ROS group, 47 Medium ROS group and 104 were unique to the High ROS group. 6 DEPs were identified by Uniprot and DAVID that had distinct reproductive functions and they were expressed only in 3 ROS groups but not in the control. Conclusions We have for the first time demonstrated the presence of 6 DEPs with distinct reproductive functions only in men with low, medium or high ROS levels. These DEPs can serve as potential biomarkers of oxidative stress induced male infertility. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-12-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmet Ayaz
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Rakesh Sharma
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Mohamed Arafa
- Male Infertility Unit, Department of Urology, Hamad Hospital, Doha, Qatar
| | - Haitham Elbardisi
- Male Infertility Unit, Department of Urology, Hamad Hospital, Doha, Qatar
| | - Zhihong Cui
- Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
15
|
Berruti G, Paiardi C. Acrosome biogenesis: Revisiting old questions to yield new insights. SPERMATOGENESIS 2014; 1:95-98. [PMID: 22319656 DOI: 10.4161/spmg.1.2.16820] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 06/07/2011] [Indexed: 01/23/2023]
Abstract
The acrosome is a unique membranous organelle located over the anterior part of the sperm nucleus that is highly conserved throughout evolution. This acidic vacuole contains a number of hydrolytic enzymes that, when secreted, help the sperm penetrate the egg's coats. Although acrosome biogenesis is an important aspect of spermiogenesis, the molecular mechanism(s) that regulates this event remains unknown. Active trafficking from the Golgi apparatus is involved in acrosome formation, but experimental evidence indicates that trafficking of vesicles out of the Golgi also occurs during acrosomogenesis. Unfortunately, this second aspect of acrosome biogenesis remains poorly studied. In this article, we briefly discuss how the biosynthetic and endocytic pathways, assisted by a network of microtubules, tethering factors, motor proteins and small GTPases, relate and connect to give rise to the sperm-specific vacuole, with a particular emphasis placed on the endosomal compartment. It is hoped that this information will be useful to engage more studies on acrosome biogenesis by focusing attention towards suggested directions.
Collapse
Affiliation(s)
- Giovanna Berruti
- Department of Biology; Laboratory of Cellular and Molecular Biology of Reproduction; University of Milan; Milan, Italy
| | | |
Collapse
|
16
|
Nakamura N. Ubiquitination regulates the morphogenesis and function of sperm organelles. Cells 2013; 2:732-50. [PMID: 24709878 PMCID: PMC3972651 DOI: 10.3390/cells2040732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022] Open
Abstract
It is now understood that protein ubiquitination has diverse cellular functions in eukaryotes. The molecular mechanism and physiological significance of ubiquitin-mediated processes have been extensively studied in yeast, Drosophila and mammalian somatic cells. Moreover, an increasing number of studies have emphasized the importance of ubiquitination in spermatogenesis and fertilization. The dysfunction of various ubiquitin systems results in impaired sperm development with abnormal organelle morphology and function, which in turn is highly associated with male infertility. This review will focus on the emerging roles of ubiquitination in biogenesis, function and stability of sperm organelles in mammals.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
17
|
Wang J, Teves ME, Shen X, Nagarkatti-Gude DR, Hess RA, Henderson SC, Strauss JF, Zhang Z. Mouse RC/BTB2, a member of the RCC1 superfamily, localizes to spermatid acrosomal vesicles. PLoS One 2012; 7:e39846. [PMID: 22768142 PMCID: PMC3387240 DOI: 10.1371/journal.pone.0039846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/31/2012] [Indexed: 12/01/2022] Open
Abstract
Mouse RC/BTB2 is an unstudied protein of the RCC1 (Regulator of Chromosome Condensation) superfamily. Because of the significant remodeling of chromatin that occurs during spermiogenesis, we characterized the expression and localization of mouse RC/BTB2 in the testis and male germ cells. The Rc/btb2 gene yields two major transcripts: 2.3 kb Rc/btb2-s, present in most somatic tissues examined; and 2.5 kb Rc/btb2-t, which contains a unique non-translated exon in its 5'-UTR that is only detected in the testis. During the first wave of spermatogenesis, Rc/btb2-t mRNA is expressed from day 8 after birth, reaching highest levels of expression at day 30 after birth. The full-length protein contains three RCC1 domains in the N-terminus, and a BTB domain in the C-terminus. In the testis, the protein is detectable from day 12, but is progressively up-regulated to day 30 and day 42 after birth. In spermatids, some of the protein co-localizes with acrosomal markers sp56 and peanut lectin, indicating that it is an acrosomal protein. A GFP-tagged RCC1 domain is present throughout the cytoplasm of transfected CHO cells. However, both GFP-tagged, full-length RC/BTB2 and a GFP-tagged BTB domain localize to vesicles in close proximity to the nuclear membrane, suggesting that the BTB domain might play a role in mediating full-length RC/BTB2 localization. Since RCC1 domains associate with Ran, a small GTPase that regulates molecular trafficking, it is possible that RC/BTB2 plays a role in transporting proteins during acrosome formation.
Collapse
Affiliation(s)
- Jiannan Wang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Maria E. Teves
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xuening Shen
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David R. Nagarkatti-Gude
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rex A. Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Scott C. Henderson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jerome F. Strauss
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
18
|
MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res 2012; 349:881-95. [PMID: 22729485 PMCID: PMC3429778 DOI: 10.1007/s00441-012-1429-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/04/2012] [Indexed: 01/07/2023]
Abstract
Sperm-zona pellucida (ZP) penetration during fertilization is a process that most likely involves enzymatic digestion of this extracellular coat by spermatozoa. Since the inner acrosomal membrane (IAM) is the leading edge of spermatozoa during penetration and proteins required for secondary binding of sperm to the zona are present on it, the IAM is the likely location of these enzymes. The objectives of this study were to identify and characterize proteinases present on the IAM, confirm their localization and provide evidence for their role in fertilization. Gelatin zymography of detergent extracts of the IAM revealed bands of enzymatic activity identified as serine and matrix metallo-proteinases (MMPs). Specific inhibitors to MMPs revealed that MMP activity was due to MMP2. Immunoblotting determined that the serine protease activity on the zymogram was due to acrosin and also confirmed the MMP2 activity. Immunogold labeling of spermatozoa at the electron microscope level showed that acrosin and MMP2 were confined to the apical and principal segments of the acrosome in association with the IAM, confirming our IAM isolation technique. Immunohistochemical examination of acrosin and MMP2 during spermiogenesis showed that both proteins originate in the acrosomic granule during the Golgi phase and later redistribute to the acrosomal membrane. Anti-MMP2 antibodies and inhibitors incorporated into in vitro fertilization media significantly decreased fertilization rates. This is the first study to demonstrate that MMP2 and acrosin are associated with the IAM and introduces the possibility of their cooperation in enzymatic digestion of the ZP during penetration.
Collapse
|
19
|
Peruquetti RL, Taboga SR, Cabral SR, Oliveira CD, Azeredo-Oliveira MT. Relationship between the nucleolar cycle and chromatoid body formation in the spermatogenesis of Phrynops geoffroanus(Reptilia Testudines). Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.615147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
20
|
Tran MH, Aul RB, Xu W, van der Hoorn FA, Oko R. Involvement of classical bipartite/karyopherin nuclear import pathway components in acrosomal trafficking and assembly during bovine and murid spermiogenesis. Biol Reprod 2012; 86:84. [PMID: 22156475 DOI: 10.1095/biolreprod.111.096842] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study arose from our finding that SubH2Bv, a histone H2B variant residing in the subacrosomal compartment of mammalian spermatozoa, contains a bipartite nuclear localization signal (bNLS) but in spite of this did not enter the spermatid nucleus. Instead, it associated with proacrosomic and acrosomic vesicles, which were targeted to the nuclear surface to form the acrosome. On this basis we proposed that SubH2Bv targets proacrosomic/acrosomic vesicles from the Golgi apparatus to the nuclear envelope by utilizing the classical bipartite/karyopherin alpha (KPNA) nuclear import pathway. To test the protein's nuclear targeting ability, SubH2Bv, with and without targeted mutations of the basic residues of bNLS, as well as bNLS alone, were transfected into mammalian cells as GFP-fusion proteins. Only the intact bNLS conferred nuclear entry. Subsequently, we showed that a KPNA, most likely KPNA6, occupies the same sperm head compartment and follows the same pattern of acrosomal association during spermiogenesis as SubH2Bv. Sperm head fractionation combined with Western blotting located this KPNA to the subacrosomal layer of the perinuclear theca, while immunocytochemistry of testicular sections showed that it associates with the surface of proacrosomic/acrosomic vesicles during acrosomal biogenesis. The identical sperm-localization and testicular-expression patterns between KPNA and SubH2Bv suggested a potential binding interaction between these proteins. This was supported by recombinant SubH2Bv affinity pull-down assays on germ cell extracts. The results of this study provide a compelling argument that these two nuclear homing proteins work in concert to direct the acrosomic vesicle to the nucleus. Their final residence in the subacrosomal layer of the perinuclear theca of spermatozoa indicates a role for SubH2Bv and KPNA in acrosomal-nuclear docking.
Collapse
Affiliation(s)
- Mong Hoa Tran
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Peruquetti RL, Taboga SR, Azeredo-Oliveira MTVD. Morphological Changes of Mammalian Nucleoli during Spermatogenesis and Their Possible Role in the Chromatoid Body Assembling. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/829854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chromatoid body (CB) is a typical cytoplasmic organelle of germ cells, and it seems to be involved in RNA/protein accumulation for later germ-cell differentiation. Despite most of the events in mammals spermatogenesis had been widely described in the past decades and the increase in the studies related to the CB molecular composition and physiology, the origins and functions of this important structure of male germ cells are still unclear. The aims of this study were to describe the nucleolar cycle and also to find some relationship between the nucleolar organization and the CB assembling during the spermatogenesis in mammals. Cytochemical and cytogenetics analysis showed nucleolar fragmentation in post-pachytene spermatocytes and nucleolar reorganization in post-meiotic spermatids. Significant difference in the number and in the size of nucleoli between spermatogonia and round spermatids, as well as differences in the nucleolar position within the nucleus were also observed. Ultrastructural analysis showed the CB assembling in the cytoplasm of primary spermatocytes and the nucleolar fragmentation occurring at the same time. In conclusion our results suggest that the CB may play important roles during the spermatogenesis process in mammals and that its origin may be related to the nucleolar cycle during the meiotic cell cycle.
Collapse
Affiliation(s)
- Rita Luiza Peruquetti
- Department of Biology, Sao Paulo State University, UNESP/IBILCE, Rua Cristovao Colombo, 2265, 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Sao Paulo State University, UNESP/IBILCE, Rua Cristovao Colombo, 2265, 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | | |
Collapse
|
22
|
Abstract
"Germ granules" are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
23
|
Yogo K, Tojima H, Ohno JY, Ogawa T, Nakamura N, Hirose S, Takeya T, Kohsaka T. Identification of SAMT family proteins as substrates of MARCH11 in mouse spermatids. Histochem Cell Biol 2011; 137:53-65. [PMID: 22075566 DOI: 10.1007/s00418-011-0887-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2011] [Indexed: 12/12/2022]
Abstract
MARCH11, a RING-finger transmembrane ubiquitin ligase, is predominantly expressed in spermatids and localized to the trans-Golgi network (TGN) and multivesicular bodies (MVBs). Because ubiquitination acts as a sorting signal of cargo proteins, MARCH11 has been postulated to mediate selective protein sorting via the TGN-MVB pathway. However, the physiological substrate of MARCH11 has not been identified. In this study, we have identified and characterized SAMT1, a member of a novel 4-transmembrane protein family, which consists of four members. Samt1 mRNA and its expression product were found to be specific to the testis and were first detected in germ cells 25 days after birth in mice. Immunohistochemical analysis further revealed that SAMT1 was specifically expressed in haploid spermatids during the cap and acrosome phases. Confocal microscopic analysis showed that SAMT1 co-localized with MARCH11 as well as with fucose-containing glycoproteins, another TGN/MVB marker, and LAPM2, a late endosome/lysosome marker. Furthermore, we found that MARCH11 could increase the ubiquitination of SAMT1 and enhance its lysosomal delivery and degradation in an E3 ligase activity-dependent manner. In addition, the C-terminal region of SAMT1 was indispensable for its ubiquitination and proper localization. The other member proteins of the SAMT family also showed similar expression profile, intracellular localization, and biochemical properties, including ubiquitination by MARCH11. These results suggest that SAMT family proteins are physiological substrates of MARCH11 and are delivered to lysosomes through the TGN-MVB pathway by a ubiquitin-dependent sorting system in mouse spermatids.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fusion failure of dense-cored proacrosomal vesicles in an inducible mouse model of male infertility. Cell Tissue Res 2011; 346:119-34. [PMID: 21987219 DOI: 10.1007/s00441-011-1248-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 09/12/2011] [Indexed: 10/16/2022]
Abstract
The acrosome is a specialized secretory vesicle located in the head of spermatozoa and has an essential role during fertilization. This organelle and the sperm nucleus have aberrant morphologies in forms of male infertility in humans (teratozoospermia), often associated with poor motility (asthenoteratozoospermia). To further our understanding of the aetiology of these conditions, we have performed a pathological investigation of a model of asthenoteratozoospermia that can be induced in mice by N-butyldeoxynojirimycin (NB-DNJ). We have found that, in mice treated with NB-DNJ, instead of an acrosome forming over the round spermatid nucleus, multivesicular bodies (MVB) accumulate in the vicinity of this nucleus. Electron microscopy has revealed that proacrosomic vesicles or granules (PAG) secreted during the Golgi phase of spermiogenesis do not fuse together to form an acrosomic vesicle, but rather attach transiently to the spermatid nucleus. Immunocytochemistry has shown that acrosomal membrane proteins and cytosolic acrosome-associated proteins are redirected to MVB in affected testes, whereas glycoproteins originating in the dense core of the PAG are degraded. Thus, the major effect of NB-DNJ is to inhibit membrane fusion of Golgi-derived secretory vesicles destined for acrosome formation, raising the possibility that these vesicles are critically affected in forms of (astheno)teratozoospermia.
Collapse
|
25
|
Beguelini MR, Puga CC, Taboga SR, Morielle-Versute E. Ultrastructure of spermatogenesis in the white-lined broad-nosed bat, Platyrrhinus lineatus (Chiroptera: Phyllostomidae). Micron 2011; 42:586-99. [DOI: 10.1016/j.micron.2011.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/11/2011] [Accepted: 02/13/2011] [Indexed: 11/17/2022]
|
26
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|
27
|
Paiardi C, Pasini ME, Gioria M, Berruti G. Failure of acrosome formation and globozoospermia in the wobbler mouse, a Vps54 spontaneous recessive mutant. SPERMATOGENESIS 2011; 1:52-62. [PMID: 21866276 DOI: 10.4161/spmg.1.1.14698] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 11/19/2022]
Abstract
The acrosome is a unique organelle that plays an important role at fertilization and during sperm morphogenesis and that is absent in globozoospermia, an inherited infertility syndrome in humans. At the light of recent experimental evidence, the acrosome is considered a lysosome-related organelle to whose biogenesis both the endocytic and biosynthetic pathways contribute. Vps54 is a vesicular sorting protein involved in the retrograde traffic; the recessive Vps54(L967Q) mutation in the mouse results in the wobbler phenotype, characterized by motor-neuron degeneration and male infertility. Here we have investigated the spatio-temporal occurrence/progression of the wobbler fertility disorder starting from mice at post-natal day 35, the day of the first event of spermiation. We show that the pathogenesis of wobbler infertility originates at the first spermiogenetic wave, affecting acrosome formation and sperm head elongation. Vps54(L967Q)-labeled vesicles, on the contrary of the wild-type Vps54-labeled ones, are not able to coalesce into a larger vesicle that develops, flattens and shapes to give rise to the acrosome. Evidence that it is the malfunctioning of the endocytic traffic to hamper the development of the acrosome comes out from the study on UBPy. UBPy, a deubiquitinating enzyme, is a marker of acrosome biogenesis from the endocytic pathway. In wobbler spermatids UBPy-positive endosomes remain single, scattered vesicles that do not contribute to acrosome formation. As secondary defect of wobbler spermiogenesis, spermatid mitochondria are misorted; moreover, with the progression of the age/disease also Sertoli-germ cell adhesions are compromised suggesting a derailment in the endocytic route that underlies their restructuring.
Collapse
Affiliation(s)
- Chiara Paiardi
- Department of Biology; Laboratory of cellular and Molecular Biology of Reproduction; University of Milano; Milan, Italy
| | | | | | | |
Collapse
|
28
|
Frohnert C, Schweizer S, Hoyer-Fender S. SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome. Mol Hum Reprod 2010; 17:207-18. [DOI: 10.1093/molehr/gaq099] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
|
30
|
Arakaki RLM, Souza HV, Castanhole MMU, Bicudo HEMC, Itoyama MM. Cytogenetic evidence for de novo synthesis of rRNA and involvement of nucleolar material in the organization of cell structures during spermiogenesis of Chariesterus armatus (Heteroptera, Coreidae). GENETICS AND MOLECULAR RESEARCH 2010; 9:1877-85. [PMID: 20882483 DOI: 10.4238/vol9-3gmr930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The nucleolar material of Chariesterus armatus was analyzed during spermiogenesis in cell preparations impregnated with silver nitrate. Nucleolar corpuscles were observed in spermatids at the beginning of the process, showing that this organoid is also maintained after meiosis. In addition, nucleoli were seen in the round spermatids connected to the X-chromosome (bearer of the nucleolar organizer in C. armatus), indicating de novo synthesis of nucleolar material. This differs from the reorganization of ribosomal granules, transported from meiotic spermatocytes to round spermatids, where they would support protein synthesis, which is reported for other species. We also observed connections of nucleolar corpuscles to the nuclear membrane regions where the tail and the acrosome will be formed, suggesting close involvement of the nucleolar material in the formation of these structures. In addition to the nucleolar bodies, we detected silver-positive structures, which will require new approaches to clarify their role. One of these structures, observed in the cytoplasm, appears to correspond to the chromatoid body, which has been found in several organisms, but is still poorly understood; another is a complex structure to which the tail appears to be connected. We conclude that C. armatus is an appropriate model for understanding not only the synthesis of rRNA in the spermiogenesis, but also the functional meaning of the close relationship of nucleolar material with other structures during this process.
Collapse
Affiliation(s)
- R L M Arakaki
- Laboratório de Citogenética e Molecular de Insetos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
31
|
Valbuena G, Madrid JF, Hernández F, Sáez FJ. Identification of fucosylated glycoconjugates in Xenopus laevis testis by lectin histochemistry. Histochem Cell Biol 2010; 134:215-25. [DOI: 10.1007/s00418-010-0722-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2010] [Indexed: 11/30/2022]
|
32
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 2010; 73:279-319. [PMID: 19941292 DOI: 10.1002/jemt.20787] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis is a long process whereby haploid spermatids derived from the meiotic divisions of spermatocytes undergo metamorphosis into spermatozoa. It is subdivided into distinct steps with 19 being identified in rats, 16 in mouse and 8 in humans. Spermiogenesis extends over 22.7 days in rats and 21.6 days in humans. In this part, we review several key events that take place during the development of spermatids from a structural and functional point of view. During early spermiogenesis, the Golgi apparatus forms the acrosome, a lysosome-like membrane bound organelle involved in fertilization. The endoplasmic reticulum undergoes several topographical and structural modifications including the formation of the radial body and annulate lamellae. The chromatoid body is fully developed and undergoes structural and functional modifications at this time. It is suspected to be involved in RNA storing and processing. The shape of the spermatid head undergoes extensive structural changes that are species-specific, and the nuclear chromatin becomes compacted to accommodate the stream-lined appearance of the sperm head. Microtubules become organized to form a curtain or manchette that associates with spermatids at specific steps of their development. It is involved in maintenance of the sperm head shape and trafficking of proteins in the spermatid cytoplasm. During spermiogenesis, many genes/proteins have been implicated in the diverse dynamic events occurring at this time of development of germ cells and the absence of some of these have been shown to result in subfertility or infertility.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
33
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
34
|
Berruti G, Ripolone M, Ceriani M. USP8, a Regulator of Endosomal Sorting, Is Involved in Mouse Acrosome Biogenesis Through Interaction with the Spermatid ESCRT-0 Complex and Microtubules1. Biol Reprod 2010; 82:930-9. [DOI: 10.1095/biolreprod.109.081679] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
35
|
Oko R, Sutovsky P. Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization. J Reprod Immunol 2009; 83:2-7. [DOI: 10.1016/j.jri.2009.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 05/27/2009] [Indexed: 11/24/2022]
|
36
|
Yu Y, Vanhorne J, Oko R. The origin and assembly of a zona pellucida binding protein, IAM38, during spermiogenesis. Microsc Res Tech 2009; 72:558-65. [DOI: 10.1002/jemt.20696] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Peruquetti RL, Taboga SR, de Azeredo-Oliveira MTV. Characterization of Mongolian gerbil chromatoid bodies and their correlation with nucleolar cycle during spermatogenesis. Reprod Domest Anim 2009; 45:399-406. [PMID: 19144012 DOI: 10.1111/j.1439-0531.2008.01204.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aims of the present study were to monitor the nucleolar cycle in Mongolian gerbil spermiogenesis, to verify the relationship between the nucleolar component and chromatoid body (CB) formation and to investigate the function of this cytoplasmic supramolecular structure in spermatogenic cells. Histological sections of adult seminiferous tubules were analysed cytochemically by light microscopy and ultrastructurally by transmission electron microscopy. The results reveal that in early spermatids, the CB was visualized in association with Golgi vesicles indicating that this structure may participate in the acrosome formation process as had been reported in other rodents. In late spermatids, the CB was observed near the axoneme region suggesting that this structure may support spermatozoon tail formation as happens in other species. Chromatoid body was joined with lipid droplets in this same cell type. This observation should be investigated to verify whether CB may be related to steroidal hormone metabolism. In conclusion, our data showed that there is disintegration of primary spermatocyte nucleoli at the beginning of prophase I and a fraction of this nucleolar material migrates to the cytoplasm, where a specific structure is formed, known as the 'chromatoid body', which apparently participates in some parts of the gerbil spermiogenesis process.
Collapse
Affiliation(s)
- R L Peruquetti
- Department of Biology, Sao Paulo State University - UNESP/IBILCE, Rua Cristovao Colombo, SP, Brazil
| | | | | |
Collapse
|
38
|
Yokota S. Historical survey on chromatoid body research. Acta Histochem Cytochem 2008; 41:65-82. [PMID: 18787638 PMCID: PMC2532602 DOI: 10.1267/ahc.08010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/14/2008] [Indexed: 12/22/2022] Open
Abstract
The chromatoid body (CB) is a male reproductive cell-specific organelle that appears in spermatocytes and spermatids. The cytoplasmic granule corresponding to the CB was first discovered some 130 years ago by von Brunn in 1876. Thirty years later the German term "chromatoide Körper" (chromatoid body) was introduced to describe this granule and is still used today. In this review, first, the results obtained by light microscopic studies on the CB for the first 60 years are examined. Next, many findings revealed by electron microscopic studies are reviewed. Finally, recent molecular cell biological studies concerning the CB are discussed. The conclusion obtained by exploring the papers on CB published during the past 130 years is that many of the modern molecular cell biological studies are undoubtedly based on information accumulated by vast amounts of early studies.
Collapse
Affiliation(s)
- Sadaki Yokota
- Section of Functional Morphology, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan.
| |
Collapse
|
39
|
Mountjoy JR, Xu W, McLeod D, Hyndman D, Oko R. RAB2A: A Major Subacrosomal Protein of Bovine Spermatozoa Implicated in Acrosomal Biogenesis1. Biol Reprod 2008; 79:223-32. [DOI: 10.1095/biolreprod.107.065060] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
40
|
Peruquetti RL, Assis IM, Taboga SR, de Azeredo-Oliveira MTV. Meiotic nucleolar cycle and chromatoid body formation during the rat (Rattus novergicus) and mouse (Mus musculus) spermiogenesis. Micron 2008; 39:419-25. [PMID: 17512745 DOI: 10.1016/j.micron.2007.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
The aims of the present study were to follow the nucleolar cycle in spermiogenesis of the laboratory rodents Rattus novergicus and Mus musculus, to verify the relationship between the nucleolar component and chromatoid body (CB) formation and to investigate the function of this cytoplasmic supramolecular structure in spermatogenic haploid cells. Histological sections of adult seminiferous tubules were analyzed cytochemically by light microscopy and ultrastructural procedures by transmission electron microscopy. The results reveal that in early spermatids, the CB was visualized in association with the Golgi cisterns indicating that this structure may participate in the acrosome formation process. In late spermatids, the CB was observed near the axonema, a fact suggesting that this structure may support the formation of the spermatozoon tail. In conclusion, our data showed that there is disintegration of spermatid nucleoli at the beginning of spermatogenesis and a fraction of this nucleolar material migrates to the cytoplasm, where a specific structure is formed, known as the "chromatoid body", which, apparently, participates in some parts of the rodent spermiogenesis process.
Collapse
Affiliation(s)
- Rita Luiza Peruquetti
- São Paulo State University-UNESP/IBILCE, Department of Biology, Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, SP, Brazil
| | | | | | | |
Collapse
|
41
|
Morokuma Y, Nakamura N, Kato A, Notoya M, Yamamoto Y, Sakai Y, Fukuda H, Yamashina S, Hirata Y, Hirose S. MARCH-XI, a novel transmembrane ubiquitin ligase implicated in ubiquitin-dependent protein sorting in developing spermatids. J Biol Chem 2007; 282:24806-15. [PMID: 17604280 DOI: 10.1074/jbc.m700414200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A mechanism by which ubiquitinated cargo proteins are sorted into multivesicular bodies (MVBs) from plasma and trans-Golgi network (TGN) membranes is well established in yeast and mammalian somatic cells. However, the ubiquitin-dependent sorting pathway has not been clearly defined in germ cells. In this study we identified a novel member of the transmembrane RING-finger family of proteins, termed membrane-associated RING-CH (MARCH)-XI, that is expressed predominantly in developing spermatids and weakly in brain and pituitary. MARCH-XI possesses an E3 ubiquitin ligase activity that targets CD4 for ubiquitination. Immunoelectron microscopy of rat round spermatids showed that MARCH-XI is localized to TGN-derived vesicles and MVBs. Fluorescence staining of rat round spermatids and immunoprecipitation of rat testis demonstrated that MARCH-XI forms complexes with the adaptor protein complex-1 and with fucose-containing glycoproteins including ubiquitinated forms. Furthermore, the C-terminal region of MARCH-XI mediates its interaction with mu1-adaptin and Veli through a tyrosine-based motif and a PDZ binding motif, respectively. Our data suggest that MARCH-XI acts as a ubiquitin ligase with a role in ubiquitin-mediated protein sorting in the TGN-MVB transport pathway, which may be involved in mammalian spermiogenesis.
Collapse
Affiliation(s)
- Yuri Morokuma
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Huang WP, Ho HC. Role of microtubule-dependent membrane trafficking in acrosomal biogenesis. Cell Tissue Res 2005; 323:495-503. [PMID: 16341711 DOI: 10.1007/s00441-005-0097-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/05/2005] [Indexed: 11/25/2022]
Abstract
The role of microtubule-based trafficking in acrosomal biogenesis was examined by studying the effects of colchicine on spermiogenesis. In electron micrographs of untreated cap-phase mouse spermatids, coated vesicles were always seen on the apex and caudal margins of the developing acrosomal cap. The increase in volume and the accumulation of materials in the acrosome during the Golgi and cap phases were observed to occur via fusion of vesicles at various sites on the growing acrosome. By studying the acid phosphatase localization pattern and colchicine-treated spermatids, the role of clathrin-coated vesicles became clear. Coated vesicle formation at the caudal margin of the acrosome appeared to be responsible for the spreading and shaping of the acrosome over the surface of the nucleus and also established distinct regional differences in the acrosome. In colchicine-treated spermatids, the Golgi apparatus lost its typical membranous stack conformation and disintegrated into many small vesicles. Acrosome formation was retarded, and there was discordance of the spread of the acrosomal cap with that of the modified nuclear envelope. Many symplasts were also found because of the breakdown of intercellular bridges. Colchicine treatment thus indicated that microtubule-dependent trafficking of transport vesicles between the Golgi apparatus and the acrosome plays a vital role in acrosomal biogenesis. In addition, both anterograde and retrograde vesicle trafficking are extensively involved and seem to be equally important in acrosome formation.
Collapse
Affiliation(s)
- Wei-Pang Huang
- Department of Life Science, Institute of Zoology, National Taiwan University, Taipei, 10617, Taiwan
| | | |
Collapse
|
43
|
Abstract
All germ cells throughout the animal kingdom contain cytoplasmic cloud-like accumulations of material called nuage. Polar bodies in Drosophila oocytes are probably the best known forms of nuage. In spermatogenic cells, the nuage is called chromatoid body (CB). In early spermatids of the rat, it has a diameter of 1-1.5 microm and a finely filamentous lobular structure. Typically, it is associated with a multitude of vesicles. It is first clearly seen in mid- and late pachytene spermatocytes as an intermitochondrial dense material. During early spermiogenesis it is seen near the Golgi complex and frequently connected by material continuities through nuclear pore complexes with intranuclear particles. In living cells, the CB moves around the Golgi complex and has frequent contacts with it. The CB also moves perpendicularly to the nuclear envelope, and even through cytoplasmic bridges to the neighbour spermatids. One of the major components of the CB is a DEAD-box RNA helicase VASA that belongs to a class of proteins thought to act as RNA chaperones. It is a general marker of all germ cells and best characterized in Drosophila. The mouse VASA homologue was recently used as a marker of sperm formation from embryonic stem cells. It becomes generally accepted that the CB with its associated structures constitute a mechanism of post-transcriptional processing and storage of several mRNA species that are shared between neighbour cells and used for translation when the genome of the spermatids becomes inactive.
Collapse
Affiliation(s)
- Martti Parvinen
- Department of Anatomy, University of Turku, FIN-20520 Turku, Finland.
| |
Collapse
|
44
|
Brahmaraju M, Shoeb M, Laloraya M, Kumar PG. Spatio-temporal organization of Vam6P and SNAP on mouse spermatozoa and their involvement in sperm-zona pellucida interactions. Biochem Biophys Res Commun 2004; 318:148-55. [PMID: 15110766 DOI: 10.1016/j.bbrc.2004.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Indexed: 12/01/2022]
Abstract
Acrosomal assembly during spermatogenesis and acrosome reaction during sperm-oocyte interaction are unique events of vesicle synthesis, transport, and fusion leading to fertilization. SNARE complex formation is essential for membrane fusion, and vesicle-associated (v-) SNARE intertwines with target membrane (t-) SNARE to form a coiled coil that bridges two membranes and facilitates fusion. We detected messages of Vam6P and SNAP in mammalian testis and epididymis. Vam6P and SNAP were detected in a temporally organized fashion on the spermatozoa from testis and epididymis, which showed accumulation on the principal acrosomal domains during capacitation. Vam6P and SNAP were shed off from the principal acrosomal domain after acrosome reaction, but the equatorial and the post-acrosomal domains retained these proteins. Antibodies to VAMP and SNAP inhibited sperm-zona pellucida interaction, suggesting their possible involvement in sperm membrane vesiculation.
Collapse
Affiliation(s)
- M Brahmaraju
- Molecular Reproduction Unit, School of Life Sciences, Devi Ahilya University, Vigyan Bhawan, Khandwa Road, Indore 452 001, MP, India
| | | | | | | |
Collapse
|
45
|
Naud N, Touré A, Liu J, Pineau C, Morin L, Dorseuil O, Escalier D, Chardin P, Gacon G. Rho family GTPase Rnd2 interacts and co-localizes with MgcRacGAP in male germ cells. Biochem J 2003; 372:105-12. [PMID: 12590651 PMCID: PMC1223378 DOI: 10.1042/bj20021652] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 02/12/2003] [Accepted: 02/19/2003] [Indexed: 11/17/2022]
Abstract
The male-germ-cell Rac GTPase-activating protein gene (MgcRacGAP) was initially described as a human RhoGAP gene highly expressed in male germ cells at spermatocyte stage, but exhibits significant levels of expression in most cell types. In somatic cells, MgcRacGAP protein was found to both concentrate in the midzone/midbody and be required for cytokinesis. As a RhoGAP, MgcRacGAP has been proposed to down-regulate RhoA, which is localized to the cleavage furrow and midbody during cytokinesis. Due to embryonic lethality in MgcRacGAP -null mutant mice and to the lack of an in vitro model of spermatogenesis, nothing is known regarding the role and mode of action of MgcRacGAP in male germ cells. We have analysed the expression, subcellular localization and molecular interactions of MgcRacGAP in male germ cells. Whereas MgcRacGAP was found only in spermatocytes and early spermatids, the widespread RhoGTPases RhoA, Rac1 and Cdc42 (which are, to various extents, in vitro substrates for MgcRacGAP activity) were, surprisingly, not detected at these stages. In contrast, Rnd2, a Rho family GTPase-deficient G-protein was found to be co-expressed with MgcRacGAP in spermatocytes and spermatids. MgcRacGAP was detected in the midzone of meiotic cells, but also, unexpectedly, in the Golgi-derived pro-acrosomal vesicle, co-localizing with Rnd2. In addition, a stable Rnd2-MgcRacGAP molecular complex could be evidenced by glutathione S-transferase pull-down and co-immunoprecipitation experiments. We conclude that Rnd2 is a probable physiological partner of MgcRacGAP in male germ cells and we propose that MgcRacGAP, and, quite possibly, other RhoGAPs, may participate in signalling pathways involving Rnd family proteins.
Collapse
Affiliation(s)
- Nathalie Naud
- Institut Cochin, Département de Génétique, Développement et Pathologie Moléculaire, INSERM U567/CNRS UMR8104, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ramalho-Santos J, Moreno RD, Wessel GM, Chan EK, Schatten G. Membrane trafficking machinery components associated with the mammalian acrosome during spermiogenesis. Exp Cell Res 2001; 267:45-60. [PMID: 11412037 DOI: 10.1006/excr.2000.5119] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Active trafficking from the Golgi apparatus is involved in acrosome formation, both by delivering acrosomal contents to the nascent secretory vesicle and by controlling organelle growth and shaping. During murine spermiogenesis, Golgi antigens (giantin, beta-COP, golgin 97, mannosidase II) are detected in the acrosome until the late cap-phase spermatids, but are not found in testicular spermatozoa (maturation-phase spermatids). This suggests that Golgi-acrosome flow may be relatively unselective, with Golgi residents retrieved before spermiation is complete. Treatment of spermatogenic cells with brefeldin A, a drug that causes the Golgi apparatus to collapse into the endoplasmic reticulum, disrupted the Golgi in both pachytene spermatocytes and round spermatids. However, this treatment did not affect the acrosomal granule, and some beta-COP labeling on the acrosome of elongating spermatids was maintained. Additionally, N-ethylmaleimide sensitive factor, soluble NSF attachment proteins, and homologues of the t-SNARE syntaxin and of the v-SNARE VAMP/synaptobrevin, as well as members of the rab family of small GTPases, are associated with the acrosome (but not the acrosomal granule) in round and elongated spermatids. This suggests that rab proteins and the SNARE machinery for membrane recognition/docking/fusion may be involved in trafficking during mammalian acrosome biogenesis.
Collapse
Affiliation(s)
- J Ramalho-Santos
- Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon, 97006, USA
| | | | | | | | | |
Collapse
|
47
|
Martins MRFB, Silva JRCP. Ultrastructure of Spermatogonia and Primary Spermatocytes of C57BL6J Mice. Anat Histol Embryol 2001. [DOI: 10.1111/j.1439-0264.2001.t01-1-0313.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Segatelli TM, Almedia CC, Pinheiro PF, Martinez M, Padovani CR, Martinez FE. Ultrastructural study of acrosome formation in mongolian gerbil (Meriones unguiculatus). Tissue Cell 2000; 32:508-17. [PMID: 11197233 DOI: 10.1016/s0040-8166(00)80007-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Spermatogenesis is a complex and very well organized process lasting from 30 to 75 days in mammals. The spermatogenic process has been described mainly in laboratory mammals, such as the rat, while correspondent studies in wild animals are scarce. The gerbil (Meriones unguiculatus) is a small rodent native of the arid regions of Mongolia and China. Few reports are available on reproduction in the male Mongolian gerbil. The present study provides the first description of the ultrastructural alterations in spermatid cytoplasm and nucleus, with particular reference to acrosome formation in gerbils. The testes were processed by conventional transmission electron microscopy technique. Based on the development of the acrosomal system and changes in nuclear morphology, the transformation of spermatids in spermatozoon was divided into 15 steps. There were four phases in the spermiogenesis process in the gerbil: Golgi, cap, acrosomal and maturation phases. This provides the foundation for a variety of future studies of the spermiogenesis of this animal.
Collapse
Affiliation(s)
- T M Segatelli
- Department of Anatomy, Institute of Biosciences, University of the State of São Paulo (UNESP), Rubião Júnior S/N, 18618-000 Botucatu, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Moreno RD, Ramalho-Santos J, Sutovsky P, Chan EK, Schatten G. Vesicular traffic and golgi apparatus dynamics during mammalian spermatogenesis: implications for acrosome architecture. Biol Reprod 2000; 63:89-98. [PMID: 10859246 DOI: 10.1095/biolreprod63.1.89] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Vesicular membrane trafficking during acrosome biogenesis in bull and rhesus monkey spermatogenesis differs from the somatic cell paradigm as imaged dynamically using the Golgi apparatus probes beta-COP, giantin, Golgin-97, and Golgin-95/GM130. In particular, sorting and delivery of proteins seemed less precise during spermatogenesis. In early stages of spermiogenesis, many Golgi resident proteins and specific acrosomal markers were present in the acrosome. Trafficking in both round and elongating spermatids was similar to what has been described for somatic cells, as judged by the kinetics of Golgi protein incorporation into endoplasmic reticulum-like structures after brefeldin A treatment. These Golgi components were retrieved from the acrosome at later stages of differentiation and were completely devoid of immature spermatozoa. Our data suggest that active anterograde and retrograde vesicular transport trafficking pathways, involving both beta-COP- and clathrin-coated vesicles, are involved in retrieving Golgi proteins missorted to the acrosome and in controlling the growth and shape of this organelle.
Collapse
Affiliation(s)
- R D Moreno
- Oregon Regional Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
50
|
Yoshinaga K, Tanii I, Oh-Oka T, Toshimori K. Transport and rearrangement of the intra-acrosomal protein acrin1 (MN7) during spermiogenesis in the guinea pig testis. THE ANATOMICAL RECORD 2000; 259:131-40. [PMID: 10820315 DOI: 10.1002/(sici)1097-0185(20000601)259:2<131::aid-ar3>3.0.co;2-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have recently shown that a 90-kDa glycoprotein, acrin1 (MN7), is exclusively localized in the dorsal region of the acrosomal apical segment of mature guinea pig sperm, and that its location changes during epididymal maturation. The present study examined the process of transport and organization of this protein in the acrosome during spermatogenesis in the guinea pig testis. Immunoperoxidase electron microscopy showed stage-specific localization of acrin1 within the developing acrosome, as follows: acrin1 first appeared in the proacrosomic vesicles of the early Golgi phase spermatids, and it was then localized in the electron-lucent matrix region of the acrosomic vesicles of the late Golgi phase spermatids. During the cap phase, acrin1 was abundant in the electron-lucent matrix of the acrosomal apical segment and in the head-cap region (principal segment). acrin1 became more restricted to the peripheral region of the electron-lucent matrix of acrosome phase spermatids and it was localized in the electron-lucent dorsal matrix region of maturation phase spermatids. In the final step of spermiogenesis, acrin1 disappeared from the equatorial and principal segments, and it was finally confined to the dorsal matrix region of the acrosomal apical segment. In addition, Western blot analysis showed that acrin1 of testes and epididymal sperm was of the identical size, indicating that acrin1 is not proteolytically modified during epididymal sperm maturation. These results indicate that acrosome morphogenesis is closely associated with the rearrangement of acrosomal proteins.
Collapse
Affiliation(s)
- K Yoshinaga
- Department of Anatomy and Reproductive Cell Biology, Miyazaki Medical College, Miyazaki 889-1692, Japan.
| | | | | | | |
Collapse
|