1
|
Torres-Vergara P, Rivera R, Escudero C, Penny J. Maternal and Fetal Expression of ATP-Binding Cassette and Solute Carrier Transporters Involved in the Brain Disposition of Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:149-177. [PMID: 37466773 DOI: 10.1007/978-3-031-32554-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Evidence from preclinical and clinical studies demonstrate that pregnancy is a physiological state capable of modifying drug disposition. Factors including increased hepatic metabolism and renal excretion are responsible for impacting disposition, and the role of membrane transporters expressed in biological barriers, including the placental- and blood-brain barriers, has received considerable attention. In this regard, the brain disposition of drugs in the mother and fetus has been the subject of studies attempting to characterize the mechanisms by which pregnancy could alter the expression of ATP-binding cassette (ABC) and solute carrier (SLC) transporters. This chapter will summarize findings of the influence of pregnancy on the maternal and fetal expression of ABC and SLC transporters in the brain and the consequences of such changes on the disposition of therapeutic drugs.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
- Grupo de Investigación Vascular (GRIVAS), Universidad del Bio-Bio, Chillán, Chile.
| | - Robin Rivera
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Grupo de Investigación Vascular (GRIVAS), Universidad del Bio-Bio, Chillán, Chile
- Laboratorio de Fisiología Vascular, Facultad de Ciencias Básicas, Universidad del Bio Bio, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Bell KS, O’Shaughnessy KL. The development and function of the brain barriers - an overlooked consideration for chemical toxicity. FRONTIERS IN TOXICOLOGY 2022; 4:1000212. [PMID: 36329715 PMCID: PMC9622783 DOI: 10.3389/ftox.2022.1000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
It is well known that the adult brain is protected from some infections and toxic molecules by the blood-brain and the blood-cerebrospinal fluid barriers. Contrary to the immense data collected in other fields, it is deeply entrenched in environmental toxicology that xenobiotics easily permeate the developing brain because these barriers are either absent or non-functional in the fetus and newborn. Here we review the cellular and physiological makeup of the brain barrier systems in multiple species, and discuss decades of experiments that show they possess functionality during embryogenesis. We next present case studies of two chemical classes, perfluoroalkyl substances (PFAS) and bisphenols, and discuss their potential to bypass the brain barriers. While there is evidence to suggest these pollutants may enter the developing and/or adult brain parenchyma, many studies suffer from confounding technical variables which complicates data interpretation. In the future, a more formal consideration of brain barrier biology could not only improve understanding of chemical toxicokinetics but could assist in prioritizing environmental xenobiotics for their neurotoxicity risk.
Collapse
Affiliation(s)
- Kiersten S. Bell
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Katherine L. O’Shaughnessy
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,*Correspondence: Katherine L. O’Shaughnessy,
| |
Collapse
|
3
|
Yamaguchi T, Nishijima M, Kawabata K. Inhibition of Glycogen Synthase Kinase 3ß Enhances Functions of Induced Pluripotent Stem Cell-Derived Brain Microvascular Endothelial Cells in the Blood-Brain Barrier. Biol Pharm Bull 2022; 45:1525-1530. [PMID: 36184511 DOI: 10.1248/bpb.b22-00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain microvascular endothelial cells (BMECs) are essential component of the blood-brain barrier (BBB). BMECs strictly regulate the entry of various molecules into the central nervous system from the peripheral circulation by forming tight junctions and expressing various influx/efflux transporters and receptors. In vitro BBB models have been widely reported with primary BMECs isolated from animals, although it is known that the expression patterns and levels of transporters and receptors in BMECs differ between humans and animals. Recently, several methods to differentiate BMECs from human induced pluripotent stem (hiPS) cell have been developed. However, the expression of P-glycoprotein (P-gp), which is a key efflux transporter, in hiPS cell-derived BMECs was detected at a relatively low level compared with primary human BMECs. In this study, we examined the involvement of the canonical Wnt signaling pathway, which contributes to the development of BBB formation, in the regulation of P-gp expression in hiPS cell-derived BMECs. We found that the barrier integrity was significantly enhanced in hiPS cell-derived BMECs treated with glycogen synthase kinase-3ß (GSK-3ß) inhibitors, which are known to positively regulate the canonical Wnt signaling pathway. In addition, our data also showed P-gp expression level was increased by treatment with GSK-3ß inhibitors. In conclusion, physiological barrier function and P-gp expression in BMECs can be enhanced by the canonical Wnt signaling pathway. Our results may be useful for promoting the development of drugs for central nervous system diseases using in vitro BBB model.
Collapse
Affiliation(s)
- Tomoko Yamaguchi
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition
| | - Misae Nishijima
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition
| | - Kenji Kawabata
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition.,Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
4
|
Eng ME, Imperio GE, Bloise E, Matthews SG. ATP-binding cassette (ABC) drug transporters in the developing blood-brain barrier: role in fetal brain protection. Cell Mol Life Sci 2022; 79:415. [PMID: 35821142 PMCID: PMC11071850 DOI: 10.1007/s00018-022-04432-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
The blood-brain barrier (BBB) provides essential neuroprotection from environmental toxins and xenobiotics, through high expression of drug efflux transporters in endothelial cells of the cerebral capillaries. However, xenobiotic exposure, stress, and inflammatory stimuli have the potential to disrupt BBB permeability in fetal and post-natal life. Understanding the role and ability of the BBB in protecting the developing brain, particularly with respect to drug/toxin transport, is key to promoting long-term brain health. Drug transporters, particularly P-gp and BCRP are expressed in early gestation at the developing BBB and have a crucial role in developmental homeostasis and fetal brain protection. We have highlighted several factors that modulate drug transporters at the developing BBB, including synthetic glucocorticoid (sGC), cytokines, maternal infection, and growth factors. Some factors have the potential to increase expression and function of drug transporters and increase brain protection (e.g., sGC, transforming growth factor [TGF]-β). However, others inhibit drug transporters expression and function at the BBB, increasing brain exposure to xenobiotics (e.g., tumor necrosis factor [TNF], interleukin [IL]-6), negatively impacting brain development. This has implications for pregnant women and neonates, who represent a vulnerable population and may be exposed to drugs and environmental toxins, many of which are P-gp and BCRP substrates. Thus, alterations in regulated transport across the developing BBB may induce long-term changes in brain health and compromise pregnancy outcome. Furthermore, a large portion of neonatal adverse drug reactions are attributed to agents that target or access the nervous system, such as stimulants (e.g., caffeine), anesthetics (e.g., midazolam), analgesics (e.g., morphine) and antiretrovirals (e.g., Zidovudine); thus, understanding brain protection is key for the development of strategies to protect the fetal and neonatal brain.
Collapse
Affiliation(s)
- Margaret E Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
de Trizio I, Errede M, d'Amati A, Girolamo F, Virgintino D. Expression of P-gp in Glioblastoma: What we can Learn from Brain Development. Curr Pharm Des 2020; 26:1428-1437. [PMID: 32186270 DOI: 10.2174/1381612826666200318130625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
P-Glycoprotein (P-gp) is a 170-kDa transmembrane glycoprotein that works as an efflux pump and confers multidrug resistance (MDR) in normal tissues and tumors, including nervous tissues and brain tumors. In the developing telencephalon, the endothelial expression of P-gp, and the subcellular localization of the transporter at the luminal endothelial cell (EC) plasma membrane are early hallmarks of blood-brain barrier (BBB) differentiation and suggest a functional BBB activity that may complement the placental barrier function and the expression of P-gp at the blood-placental interface. In early fetal ages, P-gp has also been immunolocalized on radial glia cells (RGCs), located in the proliferative ventricular zone (VZ) of the dorsal telencephalon and now considered to be neural progenitor cells (NPCs). RG-like NPCs have been found in many regions of the developing brain and have been suggested to give rise to neural stem cells (NSCs) of adult subventricular (SVZ) neurogenic niches. The P-gp immunosignal, associated with RG-like NPCs during cortical histogenesis, progressively decreases in parallel with the last waves of neuroblast migrations, while 'outer' RGCs and the deriving astrocytes do not stain for the efflux transporter. These data suggest that in human glioblastoma (GBM), P-gp expressed by ECs may be a negligible component of tumor MDR. Instead, tumor perivascular astrocytes may dedifferentiate and resume a progenitor-like P-gp activity, becoming MDR cells and contribute, together with perivascular P-gpexpressing glioma stem-like cells (GSCs), to the MDR profile of GBM vessels. In conclusion, the analysis of Pgp immunolocalization during brain development may contribute to identify the multiple cellular sources in the GBM vessels that may be involved in P-gp-mediated chemoresistance and can be responsible for GBM therapy failure and tumor recurrence.
Collapse
Affiliation(s)
- Ignazio de Trizio
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, University of Bari, School of Medicine, Bari, Italy.,Department of Neurosurgery, Neurocenter of Southern Switzerland, Regional Hospital Lugano, Lugano, Switzerland
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, University of Bari, School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, University of Bari, School of Medicine, Bari, Italy
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, University of Bari, School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
6
|
Abstract
The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.
Collapse
Affiliation(s)
- Urs H Langen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Swathi Ayloo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
7
|
Saili KS, Zurlinden TJ, Schwab AJ, Silvin A, Baker NC, Hunter ES, Ginhoux F, Knudsen TB. Blood-brain barrier development: Systems modeling and predictive toxicology. Birth Defects Res 2018; 109:1680-1710. [PMID: 29251840 DOI: 10.1002/bdr2.1180] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) serves as a gateway for passage of drugs, chemicals, nutrients, metabolites, and hormones between vascular and neural compartments in the brain. Here, we review BBB development with regard to the microphysiology of the neurovascular unit (NVU) and the impact of BBB disruption on brain development. Our focus is on modeling these complex systems. Extant in silico models are available as tools to predict the probability of drug/chemical passage across the BBB; in vitro platforms for high-throughput screening and high-content imaging provide novel data streams for profiling chemical-biological interactions; and engineered human cell-based microphysiological systems provide empirical models with which to investigate the dynamics of NVU function. Computational models are needed that bring together kinetic and dynamic aspects of NVU function across gestation and under various physiological and toxicological scenarios. This integration will inform adverse outcome pathways to reduce uncertainty in translating in vitro data and in silico models for use in risk assessments that aim to protect neurodevelopmental health.
Collapse
Affiliation(s)
- Katerine S Saili
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Todd J Zurlinden
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Andrew J Schwab
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Nancy C Baker
- Leidos, contractor to NCCT, Research Triangle Park, North Carolina 27711
| | - E Sidney Hunter
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Thomas B Knudsen
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| |
Collapse
|
8
|
Wijaya J, Fukuda Y, Schuetz JD. Obstacles to Brain Tumor Therapy: Key ABC Transporters. Int J Mol Sci 2017; 18:E2544. [PMID: 29186899 PMCID: PMC5751147 DOI: 10.3390/ijms18122544] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
The delivery of cancer chemotherapy to treat brain tumors remains a challenge, in part, because of the inherent biological barrier, the blood-brain barrier. While its presence and role as a protector of the normal brain parenchyma has been acknowledged for decades, it is only recently that the important transporter components, expressed in the tightly knit capillary endothelial cells, have been deciphered. These transporters are ATP-binding cassette (ABC) transporters and, so far, the major clinically important ones that functionally contribute to the blood-brain barrier are ABCG2 and ABCB1. A further limitation to cancer therapy of brain tumors or brain metastases is the blood-tumor barrier, where tumors erect a barrier of transporters that further impede drug entry. The expression and regulation of these two transporters at these barriers, as well as tumor derived alteration in expression and/or mutation, are likely obstacles to effective therapy.
Collapse
Affiliation(s)
- Juwina Wijaya
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, USA.
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, USA.
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, USA.
| |
Collapse
|
9
|
Lam J, Baello S, Iqbal M, Kelly LE, Shannon PT, Chitayat D, Matthews SG, Koren G. The ontogeny of P-glycoprotein in the developing human blood-brain barrier: implication for opioid toxicity in neonates. Pediatr Res 2015; 78:417-21. [PMID: 26086643 DOI: 10.1038/pr.2015.119] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/23/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Neonates have been shown to have a heightened sensitivity to the central depressive effects of opioids compared to older infants and adults. The limited development of P-glycoprotein (P-gp) may limit the ability of the neonate to efflux morphine from the brain back to the systemic circulation. The objective of the study was to determine the ontogeny of P-gp in the human brain. METHODS Postmortem cortex samples from gestational age (GA) 20-26 wk, GA 36-40 wk, postnatal age (PNA) 0-3 mo, PNA 3-6 mo, and adults were immunostained for P-gp. RESULTS The intensity of P-gp staining in adults was significantly higher compared to at GA 20-26 wk (P < 0.05), GA 36-40 wk (P < 0.05), and PNA 0-3 mo (P < 0.05). P-gp intensity at GA 20-26 wk (P < 0.05), GA 36-40 wk (P < 0.05), and PNA 0-3 mo (P < 0.05) was significantly lower compared to at PNA 3-6 mo. CONCLUSION P-gp expression in the brain is limited at birth, increases with postnatal maturation, and reaches adult levels at ~3-6 mo of age. Given the immaturity of blood-brain barrier (BBB) P-gp after birth, morphine may concentrate in the brain. This provides mechanistic support to life threatening opioid toxicity seen with maternal codeine use during breastfeeding.
Collapse
Affiliation(s)
- Jessica Lam
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephanie Baello
- Department of Physiology, Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Majid Iqbal
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lauren E Kelly
- Department of Physiology and Pharmacology, University of Western Ontario, Toronto, Ontario, Canada
| | - Patrick T Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David Chitayat
- Department of Obstetrics and Gynaecology, Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Gideon Koren
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Wong CT, Wais J, Crawford DA. Prenatal exposure to common environmental factors affects brain lipids and increases risk of developing autism spectrum disorders. Eur J Neurosci 2015. [DOI: 10.1111/ejn.13028] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine T. Wong
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
- Neuroscience Graduate Diploma Program; York University; Toronto ON Canada M3J 1P3
| | - Joshua Wais
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
| | - Dorota A. Crawford
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
- Neuroscience Graduate Diploma Program; York University; Toronto ON Canada M3J 1P3
- Department of Biology; York University; Toronto ON Canada M3J 1P3
| |
Collapse
|
11
|
P-glycoprotein in the developing human brain: a review of the effects of ontogeny on the safety of opioids in neonates. Ther Drug Monit 2015; 36:699-705. [PMID: 24819966 DOI: 10.1097/ftd.0000000000000087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human blood brain barrier is responsible for maintaining brain homeostasis and protecting against potentially toxic substances. The ATP-binding cassette drug efflux protein, P-glycoprotein (P-gp) is a key player in actively extruding a wide range of xenobiotics such as opioids from the brain. Because the blood brain barrier is structurally and functionally immature in neonates, opioids may have a greater penetration to the central nervous system. This may influence the efficacy and safety of opioids in the newborn. Understanding the extent of P-gp's expression in the brain in the embryo, fetus, and newborn will facilitate rational opioid use during pregnancy and the neonatal period. This review aims to summarize the current evidence that associates the ontogeny of P-gp and the susceptibility to opioid-induced adverse respiratory effects in neonates. To date, evidence suggests that the expression of P-gp in the human brain is low at birth, contributing to increased susceptibility.
Collapse
|
12
|
Strazielle N, Ghersi-Egea JF. Efflux transporters in blood-brain interfaces of the developing brain. Front Neurosci 2015; 9:21. [PMID: 25698917 PMCID: PMC4318338 DOI: 10.3389/fnins.2015.00021] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/13/2015] [Indexed: 01/16/2023] Open
Abstract
The cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-CSF barrier (BCSFB) operate as gatekeepers for the central nervous system. Exposure of the vulnerable developing brain to chemical insults can have dramatic consequences for brain maturation and lead to life-long neurological diseases. The ability of blood-brain interfaces to efficiently protect the immature brain is therefore an important pathophysiological issue. This is also key to our understanding of drug entry into the brain of neonatal and pediatric patients. Non-specific paracellular diffusion through barriers is restricted early during development, but other neuroprotective properties of these interfaces differ between the developing and adult brains. This review focuses on the developmental expression and function of various classes of efflux transporters. These include the multispecific transporters of the ATP-binding cassette transporter families ABCB, ABCC, ABCG, the organic anion and cation transporters of the solute carrier families SLC21/SLCO and SLC22, and the peptide transporters of the SLC15 family. These transporters play a key role in preventing brain entry of blood-borne molecules such as drugs, environmental toxicants, and endogenous metabolites, or else in increasing the clearance of potentially harmful organic ions from the brain. The limited data available for laboratory animals and human highlight transporter-specific developmental patterns of expression and function, which differ between blood-brain interfaces. The BCSFB achieves an adult phenotype earlier than BBB. Efflux transporters at the BBB appear to be regulated by various factors subsequently secreted by neural progenitors and astrocytes during development. Their expression is also modulated by oxidative stress, inflammation, and exposure to xenobiotic inducers. A better understanding of these regulatory pathways during development, in particular the signaling pathways triggered by oxidative stress and xenobiotics, may open new opportunities to therapeutic manipulation in view to improve or restore neuroprotective functions of the blood-brain interfaces in the context of perinatal injuries.
Collapse
Affiliation(s)
- Nathalie Strazielle
- Brain-i Lyon, France ; Oncoflam Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, Université Lyon 1 Lyon, France
| | - Jean-François Ghersi-Egea
- Oncoflam Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, Université Lyon 1 Lyon, France ; BIP Platform, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, Université Lyon 1 Lyon, France
| |
Collapse
|
13
|
Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology 2011; 33:586-604. [PMID: 22198708 DOI: 10.1016/j.neuro.2011.12.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/11/2011] [Accepted: 12/11/2011] [Indexed: 01/16/2023]
Abstract
The brain develops and grows within a well-controlled internal environment that is provided by cellular exchange mechanisms in the interfaces between blood, cerebrospinal fluid and brain. These are generally referred to by the term "brain barriers": blood-brain barrier across the cerebral endothelial cells and blood-CSF barrier across the choroid plexus epithelial cells. An essential component of barrier mechanisms is the presence of tight junctions between the endothelial and epithelial cells of these interfaces. This review outlines historical evidence for the presence of effective barrier mechanisms in the embryo and newborn and provides an up to date description of recent morphological, biochemical and molecular data for the functional effectiveness of these barriers. Intercellular tight junctions between cerebral endothelial cells and between choroid plexus epithelial cells are functionally effective as soon as they differentiate. Many of the influx and efflux mechanisms are not only present from early in development, but the genes for some are expressed at much higher levels in the embryo than in the adult and there is physiological evidence that these transport systems are functionally more active in the developing brain. This substantial body of evidence supporting the concept of well developed barrier mechanisms in the developing brain is contrasted with the widespread belief amongst neurotoxicologists that "the" blood-brain barrier is immature or even absent in the embryo and newborn. A proper understanding of the functional capacity of the barrier mechanisms to restrict the entry of harmful substances or administered therapeutics into the developing brain is critical. This knowledge would assist the clinical management of pregnant mothers and newborn infants and development of protocols for evaluation of risks of drugs used in pregnancy and the neonatal period prior to their introduction into clinical practice.
Collapse
Affiliation(s)
- C Joakim Ek
- Department of Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
14
|
Gómez‐González B, Larios HM, Escobar A. Increased transvascular transport of WGA‐peroxidase after chronic perinatal stress in the hippocampal microvasculature of the rat. Int J Dev Neurosci 2011; 29:839-46. [DOI: 10.1016/j.ijdevneu.2011.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/08/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022] Open
Affiliation(s)
- Beatriz Gómez‐González
- Dept. Cell Biology and PhysiologyInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria04510Mexico CityMexico
| | - Horacio Merchant Larios
- Dept. Cell Biology and PhysiologyInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria04510Mexico CityMexico
| | - Alfonso Escobar
- Dept. Cell Biology and PhysiologyInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria04510Mexico CityMexico
| |
Collapse
|
15
|
Developmental expression of multidrug resistance phosphoglycoprotein (P-gp) in the mouse fetal brain and glucocorticoid regulation. Brain Res 2010; 1357:9-18. [DOI: 10.1016/j.brainres.2010.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 02/04/2023]
|
16
|
Preservation of transendothelial glucose transporter 1 and P-glycoprotein transporters in a cortical slice culture model of the blood–brain barrier. Neuroscience 2010; 170:361-71. [DOI: 10.1016/j.neuroscience.2010.06.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 06/13/2010] [Accepted: 06/25/2010] [Indexed: 11/24/2022]
|
17
|
Myllynen P, Kummu M, Sieppi E. ABCB1 and ABCG2 expression in the placenta and fetus: an interspecies comparison. Expert Opin Drug Metab Toxicol 2010; 6:1385-98. [PMID: 20738225 DOI: 10.1517/17425255.2010.514264] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE OF THE FIELD ABCB1 and ABCG2 are efflux transporters which have a major impact on the pharmacological behavior of numerous drugs. They are expressed, for example, in the intestine, liver, kidney, BBB and placenta. It has become evident that ABCB1 and ABCG2 modify the pharmaco/toxicokinetics in the placenta and fetus and may consequently affect the outcome of pregnancy. AREAS COVERED IN THIS REVIEW Comprehensive literature searches were done using PubMed (until June 2010) to identify publications on ABCB1 and ABCG2 expression in placenta and fetal tissues in human, mouse, rat, guinea-pig and rabbit. WHAT THE READER WILL GAIN In this review, we aim to provide an overview of the current knowledge on the ABCB1 and ABCG2 transporter expression profiles in the placenta and fetal tissues in humans relative to other species. TAKE HOME MESSAGE The available information on ABCB1 and ABCG2 temporal expression profiles in placenta and fetus indicates rather good correlation among human, mouse and rat although some specific differences have been reported. However, at this point no detailed comparisons or comparative functional data are available. Detailed knowledge on the expression patterns and functional activity of ABCB1 and ABCG2 transporters placenta and developing embryo/fetus in different species could possibly help the interspecies extrapolation.
Collapse
Affiliation(s)
- Päivi Myllynen
- University of Oulu, Institute of Biomedicine, Department of Pharmacology and Toxicology, PO Box 5000, FIN-90014 Oulu, Finland.
| | | | | |
Collapse
|
18
|
Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 2008; 335:75-96. [DOI: 10.1007/s00441-008-0658-9] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/03/2008] [Indexed: 02/01/2023]
|
19
|
Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, Romero IA, Couraud PO, Weksler BB, Hladky SB, Barrand MA. Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem 2008; 106:1855-65. [PMID: 18624906 DOI: 10.1111/j.1471-4159.2008.05537.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study investigates involvement of beta-catenin signalling in regulation of p-glycoprotein (p-gp) expression in endothelial cells derived from brain vasculature. Pharmacological interventions that enhance or that block beta-catenin signalling were applied to primary rat brain endothelial cells and to immortalized human brain endothelial cells, hCMEC/D3, nuclear translocation of beta-catenin being determined by immunocytochemistry and by western blot analysis to confirm effectiveness of the manipulations. Using the specific glycogen synthase kinase-3 (GSK-3) inhibitor 6-bromoindirubin-3'-oxime enhanced beta-catenin and increased p-gp expression including activating the MDR1 promoter. These increases were accompanied by increases in p-gp-mediated efflux capability as observed from alterations in intracellular fluorescent calcein accumulation detected by flow cytometry. Similar increases in p-gp expression were noted with other GSK-3 inhibitors, i.e. 1-azakenpaullone or LiCl. Application of Wnt agonist [2-amino-4-(3,4-(methylenedioxy) benzylamino)-6-(3-methoxyphenyl)pyrimidine] also enhanced beta-catenin and increased transcript and protein levels of p-gp. By contrast, down-regulating the pathway using Dickkopf-1 or quercetin decreased p-gp expression. Similar changes were observed with multidrug resistance protein 4 and breast cancer resistance protein, both known to be present at the blood-brain barrier. These results suggest that regulation of p-gp and other multidrug efflux transporters in brain vasculature can be influenced by beta-catenin signalling.
Collapse
Affiliation(s)
- Joseph C Lim
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fetal Blood-Brain Barrier P-Glycoprotein Contributes to Brain Protection During Human Development. J Neuropathol Exp Neurol 2008; 67:50-61. [DOI: 10.1097/nen.0b013e31815f65d9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
21
|
Lim JC, Wolpaw AJ, Caldwell MA, Hladky SB, Barrand MA. Neural precursor cell influences on blood-brain barrier characteristics in rat brain endothelial cells. Brain Res 2007; 1159:67-76. [PMID: 17583679 DOI: 10.1016/j.brainres.2007.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 04/26/2007] [Accepted: 05/01/2007] [Indexed: 11/15/2022]
Abstract
This study explores the effects of neural precursor cells (NPCs) on barrier characteristics in brain vasculature. Primary rat brain endothelial cells were exposed to conditioned medium from NPCs isolated from day 14 embryonic rat brains and maintained as free-floating undifferentiated neurospheres. Such exposure increased brain endothelial transcript levels of the mdr1a but not mdr1b gene encoding P-glycoprotein (Pgp) and reduced proliferation but did not alter transendothelial resistance (TER). These effects were compared to those seen following co-culture with differentiating NPCs or with primary astrocytes. NPCs, if grown adherent, differentiate into glial and neuronal cells as assessed by immunocytochemical and mRNA analysis. Brain endothelial cells when co-cultured with these cells also showed reduced proliferation and enhanced mdr1a expression, but in addition increased TER. Similar increases were observed in co-culture with astrocytes. These results suggest that undifferentiated NPCs produce factors that influence Pgp expression whereas their progeny also affect tight junction integrity.
Collapse
Affiliation(s)
- Joseph C Lim
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | | | |
Collapse
|
22
|
Kraus J, Oschmann P. The impact of interferon-beta treatment on the blood-brain barrier. Drug Discov Today 2006; 11:755-62. [PMID: 16846804 DOI: 10.1016/j.drudis.2006.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/24/2006] [Accepted: 06/09/2006] [Indexed: 01/09/2023]
Abstract
Changes in the blood-brain barrier (BBB) are crucial to the pathogenesis of multiple sclerosis (MS). There are currently few established treatments for MS, and interferon-beta (IFN-beta) therapy is one of the most promising - proposed to act as an immunomodulator of the cytokine network reducing inflammatory damage. However, there is increasing evidence that direct effects on the BBB could also be relevant. This review surveys the evidence that IFN-beta stabilizes the BBB, and that this process itself might be the key target. Understanding IFN-beta-derived changes at the BBB will not only provide new insights in the pathogenesis of MS but will also be helpful to develop new, more-specific drugs for MS treatment.
Collapse
Affiliation(s)
- Jörg Kraus
- Paracelsus Private Medical University and Salzburger Landesklinken, Christian-Doppler-Klinik, Department of Neurology, Ignaz-Harrer-Strasse 79, 5020 Salzburg, Austria.
| | | |
Collapse
|
23
|
Goralski KB, Acott PD, Fraser AD, Worth D, Sinal CJ. Brain cyclosporin A levels are determined by ontogenic regulation of mdr1a expression. Drug Metab Dispos 2006; 34:288-95. [PMID: 16303871 DOI: 10.1124/dmd.105.007427] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cyclosporin A (CyA) toxicity is a common occurrence in pediatric organ transplant patients. We hypothesized that reduced mdr1a expression in newborn and developing mice would affect CyA accumulation within organs and/or toxicity. For functional studies, CyA was administered (5 mg kg(-1) i.p.) to 1-, 12-, and 19-day, and adult male and female mdr1a+/+ and mdr1a-/- mice. Peak blood CyA was lower in 1-, 12-, and 19-day-old (1000 ng ml(-1)) versus adult (1500 ng ml(-1)) mice but was similar in mdr1a+/+ and mdr1a-/- mice. Kidney mdr1a expression (measured by quantitative polymerase chain reaction) increased 2.5-fold in 19-day-old male and female mice and increased another 4-fold in adult females compared with adult males. Liver mdr1a expression increased 6-fold by day 12 compared with neonatal mice. Thereafter, maintenance of hepatic mdr1a expression in females and a reduction to neonatal levels in males was observed. Kidney/blood (8- to 9-fold) and liver/blood (12- to 15-fold) CyA levels were highest on days 12 and 19 and were not dependent on maturational changes in mdr1a mRNA levels. Adults had higher brain expression of mdr1a mRNA (3-fold), a corresponding 5-fold increase in immunodetectable P-glycoprotein, and 80% lower brain accumulation of CyA compared with 1-day-old mice. Conversely, in mdr1a-null mice, brain/blood CyA was similar in newborn and adult mice. A similar pattern was observed for the brain accumulation of the mdr1a substrate 3H-digoxin. We conclude that the risk for central nervous system drug toxicity could be higher in neonates or young children as a consequence of underdeveloped P-glycoprotein.
Collapse
Affiliation(s)
- Kerry B Goralski
- Department of Pharmacology, Dalhousie University, Room 5E Sir Charles Tupper Building, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | |
Collapse
|
24
|
Caprioli A, Zhu H, Sato TN. CRBP-III:lacZ expression pattern reveals a novel heterogeneity of vascular endothelial cells. Genesis 2005; 40:139-45. [PMID: 15493015 DOI: 10.1002/gene.20075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vascular endothelial cells are structurally and functionally heterogeneous. However, the molecular basis of this heterogeneity remains poorly defined. We used subtractive and differential screening to identify genes that exhibit heterogeneous expression patterns among vascular endothelial cells. One such gene is cellular retinol binding protein III (CRBP-III/Rbp7). Analysis of the lacZ knockin line for this gene (CRBP-III:lacZ) revealed a novel organ-specific vascular endothelial expression pattern. LacZ was expressed in vascular endothelial cells in heart, skeletal muscle, adipose tissues, thymus, and salivary gland. However, it was not detected in other tissues such as brain, liver, and lung. Furthermore, the expression within each organ was primarily restricted to small capillary endothelial cells, but could not be detected in larger vessels. This organ-specific vascular endothelial expression of CRPB:lacZ is relatively resistant to the changes of organ microenvironment. However, the level of expression can be modified by vitamin A deficiency. Therefore, our results provide novel molecular evidence for the heterogeneity of vascular endothelial cells.
Collapse
Affiliation(s)
- Arianna Caprioli
- The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8573, USA
| | | | | |
Collapse
|
25
|
Wu Z, Hofman FM, Zlokovic BV. A simple method for isolation and characterization of mouse brain microvascular endothelial cells. J Neurosci Methods 2003; 130:53-63. [PMID: 14583404 DOI: 10.1016/s0165-0270(03)00206-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brain endothelial cells, a site of the blood-brain barrier in vivo, regulate a number of physiological and pathophysiological processes in the brain including transport of nutrients, export of critical toxins, transmigration of circulating leukocytes and formation of new blood vessels. In this report, we describe a simple and reproducible method to isolate pure (>99%), functionally active endothelial cells from small quantities of adult mouse brain tissue. In vitro, these cells express typical phenotypic markers of differentiated brain endothelium such as von Willebrand factor, multiple drug resistant protein and glucose transporter-1, demonstrate uptake of acetylated low-density lipoprotein, and possess morphological and ultrastructural characteristics of microvascular endothelium. They form tight junctions and capillary-like tubes when stimulated by growth factors in an in vitro angiogenesis assay. In response to tumor necrosis factor-alpha, isolated mouse brain endothelial cells (MBEC) express vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). The protocol described here provides an effective and reliable method to isolate pure cerebral endothelium from adult mouse brain that should offer a useful tool for studying the role of altered vascular biology in mice with genetically manipulated brain disorders.
Collapse
Affiliation(s)
- Zhenhua Wu
- Frank P. Smith Laboratories for Neurosurgery, Department of Neurosurgery and Division for Neurovascular Biology, Center for Aging and Developmental Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, USA
| | | | | |
Collapse
|
26
|
Zenker D, Begley D, Bratzke H, Rübsamen-Waigmann H, von Briesen H. Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. J Physiol 2003; 551:1023-32. [PMID: 12829721 PMCID: PMC2343297 DOI: 10.1113/jphysiol.2003.045880] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The characteristic properties of the blood-brain barrier (BBB) forming brain capillary endothelial cells (BCEC) are modulated by their microenvironment, but the cellular sources of the induction signals are still unclear. Apart from astrocytes, another cell type in close contact with cerebral blood vessels is the perivascular macrophages, which are known to be regularly replaced by blood-derived monocytic precursor cells. It is unknown if, and how, these cells may interact with the cerebral endothelium and modulate its BBB-specific functions. In the present study, a cell culture model of the BBB was used to investigate the effect of blood-derived human macrophages on the permeability of cultured bovine and human BCEC, determined by a transendothelial electrical resistance (TEER) measurement. We found that the TEER of postconfluent BCEC was considerably increased by a non-contact coculture with macrophages. After 24 h, we found a TEER augmentation of over 50% compared with the control without coculture, and this effect was comparable to the response of BCEC to a C6 glioma cells coculture. Stimulation or HIV-1 infection of the macrophages did not alter their effect on BCEC monolayer permeability. Investigation of signal transduction pathways showed that TEER increase of BCEC due to macrophage coculture was cAMP-independent and involves neither phospholipase C, protein kinase C nor calmodulin. Our findings demonstrate that macrophages are able to modulate BBB-specific functions in cultured BCEC. Thus, these cells or cerebral cells of monocytic origin (e.g. perivascular macrophages), may be part of the microenvironment of BCEC that modulates their specific properties in vivo.
Collapse
Affiliation(s)
- Dietmar Zenker
- Institute for Clinical Pharmacology, J. W. Goethe-University, Theodor-Stern-Kai 7, Building 74/4th floor, D-60590 Frankfurt/M., Germany
| | | | | | | | | |
Collapse
|
27
|
Melaine N, Liénard MO, Dorval I, Le Goascogne C, Lejeune H, Jégou B. Multidrug resistance genes and p-glycoprotein in the testis of the rat, mouse, Guinea pig, and human. Biol Reprod 2002; 67:1699-707. [PMID: 12444043 DOI: 10.1095/biolreprod.102.003558] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Study of the multidrug resistance phenomenon in tumor cell lines has led to the discovery of the product of the multidrug resistance (MDR) type 1 genes, the plasma membrane P-glycoprotein (P-gp) that functions as an energy-dependent pump for the efflux of diverse anticancer drugs. P-gp was also recently identified in normal epithelial cells with secretory/excretory functions and in the endothelial cells of the capillary blood vessels in the brain and the testis. These endothelial cells are key elements of the blood-brain and blood-testis barriers, respectively. The aim of this study, in the rat, mouse, guinea pig, and human, was to determine whether testicular cells other than the capillary endothelial cells could express MDR type I genes. Immunohistochemistry on testicular sections revealed that P-gp is present in interstitial cells in the mouse, rat, and human testes, in early and late spermatids in guinea pig testis, and in late spermatids in the rat, mouse, and human. Reverse transcription-polymerase chain reaction analysis on isolated mouse, rat, and human cells showed that all somatic testicular cells (Leydig cells, macrophages, peritubular cells, and Sertoli cells) and the cytoplasmic lobes from rat late spermatids expressed MDR type I mRNAs, whereas spermatogonia, pachytene spermatocytes, and early spermatids did not. An ontogenesis study in the mouse reveals that type I MDR gene expression begins at 13.5 days postcoitum at the time when the seminiferous cords and the blood vessels appear and are maintained thereafter. Finally, two functional tests on isolated rat cells, the doxorubicin and rhodamine uptake assays, demonstrated that rat testicular macrophages, Leydig cells, peritubular cells, and Sertoli cells displayed a multidrug-resistance activity, whereas spermatogonia, pachytene spermatocytes, and early spermatids did not. Western blot experiments have revealed that a P-gp of 175 kDa is present in the human testis as well as in the rat Leydig cells, testicular macrophages, peritubular cells, and Sertoli cells, but is absent in spermatogonia, spermatocytes, and early spermatids. We conclude that P-gp is involved in the self-protection of the somatic cells and is most probably one of the molecules that confers its functionality to the blood-testis barrier. The absence of expression of MDR type I genes in mitotic and meiotic germ cells probably explains their particular vulnerability to various anticancer drugs. In contrast, expression of the P-gp in the haploid cells most likely reflects the ability of spermatozoa to assume their own antidrug defense.
Collapse
Affiliation(s)
- Nathalie Melaine
- GERM-INSERM U.435, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, Bretagne, France
| | | | | | | | | | | |
Collapse
|
28
|
Taylor EM. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet 2002; 41:81-92. [PMID: 11888329 DOI: 10.2165/00003088-200241020-00001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of drugs to treat disorders of the CNS requires consideration of achievable brain concentrations. Factors that influence the brain concentrations of drugs include the rate of transport into the brain across the blood-brain barrier (BBB), metabolic stability of the drug, and active transport out of the brain by efflux mechanisms. To date, three classes of transporter have been implicated in the efflux of drugs from the brain: multidrug resistance transporters, monocarboxylic acid transporters, and organic ion transporters. Each of the three classes comprises multiple transporters, each of which has multiple substrates, and the combined substrate profile of these transporters includes a large number of commonly used drugs. This system of transporters may therefore provide a mechanism through which the penetration of CNS-targeted drugs into the brain is effectively minimised. The action of these efflux transporters at the BBB may be reflected in the clinic as the minimal effectiveness of drugs targeted at CNS disorders, including HIV dementia, epilepsy, CNS-based pain, meningitis and brain cancers. Therefore, modulation of these efflux transporters by design of inhibitors and/or design of compounds that have minimal affinity for these transporters may well enhance the treatment of intractable CNS disorders.
Collapse
Affiliation(s)
- Eve M Taylor
- NeoTherapeutics Inc., Irvine, California 92618, USA.
| |
Collapse
|
29
|
Affiliation(s)
- J K Fazakerley
- Laboratory for Clinical and Molecular Virology, University of Edinburgh, United Kingdom
| |
Collapse
|
30
|
Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F. Endothelial cell heterogeneity and organ specificity. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:81-90. [PMID: 11847005 DOI: 10.1089/152581602753448559] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Endothelial cells consist of a heterogeneous population covering the entire inner surface of blood vessels. This review will focus on the factors influencing this heterogeneity including: (1) morphological and functional differences between large and small vessels and between cells derived from various microvascular endothelial beds; (2) the microenvironment and extracellular matrix modulating the phenotype; (3) different response to growth factors; (4) organ specificity reflecting the cumulative expression of post-translation modifications and also the expression of unique genes under the control of organ-specific regulatory elements; and (5) pathological conditions, such as tumor growth, which is accompanied by the development of a characteristic tumor vasculature and tumors formed by endothelial cells.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Policlinico, Piazza Giulio Cesare 11, I-70124 Bari, Italy.
| | | | | | | | | |
Collapse
|
31
|
Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 2001; 40:959-75. [PMID: 11406187 DOI: 10.1016/s0028-3908(01)00019-3] [Citation(s) in RCA: 559] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oxidative stress (OS) has been implicated in the pathophysiology of many neurological, particularly neurodegenerative diseases. OS can cause cellular damage and subsequent cell death because the reactive oxygen species (ROS) oxidize vital cellular components such as lipids, proteins, and DNA. Moreover, the brain is exposed throughout life to excitatory amino acids (such as glutamate), whose metabolism produces ROS, thereby promoting excitotoxicity. Antioxidant defense mechanisms include removal of O(2), scavenging of reactive oxygen/nitrogen species or their precursors, inhibition of ROS formation, binding of metal ions needed for the catalysis of ROS generation and up-regulation of endogenous antioxidant defenses. However, since our endogenous antioxidant defenses are not always completely effective, and since exposure to damaging environmental factors is increasing, it seems reasonable to propose that exogenous antioxidants could be very effective in diminishing the cumulative effects of oxidative damage. Antioxidants of widely varying chemical structures have been investigated as potential therapeutic agents. However, the therapeutic use of most of these compounds is limited since they do not cross the blood brain barrier (BBB). Although a few of them have shown limited efficiency in animal models or in small clinical studies, none of the currently available antioxidants have proven efficacious in a large-scale controlled study. Therefore, any novel antioxidant molecules designed as potential neuroprotective treatment in acute or chronic neurological disorders should have the mandatory prerequisite that they can cross the BBB after systemic administration.
Collapse
Affiliation(s)
- Y Gilgun-Sherki
- Department of Neurology and Felsenstein Medical Research Center, Rabin Medical Center, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
32
|
Schiengold M, Schwantes L, Schwartsmann G, Chies JA, Nardi NB. Multidrug resistance gene expression during the murine ontogeny. Mech Ageing Dev 2001; 122:255-70. [PMID: 11311315 DOI: 10.1016/s0047-6374(00)00223-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multidrug resistance (MDR) was described initially for tumor cells which become resistant not only to the specific drug to which they are submitted, but also to a large range of unrelated drugs. The expression of mdr genes, responsible for the phenotype, and their product P glycoprotein (Pgp), is currently under intensive study due to their ample distribution in different organisms and their possible physiological roles which include protection against xenobiotics. In mice, three mdr isoforms expressed in some normal tissues are known. In this work, we analyzed by RT-PCR the expression of mdr1, mdr2 and mdr3 in several organs of BALB/c and C57BL/6 mice during ontogeny. A considerable variation in mdr expression among individuals of the same strain, as well as among different organs in individuals of the same age group and among different age groups, was detected. We also observed a strong tendency for the expression of a greater number of active isoforms in old mice. The large expression range of the mdr isoforms point to an important role as a natural defense system.
Collapse
Affiliation(s)
- M Schiengold
- Genetics Department, Universidade Federal do Rio Grande do Sul Avenue Bento Gonçalves 9500-C.P. 15053, 91.501-970 Porto Alegre, Brazil.
| | | | | | | | | |
Collapse
|
33
|
Ghazanfari FA, Stewart RR. Characteristics of endothelial cells derived from the blood-brain barrier and of astrocytes in culture. Brain Res 2001; 890:49-65. [PMID: 11164768 DOI: 10.1016/s0006-8993(00)03053-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, cultures of astrocytes and capillary endothelial cells from the blood-brain barrier (BBB) of the postnatal (P1) mouse cerebral cortex were analyzed with the aim of acquiring information on the distinguishing characteristics of each cell type. For isolation and purification of astrocyte cells, the methods of McCarthy and DeVellis [J. Cell Biol. 85 (1980) 890] were employed. The methods of Chen et al. [Lab. Invest. 78 (1998) 353], Duport et al. [Proc. Natl. Acad. Sci. USA 95 (1998) 1840], Rubin et al. [J Cell Biol. 115 (1991) 1725] and Tontsch and Bauer [Microvasc. Res. 37 (1989) 148] were utilized for culturing of cells from the BBB. A simple protocol was also created for isolating and purifying brain endothelial cells with 10 mM sodium cyanide. The vascular system of the cerebral cortex is derived from the leptomeningeal blood vessels [Qin and Sato, Dev. Dyn. 202 (1995) 172; Risau et al., EMBO J. 5 (1986) 3179]. With this in mind, cultures of the P1 mouse meninges were used as a comparative cell type in order to differentiate between BBB cells and astrocytes. In this regard, the expression of a number of markers were correlated, and an antibody double labeling technique was employed. The staining of these markers was then compared to cells cultured from leptomeninges and to two other types of endothelial cells, human umbilical vein and bovine aortic. Reverse transcription-polymerase chain reaction (RT-PCR) was performed on total RNA isolated from adult mouse brain, cells cultured from P1 mouse cortex or meninges, bovine aortic endothelial cells and human umbilical vein endothelial cells (HUV-EC) to detect the expression of glial fibrillary acidic protein (GFAP), Von Willebrand factor (factor VIII-related antigen) and fibronectin. These analyses revealed the presence of GFAP mRNA in the cultures of cortical and leptomeningeal cells and of protein in all cell types; Von Willebrand factor mRNA was detectable in HUV-EC cells but undetectable in cortical, leptomeningeal and bovine aortic endothelial cells. Fibronectin mRNA and protein were present in all of the cell types. Given the results of our investigations we conclude that in culture, astrocytes are actually brain endothelial cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- Actins/analysis
- Actins/immunology
- Animals
- Antibodies
- Aorta/cytology
- Astrocytes/chemistry
- Astrocytes/cytology
- Astrocytes/metabolism
- Blood-Brain Barrier/physiology
- Cattle
- Cell Survival/drug effects
- Cerebral Cortex/blood supply
- Cerebral Cortex/cytology
- Coculture Techniques/methods
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/immunology
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Fibronectins/analysis
- Fibronectins/immunology
- Galactosylceramides/analysis
- Galactosylceramides/immunology
- Gene Expression/physiology
- Glial Fibrillary Acidic Protein/analysis
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/immunology
- Glucose Transporter Type 1
- Lectins
- Lipoproteins, LDL/pharmacokinetics
- Meninges/cytology
- Mice
- Mice, Inbred C57BL
- Monosaccharide Transport Proteins/analysis
- Monosaccharide Transport Proteins/immunology
- PAX2 Transcription Factor
- RNA, Messenger/analysis
- Sodium Cyanide/pharmacology
- Transcription Factors/analysis
- Transcription Factors/immunology
- von Willebrand Factor/analysis
- von Willebrand Factor/genetics
- von Willebrand Factor/immunology
Collapse
Affiliation(s)
- F A Ghazanfari
- R.O.W. Sciences, Inc., 1700 Research Boulevard, Rockville, MD 20850, USA
| | | |
Collapse
|
34
|
Golden PL, Pardridge WM. Brain microvascular P-glycoprotein and a revised model of multidrug resistance in brain. Cell Mol Neurobiol 2000; 20:165-81. [PMID: 10696508 DOI: 10.1023/a:1007093521681] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
1. P-Glycoprotein is a 170-kDa transmembrane glycoprotein active efflux system that confers multidrug resistance in tumors, as well as normal tissues including brain. 2. The classical model of multidrug resistance in brain places the expression of P-glycoprotein at the luminal membrane of the brain microvascular endothelial cell. However, recent studies have been performed with human brain microvessels and double-labeling confocal microscopy using (a) the MRK16 antibody to human P-glycoprotein, (b) an antiserum to glial fibrillary acidic protein (GFAP), an astrocyte foot process marker, or (c) an antiserum to the GLUT1 glucose transporter, a brain endothelial plasma membrane marker. These results provide evidence for a revised model of P-glycoprotein function at the brain microvasculature. In human brain capillaries, there is colocalization of immunoreactive P-glycoprotein with astrocytic GFAP but not with endothelial GLUT1 glucose transporter. 3. In the revised model of multidrug resistance in brain, P-glycoprotein is hypothesized to function at the plasma membrane of astrocyte foot processes. These astrocyte foot processes invest the brain microvascular endothelium but are located behind the blood-brain barrier in vivo, which is formed by the brain capillary endothelial plasma membrane. 4. In the classical model, an inhibition of endothelial P-glycoprotein would result in both an increase in the blood-brain barrier permeability to a given drug substrate of P-glycoprotein and an increase in the brain volume of distribution (VD) of the drug. However, in the revised model of P-glycoprotein function in brain, which positions this protein transporter at the astrocyte foot process, an inhibition of P-glycoprotein would result in no increase in blood-brain barrier permeability, per se, but only an increase in the VD in brain of P-glycoprotein substrates.
Collapse
Affiliation(s)
- P L Golden
- Department of Medicine, UCLA School of Medicine 90095-1682, USA
| | | |
Collapse
|
35
|
Abstract
The blood-brain barrier (BBB) is formed by brain capillary endothelial cells (ECs). In the late embryonic and early postnatal period, these cells respond to inducing factors found in the brain environment by adopting a set of defined characteristics, including high-electrical-resistance tight junctions. Although the factors have not been identified definitively, a great deal of information about brain ECs has been obtained, especially recently. This review concentrates on a cell biological analysis of the BBB, with an emphasis on regulation of the specialized intercellular junctions. The development of these junctions seems to depend on two primary processes: the appearance of high levels of the tight junction protein occludin and intracellular signaling processes that control the state of phosphorylation of junctional proteins. Recent studies have revealed that the BBB can be modulated in an ongoing way to respond to environmental stimuli.
Collapse
Affiliation(s)
- L L Rubin
- Ontogeny, Inc., Cambridge, Massachusetts 02138-1118, USA.
| | | |
Collapse
|
36
|
Saunders NR, Habgood MD, Dziegielewska KM. Barrier mechanisms in the brain, II. Immature brain. Clin Exp Pharmacol Physiol 1999; 26:85-91. [PMID: 10065326 DOI: 10.1046/j.1440-1681.1999.02987.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. It is widely believed that 'the' blood-brain barrier is immature in foetuses and newborns. 2. Much evidence in support of this belief is based on experiments that were unphysiological and likely to have disrupted fragile blood vessels of the developing brain. Some confusion about barrier development arises from insufficient recognition that the term 'blood-brain barrier' describes a complex series of mechanisms controlling the internal environment of the brain. 3. We present evidence showing that the brain develops within an environment that, particularly with respect to protein, is different from that of the rest of the body and that possesses a number of unique features not present in the adult. 4. Barriers to protein at blood-brain and blood-cerebrospinal fluid (CSF) interfaces (tight junctions) are present from very early in development; immunocytochemical and permeability data show that proteins are largely excluded from extracellular space in developing brain. 5. Cerebrospinal fluid in developing brain contains high concentrations of proteins largely derived from plasma. This protein is transferred from blood by an intracellular mechanism across the epithelial cells of the immature choroid plexus. Only a small proportion of choroid plexus cells is involved. The route is an intracellular system of tubulo-endoplasmic reticulum continuously connected across the epithelial cells only early in brain development. 6. High concentrations of proteins in CSF in developing brain are largely excluded from the brain's extracellular space by barriers at the internal and external CSF-brain interfaces. These consist of membrane specializations between surfaces of cells forming these interfaces (neuroependyma on the inner surface; radial glial end feet on the outer surface). In contrast with tight junctions present at the blood-brain and blood-CSF barriers, at the CSF-brain barriers of the immature brain, other junctional types are involved: strap junctions in the neuroependyma and a mixture of junctions at the outer CSF-brain barrier (plate junctions, strap junctions and wafer junctions). These barriers are not present in the adult. 7. Permeability to small lipid-insoluble molecules is greater in developing brain; more specific mechanisms, such as those involved in transfer of ions and amino acids, develop sequentially as the brain grows.
Collapse
Affiliation(s)
- N R Saunders
- Department of Anatomy and Physiology, University of Tasmania, Hobart, Australia.
| | | | | |
Collapse
|
37
|
The Vascular Endothelial-Cadherin Promoter Directs Endothelial-Specific Expression in Transgenic Mice. Blood 1999. [DOI: 10.1182/blood.v93.1.184] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractVascular endothelial-cadherin (VE-cadherin) is a calcium-dependent adhesive molecule, exclusively and constitutively expressed in endothelial cells. Analysis of the VE-cadherin promoter fused to a reporter gene in bovine aortic endothelial cells showed three major functional regions. The proximal region alone (−139, +24) promoted nonspecific transcription; the addition of the (−289, −140) and (−2226, −1190) domains abolished transcription in fibroblasts while expression in endothelial cells remained unchanged, suggesting that fragments (−2226, +24) and longer contain the full endogenous promoter activity. To study the transcriptional specificity of the promoter region in vivo, we generated transgenic mice carrying the chimeric construct containing the (−2486, +24) region. The promoter directed reporter expression in all examined organs of adult transgenic mice. During embryonic development, transgene expression was detected at the early steps of vasculogenesis. Later, the expression persisted during development of the vascular system and was restricted to the endothelial layer of the vessels. Together, these data provide evidence for specific regulatory regions within the VE-cadherinpromoter. Furthermore, the identification of DNA sequences restricting gene expression to the endothelium has many potential applications for the development of animal models of cardiovascular or angiogenic diseases or for the delivery of therapeutic molecules.
Collapse
|
38
|
Abstract
Vascular endothelial-cadherin (VE-cadherin) is a calcium-dependent adhesive molecule, exclusively and constitutively expressed in endothelial cells. Analysis of the VE-cadherin promoter fused to a reporter gene in bovine aortic endothelial cells showed three major functional regions. The proximal region alone (−139, +24) promoted nonspecific transcription; the addition of the (−289, −140) and (−2226, −1190) domains abolished transcription in fibroblasts while expression in endothelial cells remained unchanged, suggesting that fragments (−2226, +24) and longer contain the full endogenous promoter activity. To study the transcriptional specificity of the promoter region in vivo, we generated transgenic mice carrying the chimeric construct containing the (−2486, +24) region. The promoter directed reporter expression in all examined organs of adult transgenic mice. During embryonic development, transgene expression was detected at the early steps of vasculogenesis. Later, the expression persisted during development of the vascular system and was restricted to the endothelial layer of the vessels. Together, these data provide evidence for specific regulatory regions within the VE-cadherinpromoter. Furthermore, the identification of DNA sequences restricting gene expression to the endothelium has many potential applications for the development of animal models of cardiovascular or angiogenic diseases or for the delivery of therapeutic molecules.
Collapse
|
39
|
Ramsauer M, Kunz J, Krause D, Dermietzel R. Regulation of a blood-brain barrier-specific enzyme expressed by cerebral pericytes (pericytic aminopeptidase N/pAPN) under cell culture conditions. J Cereb Blood Flow Metab 1998; 18:1270-81. [PMID: 9809517 DOI: 10.1097/00004647-199811000-00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study we show that the aminopeptidase N of cerebral pericytes (pAPN) associated with the blood-brain barrier (BBB) is downregulated in pericytic cell cultures. This observation is in accordance with previous data describing comparable in vitro effects for BBB-specific enzymes of endothelial or pericytic origin, such as gamma-glutamyl transpeptidase or alkaline phosphatase. By polymerase chain reaction and in situ hybridization we were able to determine that the down-regulation of pAPN occurs at the posttranscriptional level. The mRNA of pAPN was found to be constitutively expressed even when the protein is no longer detectable. Culturing the pericytes in an endothelial cell-conditioned medium allowed pAPN to be reexpressed. However, the reexpression effect depended largely on the culturing conditions of the pericytes. Although purified pericytes deprived of endothelial cells did not reveal a reexpression effect, pericytes that were kept in contact with endothelial cells were able to acquire a pAPN-positive phenotype, indicating that endothelial cells constitute an essential requirement for the in vitro reexpression of pAPN. Astrocytes, however, were insufficient in exerting any reexpression effect.
Collapse
Affiliation(s)
- M Ramsauer
- Institut für Anatomie, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
40
|
Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR. Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol 1998; 12:457-63. [PMID: 9717696 DOI: 10.1016/s0890-6238(98)00027-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A subpopulation of the CF-1 mouse strain contains a spontaneous mutation in the P-glycoprotein (Pgp) mdr1a gene, which leads to a lack of mdr1a expression in the placenta as well as brain and intestine. Individual CF-1 mice can be identified according to their Pgp status by a restriction fragment length polymorphism. Male and female mice selected on the basis of Pgp genotype were mated and the pregnant dams exposed during gestation to the known Pgp substrate, L-652,280, the 8,9 Z photoisomer of the naturally occurring avermectin Bla, which is known to produce cleft palate in mice. Fetal examination demonstrated that within individual litters, fetuses deficient in Pgp (-/-) were 100% susceptible to cleft palate, whereas their +/- heterozygote littermates were less sensitive. The homozygous +/+ fetuses with abundant Pgp were totally insensitive at the doses tested. The degree of chemical exposure of fetuses within each litter was inversely related to expression of placental Pgp, which was determined by the fetal genotype. These results demonstrate the importance of placental Pgp in protecting the fetus from potential teratogens and suggest that Pgp inhibitors should be carefully evaluated for their potential to increase susceptibility to chemical-induced teratogenesis.
Collapse
Affiliation(s)
- G R Lankas
- Department of Safety Assessment, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | |
Collapse
|
41
|
Habgood MD, Knott GW, Dziegielewska KM, Saunders NR. Permeability of the developing and mature blood-brain barriers to theophylline in rats. Clin Exp Pharmacol Physiol 1998; 25:361-8. [PMID: 9612664 DOI: 10.1111/j.1440-1681.1998.tb02364.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. In the present study, the uptake of theophylline and L-glucose into the adult and neonatal rat brain has been investigated. Steady state cerebrospinal fluid (CSF) and brain concentrations of theophylline were reached within 1 h following a single intraperitoneal (i.p.) injection, whereas steady state CSF and brain concentrations of L-glucose were not approached until after 5 h. 2. Steady state brain:plasma and CSF:plasma concentration ratios for theophylline and L-glucose in neonatal rats were significantly higher than ratios in adult rats. Erythrocyte:plasma ratios for theophylline in neonatal rats were also significantly higher than ratios in adult rats. Steady state ratios for theophylline were significantly higher than those for L-glucose in both neonatal and adult rats. 3. Respiratory acidosis (pH 6.9-7.0) did not affect steady state CSF:plasma or brain:plasma ratios for theophylline in neonatal or adult rats. In contrast, steady state CSF:plasma and brain:plasma ratios for L-glucose were increased by respiratory acidosis. 4. The lower steady state CSF:plasma, brain:plasma and erythrocyte:plasma ratios for theophylline in adult rats are likely to be due to a higher concentration of plasma proteins in adult blood compared with neonates, with a greater retention of protein-bound (non-exchangeable) theophylline in adult blood, and are unlikely to be due to p-glycoprotein-mediated efflux of theophylline at the adult blood-brain barrier.
Collapse
Affiliation(s)
- M D Habgood
- Division of Anatomy and Physiology, University of Tasmania, Hobart, Australia.
| | | | | | | |
Collapse
|
42
|
Nakazato H, Deguchi M, Fujimoto M, Fukushima H. Alkaline phosphatase expression in cultured endothelial cells of aorta and brain microvessels: induction by interleukin-6-type cytokines and suppression by transforming growth factor betas. Life Sci 1997; 61:2065-72. [PMID: 9366514 DOI: 10.1016/s0024-3205(97)00865-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alkaline phosphatase (ALP) activity is markedly high in endothelial cells of the blood-brain barrier (BBB) type but absent from or low in those of the non-BBB type. Interleukin 6 (IL-6) has been identified as a glial cell line-derived factor that induces high ALP activity in cultured aortic endothelial cells. In the present study, we examined the effect of IL-6-type cytokines and transforming growth factor betas (TGF-betas) on ALP expression in cultures of calf pulmonary aortic endothelial (CPAE) cells and porcine brain microvascular endothelial (PBME) cells. Leukemia inhibitory factor, ciliary neurotrophic factor, and oncostatin M, which are known as IL-6-type cytokines, induced high ALP expression in the CPAE cells but not in the PBME cells. ALP levels in these cells were markedly suppressed by culture with TGF-betas. However, in cultured PBME cells, IL-6 and a derivative of cyclic adenosine monophosphate significantly increased ALP activity. Our findings raise the posibility that local concentrations of IL-6, IL-6-type cytokines, and TGF-betas affect the ALP levels in the endothelial cells of aorta and brain microvessels under normal development and also under inflammatory conditions.
Collapse
Affiliation(s)
- H Nakazato
- Shionogi Discovery Research Laboratories II, Shionogi & Co. Ltd., Osaka, Japan
| | | | | | | |
Collapse
|
43
|
Abstract
During embryonic development, endothelial cells differentiate from a common precursor called angioblast and acquire organ-specific properties. One of the important determinants of endothelial cell differentiation is the local environment, and especially the interaction with surrounding cells. This interaction may occur through the release of soluble cytokines, cell-to-cell adhesion and communication, and the synthesis of matrix proteins on which the endothelium adheres and grows. The acquisition and maintenance of specialized properties by endothelial cells is important in the functional homeostasis of the different organs. For instance, in the brain, alteration of the blood-brain barrier properties may have important consequences on brain functional integrity. One of the major limitations to the study of endothelial cell heterogeneity is the fact that these cells are still difficult to isolate and culture from the microcirculation of different organs, and once in culture, they tend to lose their specialized properties. This finding suggests that we have to develop new culture systems, which possibly include coculture with other cell types. An important issue is to develop tools that can help in recognizing endothelial cells and their differentiated phenotype both in vivo and in tissue culture. In this review we give a short overview of the differentiated properties of the endothelium, considering a few examples of highly specialized endothelial cells, such as the brain or bone marrow microcirculation or high endothelial venules. We made a particular effort to list the most common markers of endothelial cell phenotypes. These molecules and related antibodies may be valuable tools for endothelial cell isolation and characterization.
Collapse
Affiliation(s)
- C Garlanda
- Instituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.
| | | |
Collapse
|
44
|
Hayashi Y, Nomura M, Yamagishi SI, Harada SI, Yamashita J, Yamamoto H. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia 1997. [DOI: 10.1002/(sici)1098-1136(199701)19:1<13::aid-glia2>3.0.co;2-b] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Abstract
The blood-brain barrier regulates the movement of molecules and cells between the circulation and the CNS. Modulation of this barrier may be critical in the aetiology of various CNS pathologies. Endothelial cell tight junctions are an essential part of the barrier, and recent advances have been made in understanding how specific intracellular signalling events regulate cell-cell adhesion and tight-junction permeability.
Collapse
Affiliation(s)
- J M Staddon
- Eisai London Research Laboratories Ltd, University College London, UK.
| | | |
Collapse
|
46
|
Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376:70-4. [PMID: 7596437 DOI: 10.1038/376070a0] [Citation(s) in RCA: 1240] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tie-1 and Tie-2 define a new class of receptor tyrosine kinases that are specifically expressed in developing vascular endothelial cells. To study the functions of Tie-1 and Tie-2 during vascular endothelial cell growth and differentiation in vivo, targeted mutations of the genes in mice were introduced by homologous recombination. Embryos deficient in Tie-1 failed to establish structural integrity of vascular endothelial cells, resulting in oedema and subsequently localized haemorrhage. However, analyses of embryos deficient in Tie-2 showed that it is important in angiogenesis, particularly for vascular network formation in endothelial cells. This result contrasts with previous reports on Tie-2 function in vasculogenesis and/or endothelial cell survival. Our in vivo analyses indicate that the structurally related receptor tyrosine kinases Tie-1 and Tie-2 have important but distinct roles in the formation of blood vessels.
Collapse
Affiliation(s)
- T N Sato
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|