1
|
Götz J, Leinemann L, Gailing O, Hardtke A, Caré O. Development of a highly polymorphic chloroplast SSR set in Abies grandis with transferability to other conifer species-A promising toolkit for gene flow investigations. Ecol Evol 2024; 14:e11593. [PMID: 38903146 PMCID: PMC11188588 DOI: 10.1002/ece3.11593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
The genus Abies is widely distributed across the world and is of high importance for forestry. Since chloroplasts are usually uniparentally inherited, they are an important tool for specific scientific issues like gene flow, parentage, migration and, in general, evolutionary analysis. Established genetic markers for organelles in conifers are rather limited to RFLP markers, which are more labour and time intensive, compared with SSR markers. Using QUIAGEN CLC Workbench 23.03, we aligned two chloroplast genomes from different Abies species (NCBI accessions: NC_039581, NC_042778, NC_039582, NC_042410, NC_035067, NC_062889, NC_042775, NC_057314, NC_041464, MH706706, MH047653 and MH510244) to identify potential SSR candidates. Further selection and development of forward and reverse primers was performed using the NCBI Primer Blast Server application. In this article, we introduce a remarkably polymorphic SSR marker set for various Abies species, which can be useful for other conifer genera, such as Cedrus, Pinus, Pseudotsuga or Picea. In total, 17 cpSSRs showed reliable amplification and polymorphisms in A. grandis with a total of 68 haplotypes detected. All 17 cpSSRs amplified in the tested Abies spp. In the other tested species, except for Taxus baccata, at least one primer was polymorphic.
Collapse
Affiliation(s)
| | - Ludger Leinemann
- ISOGEN GmbH & Co KGGöttingenGermany
- Buesgen Institute, Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest EcologyUniversity of GöttingenGöttingenGermany
| | - Oliver Gailing
- Buesgen Institute, Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest EcologyUniversity of GöttingenGöttingenGermany
| | - André Hardtke
- Department of Forest Genetic Resources, Breeding and Testing of Forest Reproductive MaterialNorthwest German Forest Research Institute (NW‐FVA)Hann. MündenGermany
| | - Oliver Caré
- ISOGEN GmbH & Co KGGöttingenGermany
- Buesgen Institute, Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest EcologyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
2
|
Lv S, Chen J, Li B, Fu T, Song M, Zhang P, Liu K, Kou Y, Wang J. The complete chloroplast genome sequence of Pinus bhutanica (Pinaceae) and its phylogenetic implications. Mitochondrial DNA B Resour 2024; 9:182-185. [PMID: 38288249 PMCID: PMC10823889 DOI: 10.1080/23802359.2024.2305710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
Pinus bhutanica is a critically endangered conifer and occurs only in central Bhutan, northwestern Yunnan and southeastern Xizang in China. In this study, the complete chloroplast genome of Pinus bhutanica was first assembled based on next-generation sequencing. The genome sequence was 116,919 bp in length with an overall GC content of 38.75%. A total of 106 functional genes were detected in the genome, including 72 protein-coding genes (PCGs), 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. The phylogenetic tree reconstructed by 12 chloroplast genomes revealed that P. bhutanica is most closely related to Pinus wangii in subsection Strobus of Pinus.
Collapse
Affiliation(s)
- Shiqi Lv
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Jiao Chen
- Xifeng Experimental Station on Soil and Water Conservation of Yellow River Conservancy Commission, Qingyang, China
| | - Bingbing Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Taotao Fu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Mingliang Song
- Conservation Center of Shahe National Wetland Park, Luohe, China
| | - Pengtao Zhang
- Conservation Center of Shahe National Wetland Park, Luohe, China
| | - Kang Liu
- Conservation Center of Shahe National Wetland Park, Luohe, China
| | - Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| | - Jing Wang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Uden DR, Mech AM, Havill NP, Schulz AN, Ayres MP, Herms DA, Hoover AM, Gandhi KJK, Hufbauer RA, Liebhold AM, Marsico TD, Raffa KF, Thomas KA, Tobin PC, Allen CR. Phylogenetic risk assessment is robust for forecasting the impact of European insects on North American conifers. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2761. [PMID: 36218183 DOI: 10.1002/eap.2761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders.
Collapse
Affiliation(s)
- Daniel R Uden
- School of Natural Resources, Department of Agronomy and Horticulture, Center for Resilience in Agricultural Working Landscapes, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Angela M Mech
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, Connecticut, USA
| | - Ashley N Schulz
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Forestry, Mississippi State University, Starkville, Mississippi, USA
| | - Matthew P Ayres
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Angela M Hoover
- U.S. Geological Survey, Southwest Biological Science Center, Tucson, Arizona, USA
| | - Kamal J K Gandhi
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Ruth A Hufbauer
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Andrew M Liebhold
- USDA Forest Service Northern Research Station, Morgantown, West Virginia, USA
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Travis D Marsico
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, USA
| | - Kathryn A Thomas
- U.S. Geological Survey, Southwest Biological Science Center, Tucson, Arizona, USA
| | - Patrick C Tobin
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Craig R Allen
- School of Natural Resources, Center for Resilience in Agricultural Working Landscapes, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
4
|
Zhou BF, Yuan S, Crowl AA, Liang YY, Shi Y, Chen XY, An QQ, Kang M, Manos PS, Wang B. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nat Commun 2022; 13:1320. [PMID: 35288565 PMCID: PMC8921187 DOI: 10.1038/s41467-022-28917-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we use phylogenomic analyses of nuclear and plastid genomes to investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. Innovation related to seed dispersal is implicated in triggering waves of continental radiations beginning with the rapid diversification of major lineages and resulting in unparalleled transformation of forest dynamics within 15 million years following the K-Pg extinction. We detect introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, which may have further amplified the diversification of white oaks across Eurasia.
Collapse
Affiliation(s)
- Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Andrew A Crowl
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
5
|
Herrera F, Shi G, Bickner MA, Ichinnorov N, Leslie AB, Crane PR, Herendeen PS. Early Cretaceous abietoid Pinaceae from Mongolia and the history of seed scale shedding. AMERICAN JOURNAL OF BOTANY 2021; 108:1483-1499. [PMID: 34458982 DOI: 10.1002/ajb2.1713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Seed cones of extant Pinaceae exhibit two mechanisms of seed release. In "flexers" the cone scales remain attached to the central axis, while flexing and separating from each other to release the seeds. In "shedders" scales are shed from the axis, with the seeds either remaining attached to the scale or becoming detached. The early fossil history of Pinaceae from the Jurassic to Early Cretaceous is dominated by flexing seed cones, while the systematic information provided by shedding fossil cones has been overlooked and rarely integrated with data based on compression and permineralized specimens. We describe the earliest and best-documented evidence of a "shedder" seed cone from the Aptian-Albian of Mongolia. METHODS Lignite samples from Tevshiin Govi locality were disaggregated in water, washed, and dried in air. Fossils were compared to material of extant Pinaceae using LM and CT scans. RESULTS Lepidocasus mellonae gen. et sp. nov. is characterized by a seed cone that disarticulated at maturity and shed obovate bract-scale complexes that have a distinctive ribbed surface and an abaxial surface covered with abundant trichomes. The ovuliferous scale has ca. 30-40 resin canals, but only scarce xylem near the attachment to the cone axis. Resin vesicles are present in the seed integument. Phylogenetic analysis places Lepidocasus as sister to extant Cedrus within the abietoid grade. CONCLUSIONS The exquisite preservation of the trichomes in L. mellonae raises questions about their potential ecological function in the cones of fossil and living Pinaceae. Lepidocasus mellonae also shows that a shedding dispersal syndrome, a feature that has often been overlooked, evolved early in the history of Pinaceae during the Early Cretaceous.
Collapse
Affiliation(s)
| | - Gongle Shi
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, 210008, China
| | | | - Niiden Ichinnorov
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar-15160, Mongolia
| | - Andrew B Leslie
- Department of Geological Sciences, Stanford University, California, 94305, USA
| | - Peter R Crane
- Oak Spring Garden Foundation, Oak Spring, Upperville, Virginia, 20184, USA
- Yale School of the Environment, Yale University, New Haven, Connecticut, 06511, USA
| | | |
Collapse
|
6
|
Stull GW, Qu XJ, Parins-Fukuchi C, Yang YY, Yang JB, Yang ZY, Hu Y, Ma H, Soltis PS, Soltis DE, Li DZ, Smith SA, Yi TS. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. NATURE PLANTS 2021; 7:1015-1025. [PMID: 34282286 DOI: 10.1038/s41477-021-00964-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/10/2021] [Indexed: 05/15/2023]
Abstract
Inferring the intrinsic and extrinsic drivers of species diversification and phenotypic disparity across the tree of life is a major challenge in evolutionary biology. In green plants, polyploidy (or whole-genome duplication, WGD) is known to play a major role in microevolution and speciation, but the extent to which WGD has shaped macroevolutionary patterns of diversification and phenotypic innovation across plant phylogeny remains an open question. Here, we examine the relationship of various facets of genomic evolution-including gene and genome duplication, genome size, and chromosome number-with macroevolutionary patterns of phenotypic innovation, species diversification, and climatic occupancy in gymnosperms. We show that genomic changes, such as WGD and genome-size shifts, underlie the origins of most major extant gymnosperm clades, and notably, our results support an ancestral WGD in the gymnosperm lineage. Spikes of gene duplication typically coincide with major spikes of phenotypic innovation, while increased rates of phenotypic evolution are typically found at nodes with high gene-tree conflict, representing historic population-level dynamics during speciation. Most shifts in gymnosperm diversification since the rise of angiosperms are decoupled from putative WGDs and instead are associated with increased rates of climatic occupancy evolution, particularly in cooler and/or more arid climatic conditions, suggesting that ecological opportunity, especially in the later Cenozoic, and environmental heterogeneity have driven a resurgence of gymnosperm diversification. Our study provides critical insight on the processes underlying diversification and phenotypic evolution in gymnosperms, with important broader implications for the major drivers of both micro- and macroevolution in plants.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | | | - Ying-Ying Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhi-Yun Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yi Hu
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
7
|
Zimmermann HH, Harms L, Epp LS, Mewes N, Bernhardt N, Kruse S, Stoof-Leichsenring KR, Pestryakova LA, Wieczorek M, Trense D, Herzschuh U. Chloroplast and mitochondrial genetic variation of larches at the Siberian tundra-taiga ecotone revealed by de novo assembly. PLoS One 2019; 14:e0216966. [PMID: 31291259 PMCID: PMC6619608 DOI: 10.1371/journal.pone.0216966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix.
Collapse
MESH Headings
- Chromosome Mapping
- DNA, Ancient
- DNA, Chloroplast/genetics
- DNA, Mitochondrial/genetics
- DNA, Plant/genetics
- Genetic Variation
- Genetics, Population
- Genome, Chloroplast
- Genome, Mitochondrial
- Genome, Plant
- Haplotypes
- History, Ancient
- Larix/classification
- Larix/genetics
- Polymorphism, Single Nucleotide
- Siberia
- Taiga
- Tundra
Collapse
Affiliation(s)
- Heike H. Zimmermann
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail: (HHZ); (UH)
| | - Lars Harms
- Scientific Computing, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laura S. Epp
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nick Mewes
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Nadine Bernhardt
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Stefan Kruse
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Kathleen R. Stoof-Leichsenring
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | | | - Mareike Wieczorek
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Daronja Trense
- Institute for Integrated Natural Sciences, Biology, Koblenz-Landau University, Koblenz, Germany
| | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
- * E-mail: (HHZ); (UH)
| |
Collapse
|
8
|
Losada JM, Blanco-Moure N, Leslie AB. Not all 'pine cones' flex: functional trade-offs and the evolution of seed release mechanisms. THE NEW PHYTOLOGIST 2019; 222:396-407. [PMID: 30367490 DOI: 10.1111/nph.15563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Seed dispersal is critical for plants, but the evolution of mechanisms that actually release seeds from their parents is not well understood. We use the reproductive cones of conifers, specifically the Pinaceae clade, to explore the factors driving the evolution of different release mechanisms in plants. We combine comparative anatomical and phylogenetic analyses to test whether fundamental trade-offs in the mechanical and hydraulic properties of vasculature underlie the evolution of two seed release mechanisms: cone scale flexion and cone scale shedding. We then test whether these mechanisms are linked with differences in seed size, dispersal syndrome and reproductive allocation. Cone scale xylem in flexing species is tough, but poorly conductive. Xylem in shedding species is less extensive, fragile and highly conductive; its thin-walled tracheids allow scales to easily fracture at maturity. Shedding is also consistently associated with large, densely packed seeds. Pinaceae cones exploit a well-known trade-off in xylem mechanical strength vs hydraulic efficiency to generate release mechanisms that allow seeds of various sizes to leave the protecting cone. The linkage among release mechanisms, vascular anatomy and seed traits illustrates how a wide variety of selective pressures may influence the function and physiology of reproductive structures.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI, 02912, USA
- Arnold Arboretum of Harvard University, 1300 Centre St., Boston, MA, 02130, USA
| | | | - Andrew B Leslie
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI, 02912, USA
| |
Collapse
|
9
|
Rothwell GW, Escapa IH, Tomescu AMF. Tree of death: The role of fossils in resolving the overall pattern of plant phylogeny. AMERICAN JOURNAL OF BOTANY 2018; 105:1239-1242. [PMID: 30114314 DOI: 10.1002/ajb2.1138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Gar W Rothwell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - Ignacio H Escapa
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Museo Paleontologico Egidio Feruglio, Avenida Fontana 140, Trelew, Chubut, 9100, Argentina
| | - Alexandru M F Tomescu
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| |
Collapse
|