1
|
Luettel DM, Terluk MR, Roh J, Weinreb NJ, Kartha RV. Emerging biomarkers in Gaucher disease. Adv Clin Chem 2025; 124:1-56. [PMID: 39818434 DOI: 10.1016/bs.acc.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe. Manifestations variably include hepatosplenomegaly, anemia, thrombocytopenia, easy bruising, inflammation, bone pain and other skeletal pathologies, abnormal eye movements and neuropathy. Although the molecular basis of GD is relatively well understood, currently used biomarkers are nonspecific and inadequate for making finer distinctions between subtypes and in evaluating changes in disease status and guiding therapy. Thus, there is continued effort to investigate and identify potential biomarkers to improve GD diagnosis, monitoring and potential identification of novel therapeutic targets. Here, we provide a comprehensive review of emerging biomarkers in GD that can enhance current understanding and improve quality of life through better testing, disease management and treatment.
Collapse
Affiliation(s)
- Danielle M Luettel
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Marcia R Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Jaehyeok Roh
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Neal J Weinreb
- Department of Human Genetics, Leonard Miller School of Medicine of University of Miami, Miami, FL, United States
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
2
|
Cullufi P, Tomori S, Velmishi V, Gjikopulli A, Akshija I, Tako A, Dervishi E, Hoxha G, Tanka M, Troja E, Tabaku M. Taliglucerase alfa in the longterm treatment of children and adolescents with type 1 Gaucher disease: the Albanian experience. Front Pediatr 2024; 12:1352179. [PMID: 38464899 PMCID: PMC10920268 DOI: 10.3389/fped.2024.1352179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Enzyme replacement therapy is already recognized as the gold standard of care for patients with Gaucher disease. Taliglucerase alfa is one of the three alternatives recommended for treatment of Gaucher disease in children and adults. Aim This study aims to evaluate the long-term efficacy and safety of Taliglucerase alfa in children and adolescents with Type 1 Gaucher disease. Patients and methods Over a six-year period, we monitored the efficacy of continuous treatment in 10 patients by assessing various parameters, including hemoglobin concentration, platelet count, liver and spleen volume, bone mineral density, glucosylsphingosine level, chitotriosidase activity, and growth parameters. Safety was evaluated by immunogenicity and adverse event monitoring. Results The mean age of patients was 13.4 ± 3.6 years and the treatment duration was 60.24 ± 13.4 months. From baseline to end line the parameters change as follows: hemoglobin concentration improved from 12.7 (±1.3) to 14.6 (±1.5) and platelet count from 180 (±74) to 198 (±79). The spleen volume, was reduced by 46% (p = 0,007). The chitotriosidase activity decreased from 4,019.7 (±3,542.0) nmoles/ml/hr to 2,039.5 (±1,372.2) nmoles/ml/hr (46% reduction). Glucoylsphingosine level dropped from 119.2 (±70.4) ng/ml to 86.2 (±38.1) ng/ml, indicating a reduction of 28%. Bone mineral density Z-score, improved from -1.47 (±1.76) to -0.46 (±0.99) (69.7% reduction). Out of the 1,301 total administrations, our patients reported only 37 (2.8%) infusion-related adverse events which were mild and transitory. Conclusion Taliglucerase alfa exhibits good efficacy and a safe profile in the treatment of children and adolescents with Type 1 Gaucher disease.
Collapse
Affiliation(s)
- Paskal Cullufi
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Sonila Tomori
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Virtut Velmishi
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Agim Gjikopulli
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Ilir Akshija
- Statistics Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Aferdita Tako
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Ermira Dervishi
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Gladiola Hoxha
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Marjeta Tanka
- Radiology Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Erjon Troja
- Pharmacy Department, University Hospital Center Mother Teresa, Tirana, Albania
| | - Mirela Tabaku
- Pediatric Department, University Hospital Center Mother Teresa, Tirana, Albania
| |
Collapse
|
3
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Leonart LP, Fachi MM, Böger B, Silva MRD, Szpak R, Lombardi NF, Pedroso MLA, Pontarolo R. A Systematic Review and Meta-analyses of Longitudinal Studies on Drug Treatments for Gaucher Disease. Ann Pharmacother 2023; 57:267-282. [PMID: 35815393 DOI: 10.1177/10600280221108443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Gaucher disease (GD) is a rare disorder linked to the absence/deficiency of glucocerebrosidase. GD can be treated by enzyme replacement therapy (ERT) and substrate reduction therapy (SRT). The aim of this systematic review (SR) is to assess the effectiveness of drugs used for GD treatment. DATA SOURCES Searches were conducted in PubMed and Scopus, in April 2021. The search strategies encompassed the name of the disease and of the drug treatments. Manual search was also conducted. STUDY SELECTION AND DATA EXTRACTION Observational and interventional longitudinal studies evaluating ERT and SRT for GD were included. Single mean meta-analyses were conducted for each drug using R. DATA SYNTHESIS The initial search retrieved 2246 articles after duplicates were removed. Following screening and eligibility assessment, 68 reports were included. The studies evaluated imiglucerase, velaglucerase alfa, taliglucerase alfa, miglustat, and eliglustat. The results showed that ERT is effective as a treatment in both naïve and experienced patients. Miglustat did not significantly improve blood outcomes in naïve patients and resulted in a decrease in the platelet levels of experienced patients. Eliglustat was mainly assessed for experienced patients and resulted in stable outcome values. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This extensive SR confirms the effectiveness of GD treatments in short- and long-term follow-ups. CONCLUSIONS The results were favorable for all ERTs and for eliglustat. Based on the assessed evidence, miglustat did not achieved expressive results. However, all evidence should be interpreted considering its limitations and does not replace well-conducted randomized trials.
Collapse
Affiliation(s)
- Letícia Paula Leonart
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Mariana M Fachi
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Beatriz Böger
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | | | - Renata Szpak
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Roberto Pontarolo
- Department of Pharmacy, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
5
|
Ida H, Watanabe Y, Sagara R, Inoue Y, Fernandez J. An observational study to investigate the relationship between plasma glucosylsphingosine (lyso-Gb1) concentration and treatment outcomes of patients with Gaucher disease in Japan. Orphanet J Rare Dis 2022; 17:401. [PMID: 36329499 PMCID: PMC9635088 DOI: 10.1186/s13023-022-02549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Gaucher disease (GD) is an autosomal recessive disease caused by GBA1 mutations resulting in glucosylceramide accumulation in macrophages. GD is characterized by hepatosplenomegaly, anemia, thrombocytopenia, bone complications, and neurological complications. Glucosylsphingosine (lyso-Gb1), a deacylated form of glucosylceramide, has been identified as a promising biomarker for the diagnosis and treatment response in GD. The aim of this study was to examine the relationship between plasma lyso-Gb1 and therapeutic goals for GD (improvements in hepatomegaly, splenomegaly, anemia, thrombocytopenia, bone pain, and bone crisis), as well as disease type and GBA1 mutation type, in Japanese patients with GD receiving velaglucerase alfa, an enzyme replacement therapy (ERT). Furthermore, this study compared the plasma lyso-Gb1 concentration observed in Japanese patients included in this study with that observed in a previous non-Japanese clinical study. RESULTS This non-interventional, open-label, multicenter observational cohort study (October 2020 to March 2021) included a total of 20 patients (of any age) with GD (type 1: n = 8; type 2: n = 9; type 3: n = 3) treated with velaglucerase alfa for ≥ 3 months. Median (minimum-maximum) duration of velaglucerase alfa treatment was 49.5 (3-107) months. A total of 14 (70.0%) patients achieved all therapeutic goals (i.e., 100% achievement; improvements in hepatomegaly, splenomegaly, anemia, thrombocytopenia, bone pain, and bone crisis). Overall, median (minimum-maximum) lyso-Gb1 concentration was 24.3 (2.1-150) ng/mL. Although not statistically significant, numerically lower plasma lyso-Gb1 concentrations were observed in patients with 100% achievement compared with those without; no statistically significant difference in plasma lyso-Gb1 concentration was observed between patients with different disease type or mutation type. Furthermore, lyso-Gb1 concentrations observed in Japanese patients were numerically lower than that observed in a previous study of non-Japanese patients with GD receiving ERT. CONCLUSIONS In this study, high achievement rates of therapeutic goals with low lyso-Gb1 concentration were observed, demonstrating a correlation between therapeutic goals and lower plasma lyso-Gb1 concentration in Japanese patients with GD treated with velaglucerase alfa. This study further suggests that plasma lyso-Gb1 concentration may be a useful biomarker for treatment response in patients with GD.
Collapse
Affiliation(s)
- Hiroyuki Ida
- grid.470100.20000 0004 1756 9754The Jikei University Hospital, Tokyo, Japan
| | - Yuko Watanabe
- grid.419841.10000 0001 0673 6017Japan Medical Office, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-Chome, Chuo-Ku, Tokyo, 103-8668 Japan
| | - Rieko Sagara
- grid.419841.10000 0001 0673 6017Japan Medical Office, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-Chome, Chuo-Ku, Tokyo, 103-8668 Japan
| | - Yoichi Inoue
- grid.419841.10000 0001 0673 6017Japan Medical Office, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-Chome, Chuo-Ku, Tokyo, 103-8668 Japan
| | - Jovelle Fernandez
- grid.419841.10000 0001 0673 6017Japan Medical Office, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-Chome, Chuo-Ku, Tokyo, 103-8668 Japan
| |
Collapse
|
6
|
Titievsky L, Schuster T, Wang R, Younus M, Palladino A, Quazi K, Wajnrajch MP, Hernandez B, Becker PS, Weinreb NJ, Chambers C, Mansfield R, Taylor L, Tseng LJ, Kaplan P. Safety and effectiveness of taliglucerase alfa in patients with Gaucher disease: an interim analysis of real-world data from a multinational drug registry (TALIAS). Orphanet J Rare Dis 2022; 17:145. [PMID: 35365177 PMCID: PMC8973565 DOI: 10.1186/s13023-022-02289-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background Limited real-world data from routine clinical care are available on the safety and effectiveness of treatment with taliglucerase alfa in patients with Gaucher disease (GD). Methods Taliglucerase Alfa Surveillance (TALIAS), a multinational prospective Drug Registry of patients with GD, was established to evaluate the long-term safety (primary objective) and effectiveness (secondary objective) of taliglucerase alfa. We present an interim analysis of the data from the Drug Registry collected over the 5-year period from September 2013 to January 2019. Results A total of 106 patients with GD (15.1% children aged < 18 years; 53.8% females) treated with taliglucerase alfa have been enrolled in the Drug Registry, as of January 7, 2019. The median duration of follow-up was 795 days with quartiles (Q1, Q3) of 567 and 994 days. Fifty-three patients (50.0%) were from Israel, 28 (26.4%) were from the United States, and 25 (23.6%) were from Albania. At the time of enrollment, most patients (87.7%) had received prior enzyme replacement therapy (ERT). Thirty-nine of the 106 patients had treatment-emergent adverse events (AEs). Twelve of the 106 patients experienced serious AEs; two patients experienced four treatment-related serious AEs. Four patients died, although none of the deaths was considered to be related to taliglucerase alfa treatment by the treating physicians. Nine patients discontinued from the study, including the four who died. At baseline, patients with prior ERT had a higher mean hemoglobin concentration and platelet counts than treatment-naïve patients, likely reflecting the therapeutic effects of prior treatments. During follow-up, the hemoglobin concentration and platelet counts increased in the treatment-naïve patients and remained relatively constant or increased slightly in patients with prior ERT. Spleen and liver volumes decreased in treatment-naïve patients. Conclusions The interim data showed no new or emergent safety signals. The overall interim data are consistent with the clinical program experience and known safety and effectiveness profile of taliglucerase alfa. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02289-7.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael P Wajnrajch
- Pfizer, Inc., New York, NY, USA.,New York University Grossman School of Medicine, New York, NY, USA
| | | | - Pamela S Becker
- University of California, Irvine, Irvine, CA, USA.,University of Washington School of Medicine, Seattle, WA, USA
| | - Neal J Weinreb
- University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | - Paige Kaplan
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
7
|
Schillberg S, Finnern R. Plant molecular farming for the production of valuable proteins - Critical evaluation of achievements and future challenges. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153359. [PMID: 33460995 DOI: 10.1016/j.jplph.2020.153359] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/25/2020] [Indexed: 05/22/2023]
Abstract
Recombinant proteins play an important role in many areas of our lives. For example, recombinant enzymes are used in the food and chemical industries and as high-quality proteins for research, diagnostic and therapeutic applications. The production of recombinant proteins is still dominated by expression systems based on microbes and mammalian cells, although the manufacturing of recombinant proteins in plants - known as molecular farming - has been promoted as an alternative, cost-efficient strategy for three decades. Several molecular farming products have reached the market, but the number of success stories has been limited by industrial inertia driven by perceptions of low productivity, the high cost of downstream processing, and regulatory hurdles that create barriers to translation. Here, we discuss the technical and economic factors required for the successful commercialization of molecular farming, and consider potential future directions to enable the broader application of production platforms based on plants.
Collapse
Affiliation(s)
- Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany; Department of Phytopathology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Ricarda Finnern
- LenioBio GmbH, Erkrather Straße 401, 40231, Düsseldorf, Germany
| |
Collapse
|
8
|
Value of Glucosylsphingosine (Lyso-Gb1) as a Biomarker in Gaucher Disease: A Systematic Literature Review. Int J Mol Sci 2020; 21:ijms21197159. [PMID: 32998334 PMCID: PMC7584006 DOI: 10.3390/ijms21197159] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The challenges in the diagnosis, prognosis, and monitoring of Gaucher disease (GD), an autosomal recessive inborn error of glycosphingolipid metabolism, can negatively impact clinical outcomes. This systematic literature review evaluated the value of glucosylsphingosine (lyso-Gb1), as the most reliable biomarker currently available for the diagnosis, prognosis, and disease/treatment monitoring of patients with GD. Literature searches were conducted using MEDLINE, Embase, PubMed, ScienceOpen, Science.gov, Biological Abstracts, and Sci-Hub to identify original research articles relevant to lyso-Gb1 and GD published before March 2019. Seventy-four articles met the inclusion criteria, encompassing 56 related to pathology and 21 related to clinical biomarkers. Evidence for lyso-Gb1 as a pathogenic mediator of GD was unequivocal, although its precise role requires further elucidation. Lyso-Gb1 was deemed a statistically reliable diagnostic and pharmacodynamic biomarker in GD. Evidence supports lyso-Gb1 as a disease-monitoring biomarker for GD, and some evidence supports lyso-Gb1 as a prognostic biomarker, but further study is required. Lyso-Gb1 meets the criteria for a biomarker as it is easily accessible and reliably quantifiable in plasma and dried blood spots, enables the elucidation of GD molecular pathogenesis, is diagnostically valuable, and reflects therapeutic responses. Evidentiary standards appropriate for verifying inter-laboratory lyso-Gb1 concentrations in plasma and in other anatomical sites are needed.
Collapse
|
9
|
Kuter DJ, Wajnrajch M, Hernandez B, Wang R, Chertkoff R, Zimran A. Open-label, expanded access study of taliglucerase alfa in patients with Gaucher disease requiring enzyme replacement therapy. Blood Cells Mol Dis 2020; 82:102418. [PMID: 32146279 DOI: 10.1016/j.bcmd.2020.102418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
A multicenter, open-label, expanded-access study followed the safety of taliglucerase alfa, a plant cell-expressed recombinant enzyme replacement therapy (ERT), in adults with Gaucher disease previously treated with imiglucerase. Patients received taliglucerase alfa every 2 weeks for 9 months at a dose equivalent to their previous imiglucerase dose (Part A); patients were offered treatment for up to 33 months (Part B), and a later amendment allowed treatment-naïve patients. Fifty-eight patients received taliglucerase alfa (55.2% male; mean age, 46.1 years; mean bi-weekly dose, 35.2 U/kg; mean duration, 17.8 months); 51 patients previously received ERT, seven were treatment-naïve, and 36 completed the study. Most adverse events were mild or moderate; treatment-related adverse events were mild and transient. In previously treated patients, increases from baseline to last follow-up were observed for mean ± SE hemoglobin concentration (13.0 ± 0.3 g/dL to 13.4 ± 0.2 g/dL) and platelet count (179,242 ± 15,344/mm3 to 215,242 ± 17,867/mm3). Findings were similar in treatment-naïve patients (mean ± SE hemoglobin concentration and platelet count, 12.8 ± 0.3 g/dL to 13.5 ± 0.2 g/dL and 168,821 ± 14,368/mm3 to 204,641 ± 16,071/mm3, respectively). Taliglucerase alfa was well-tolerated for up to 33 months and demonstrated a durable therapeutic effect.
Collapse
Affiliation(s)
- David J Kuter
- Department of Hematology, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, Affiliated with the Hebrew University University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
10
|
Zimran A, Durán G, Giraldo P, Rosenbaum H, Giona F, Petakov M, Terreros Muñoz E, Solorio-Meza SE, Cooper PA, Varughese S, Alon S, Chertkoff R. Long-term efficacy and safety results of taliglucerase alfa through 5 years in adult treatment-naïve patients with Gaucher disease. Blood Cells Mol Dis 2019; 78:14-21. [DOI: 10.1016/j.bcmd.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
|
11
|
Abstract
INTRODUCTION Gaucher disease (GD) is an autosomal recessive disorder resulting from the deficiency of the lysosomal enzyme glucocerebrosidase (b-glucosidase), associated with varying degrees of visceral, bone and central nervous system pathology, leading to wide phenotypic diversity. Response to therapy and clinical outcomes are very different between the three clinical subtypes - non-neuronopathic, acute neuronopathic, and chronic neuronopathic forms; hence a definitive clinical diagnosis is essential. The availability of two therapeutic options, i.e. enzyme replacement and substrate reduction, has transformed the natural course of the disease. As pre-treatment disease severity clearly impacts results of therapy, early diagnosis and initiation of treatment especially in the pediatric population are keys to achieving an optimal outcome. Areas covered: We reviewed the literature concerning the treatment of GD focusing on pediatric presentations, various pharmacological treatment options and recommendations for management goals. A PubMed literature search was performed for relevant publications between 1991 and September 2018. Expert commentary: The approval of enzyme replacement therapy (ERT) for GD in the pediatric age group has significantly altered the course of the disease, especially for non-neuronopathic and chronic neuronopathic forms, as ERT does not cross the blood-brain barrier. Early diagnosis, regular follow-up and early initiation of treatment can thus prevent some irreversible complications and improve patient quality of life.
Collapse
Affiliation(s)
- Punita Gupta
- a Division of Genetics, Department of Pediatrics , St. Joseph's Children's Hospital , Paterson , NJ , USA
| | - Gregory Pastores
- b Department of Medicine (Genetics) , University College Dublin , Dublin , Ireland
| |
Collapse
|
12
|
Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. PLANTA 2018; 248:1-18. [PMID: 29736623 PMCID: PMC7088179 DOI: 10.1007/s00425-018-2910-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION Plant tissue culture as an important tool for the continuous production of active compounds including secondary metabolites and engineered molecules. Novel methods (gene editing, abiotic stress) can improve the technique. Humans have a long history of reliance on plants for a supply of food, shelter and, most importantly, medicine. Current-day pharmaceuticals are typically based on plant-derived metabolites, with new products being discovered constantly. Nevertheless, the consistent and uniform supply of plant pharmaceuticals has often been compromised. One alternative for the production of important plant active compounds is in vitro plant tissue culture, as it assures independence from geographical conditions by eliminating the need to rely on wild plants. Plant transformation also allows the further use of plants for the production of engineered compounds, such as vaccines and multiple pharmaceuticals. This review summarizes the important bioactive compounds currently produced by plant tissue culture and the fundamental methods and plants employed for their production.
Collapse
Affiliation(s)
- Claudia A Espinosa-Leal
- Tecnologico de Monterrey, Campus Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, México
| | - César A Puente-Garza
- Tecnologico de Monterrey, Campus Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, México
| | - Silverio García-Lara
- Tecnologico de Monterrey, Campus Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, México.
| |
Collapse
|
13
|
Abstract
INTRODUCTION Gaucher disease, the autosomal recessive deficiency of the lysosomal enzyme glucocerebrosidase, is associated with wide phenotypic diversity including non-neuronopathic, acute neuronopathic, and chronic neuronopathic forms. Overlap between types can render definitive diagnoses difficult. However, differentiating between the different phenotypes is essential due to the vast differences in clinical outcomes and response to therapy. Genotypic information is helpful, but cannot always be used to make clinical predictions. Current treatments for Gaucher disease, including enzyme replacement therapy and substrate reduction therapy, can reverse many of the non-neurological manifestations, but these therapies must be administered continually and are extremely costly. AREAS COVERED We reviewed the literature concerning the varied clinical presentations of Gaucher disease throughout the lifetime, along with treatment options, management goals, and current and future research challenges. A PubMed literature search was performed for relevant publications between 1991 to January 2018. EXPERT COMMENTARY Interest and research in the field of Gaucher disease is rapidly expanding. However, significant barriers remain in our ability to predict phenotype, assess disease progression using objective biomarkers, and determine optimal treatment strategy on an individual basis. As the field grows, we anticipate identification of genetic modifiers, new biomarkers, and small-molecule chaperone therapies, which may improve patient quality of life.
Collapse
Affiliation(s)
- Sam E Gary
- a Medical Genetics Branch , NHGRI, NIH , Bethesda , MD , USA
| | - Emory Ryan
- a Medical Genetics Branch , NHGRI, NIH , Bethesda , MD , USA
| | - Alta M Steward
- a Medical Genetics Branch , NHGRI, NIH , Bethesda , MD , USA
| | - Ellen Sidransky
- a Medical Genetics Branch , NHGRI, NIH , Bethesda , MD , USA
| |
Collapse
|
14
|
Zimran A, Wajnrajch M, Hernandez B, Pastores GM. Taliglucerase alfa: safety and efficacy across 6 clinical studies in adults and children with Gaucher disease. Orphanet J Rare Dis 2018; 13:36. [PMID: 29471850 PMCID: PMC5824466 DOI: 10.1186/s13023-018-0776-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/15/2018] [Indexed: 11/10/2022] Open
Abstract
Taliglucerase alfa is an enzyme replacement therapy (ERT) approved for treatment of adult and paediatric patients with Type 1 Gaucher disease (GD) in several countries and the first plant cell-expressed recombinant therapeutic protein approved by the US Food and Drug Administration for humans. Here, we review the findings across six key taliglucerase alfa clinical studies. A total of 33 treatment-naïve adult patients were randomized to taliglucerase alfa 30 U/kg or 60 U/kg in a 9-month, multicentre, randomized, double-blind, parallel-group, dose-comparison pivotal study, after which eligible patients continued into two consecutive extension studies; 17 treatment-naïve adult patients completed 5 total years of treatment with taliglucerase alfa. In the only ERT study focused on exclusively paediatric patients with GD, 11 treatment-naïve children were randomized to taliglucerase alfa 30 U/kg or 60 U/kg in a 12-month, multicentre, double-blind study; nine completed 3 total years of treatment in a dedicated paediatric extension study. The effect of switching patients from imiglucerase to taliglucerase alfa was also investigated in a separate 9-month study that included 26 adults and five children; 10 adults completed a total of 3 years and two children completed a total of 2.75 years of taliglucerase alfa treatment in the extension studies. All studies evaluated safety and spleen volume, liver volume, platelet count, haemoglobin concentration, and biomarkers as measures of efficacy. Detailed results from baseline through the end of these studies are presented. Taliglucerase alfa was well tolerated, and adverse events were generally mild/moderate in severity and transient. Treatment with taliglucerase alfa resulted in improvements (treatment-naïve patients) or stability (patients switched from imiglucerase) in visceral, haematologic, and biomarker parameters. Together, this comprehensive data set supports the treatment of adult and paediatric patients with GD who are naïve to ERT or who have previously been treated with imiglucerase.
Collapse
Affiliation(s)
- Ari Zimran
- Gaucher Clinic, Shaare Zedek Medical Center, Hebrew University and Hadassah Medical School, 12 Bayit Street, P.O. Box 3235, 91031, Jerusalem, Israel.
| | | | | | - Gregory M Pastores
- University College Dublin and the National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
15
|
Zimran A, Gonzalez-Rodriguez DE, Abrahamov A, Cooper PA, Varughese S, Giraldo P, Petakov M, Tan ES, Chertkoff R. Long-term safety and efficacy of taliglucerase alfa in pediatric Gaucher disease patients who were treatment-naïve or previously treated with imiglucerase. Blood Cells Mol Dis 2018; 68:163-172. [DOI: 10.1016/j.bcmd.2016.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 11/28/2022]
|
16
|
|
17
|
Glyco-Engineering of Plant-Based Expression Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:137-166. [PMID: 30069741 DOI: 10.1007/10_2018_76] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most secreted proteins in eukaryotes are glycosylated, and after a number of common biosynthesis steps the glycan structures mature in a species-dependent manner. Therefore, human therapeutic proteins produced in plants often carry plant-like rather than human-like glycans, which can affect protein stability, biological function, and immunogenicity. The glyco-engineering of plant-based expression systems began as a strategy to eliminate plant-like glycans and produce human proteins with authentic or at least compatible glycan structures. The precise replication of human glycans is challenging, owing to the absence of a pathway in plants for the synthesis of sialylated proteins and the necessary precursors, but this can now be achieved by the coordinated expression of multiple human enzymes. Although the research community has focused on the removal of plant glycans and their replacement with human counterparts, the presence of plant glycans on proteins can also provide benefits, such as boosting the immunogenicity of some vaccines, facilitating the interaction between therapeutic proteins and their receptors, and increasing the efficacy of antibody effector functions. Graphical Abstract Typical structures of native mammalian and plant glycans with symbols indicating sugar residues identified by their short form and single-letter codes. Both glycans contain fucose, albeit with different linkages.
Collapse
|
18
|
Elstein D, Mellgard B, Dinh Q, Lan L, Qiu Y, Cozma C, Eichler S, Böttcher T, Zimran A. Reductions in glucosylsphingosine (lyso-Gb1) in treatment-naïve and previously treated patients receiving velaglucerase alfa for type 1 Gaucher disease: Data from phase 3 clinical trials. Mol Genet Metab 2017; 122:113-120. [PMID: 28851512 DOI: 10.1016/j.ymgme.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 11/30/2022]
Abstract
Gaucher disease (GD), an autosomal recessive lipid storage disorder, arises from mutations in the GBA1 (β-glucocerebrosidase) gene, resulting in glucosylceramide accumulation in tissue macrophages. Lyso-Gb1 (glucosylsphingosine, lyso-GL1), a downstream metabolic product of glucosylceramide, has been identified as a promising biomarker for the diagnosis and monitoring of patients with GD. This retrospective, exploratory analysis of data from phase 3 clinical trials of velaglucerase alfa in patients with type 1 GD evaluated the potential of lyso-Gb1 as a specific and sensitive biomarker for GD. A total of 22 treatment-naïve patients and 21 patients previously treated with imiglucerase (switch patients) were included in the analysis. Overall, demographics between the two groups were similar. Mean lyso-Gb1 concentrations were reduced by 302.2ng/mL from baseline to week 209 in treatment-naïve patients and by 57.3ng/mL from baseline to week 161 in switch patients, corresponding to relative reductions of 82.7% and 52.0%, respectively. In both the treatment-naïve and switch groups, baseline mean lyso-Gb1 was higher for patients with at least one N370S mutation (363.9ng/mL and 90.7ng/mL, respectively) than for patients with non-N370S mutations (184.6ng/mL and 28.3ng/mL, respectively). Moderate correlations between decreasing lyso-Gb1 levels and increasing platelet counts, and with decreasing spleen volumes, were observed at some time points in the treatment-naïve group but not in the switch group. These findings support the utility of lyso-Gb1 as a sensitive and reliable biomarker for GD, and suggest that quantitation of this biomarker could serve as an indicator of disease burden and response to treatment.
Collapse
Affiliation(s)
| | | | - Quinn Dinh
- Shire, 300 Shire Way, Lexington, MA, USA.
| | - Lan Lan
- Shire, 300 Shire Way, Lexington, MA, USA.
| | | | - Claudia Cozma
- Centogene AG, Schillingallee 68, 18057 Rostock, Germany.
| | | | | | - Ari Zimran
- Gaucher Clinic, Shaare Zedek Medical Center, the Hebrew University-Hadassah Medical School, Shmu'el Bait St 12, Jerusalem, Israel.
| |
Collapse
|
19
|
Mistry PK, Lopez G, Schiffmann R, Barton NW, Weinreb NJ, Sidransky E. Gaucher disease: Progress and ongoing challenges. Mol Genet Metab 2017; 120:8-21. [PMID: 27916601 PMCID: PMC5425955 DOI: 10.1016/j.ymgme.2016.11.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Abstract
Over the past decades, tremendous progress has been made in the field of Gaucher disease, the inherited deficiency of the lysosomal enzyme glucocerebrosidase. Many of the colossal achievements took place during the course of the sixty-year tenure of Dr. Roscoe Brady at the National Institutes of Health. These include the recognition of the enzymatic defect involved, the isolation and characterization of the protein, the localization and characterization of the gene and its nearby pseudogene, as well as the identification of the first mutant alleles in patients. The first treatment for Gaucher disease, enzyme replacement therapy, was conceived of, developed and tested at the Clinical Center of the National Institutes of Health. Advances including recombinant production of the enzyme, the development of mouse models, pioneering gene therapy experiments, high throughput screens of small molecules and the generation of induced pluripotent stem cell models have all helped to catapult research in Gaucher disease into the twenty-first century. The appreciation that mutations in the glucocerebrosidase gene are an important risk factor for parkinsonism further expands the impact of this work. However, major challenges still remain, some of which are described here, that will provide opportunities, excitement and discovery for the next generations of Gaucher investigators.
Collapse
Affiliation(s)
- Pramod K Mistry
- Yale University School of Medicine, Department of Internal Medicine, 333 Cedar Street, LMP 1080, P.O. Box 208019, New Haven, CT 06520-8019, United States.
| | - Grisel Lopez
- Medical Genetics Branch, NHGRI, NIH, Bldg 35A Room 1E623, 35 Convent Drive, Bethesda, MD 20892, United States.
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, United States.
| | - Norman W Barton
- Therapeutic Area Head Neuroscience, Shire plc, 300 Shire Way, Lexington, MA 02421, United States.
| | - Neal J Weinreb
- University of Miami Miller School of Medicine, Department of Human Genetics and Medicine (Hematology), UHealth Sylvester Coral Springs, 8170 Royal Palm Boulevard, Coral Springs, FL 33065, United States.
| | - Ellen Sidransky
- Medical Genetics Branch, NHGRI, NIH, Bldg 35A Room 1E623, 35 Convent Drive, Bethesda, MD 20892, United States.
| |
Collapse
|
20
|
Serratrice C, Carballo S, Serratrice J, Stirnemann J. Imiglucerase in the management of Gaucher disease type 1: an evidence-based review of its place in therapy. CORE EVIDENCE 2016; 11:37-47. [PMID: 27790078 PMCID: PMC5072572 DOI: 10.2147/ce.s93717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction Gaucher disease is the first lysosomal disease to benefit from enzyme replacement therapy, thus serving as model for numerous other lysosomal diseases. Alglucerase was the first glucocerebrosidase purified from placental extracts, and this was then replaced by imiglucerase – a Chinese hamster ovary cell-derived glucocerebrosidase. Aim The aim was to review the evidence underlying the use of imiglucerase in Gaucher disease type 1 Evidence review Data from clinical trials and Gaucher Registries were analyzed. Conclusion Imiglucerase has been prescribed and found to have an excellent efficacy and safety profile. We report herein the evidence-based data published for 26 years justifying the use of imiglucerase.
Collapse
Affiliation(s)
- Christine Serratrice
- Department of Internal Medicine and Rehabilitation, Geneva University Hospital, Thonex, Switzerland
| | - Sebastian Carballo
- Department of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Jacques Serratrice
- Department of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Jérome Stirnemann
- Department of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|