1
|
Khattab S, Berisha A, Baran N, Piccaluga PP. Rat Sarcoma Virus Family Genes in Acute Myeloid Leukemia: Pathogenetic and Clinical Implications. Biomedicines 2025; 13:202. [PMID: 39857784 PMCID: PMC11760468 DOI: 10.3390/biomedicines13010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Acute myeloid leukemias (AMLs) comprise a group of genetically heterogeneous hematological malignancies that result in the abnormal growth of leukemic cells and halt the maturation process of normal hematopoietic stem cells. Despite using molecular and cytogenetic risk classification to guide treatment decisions, most AML patients survive for less than five years. A deeper comprehension of the disease's biology and the use of new, targeted therapy approaches could potentially increase cure rates. RAS oncogene mutations are common in AML patients, being observed in about 15-20% of AML cases. Despite extensive efforts to find targeted therapy for RAS-mutated AMLs, no effective and tolerable RAS inhibitor has received approval for use against AMLs. The frequency of RAS mutations increases in the context of AMLs' chemoresistance; thus, novel anti-RAS strategies to overcome drug resistance and improve patients' therapy responses and overall survival are the need of the hour. In this article, we aim to update the current knowledge on the role of RAS mutations and anti-RAS strategies in AML treatments.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Alexandria University, Alexandria 21526, Egypt
| | - Adriatik Berisha
- Division of Hematology, University of Pristina, 10000 Pristina, Kosovo
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Section of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
2
|
Lyu A, Nam SH, Humphrey RS, Horton TM, Ehrlich LIR. Cells and signals of the leukemic microenvironment that support progression of T-cell acute lymphoblastic leukemia (T-ALL). Exp Mol Med 2024; 56:2337-2347. [PMID: 39482533 PMCID: PMC11612169 DOI: 10.1038/s12276-024-01335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Current intensified chemotherapy regimens have significantly increased survival rates for pediatric patients with T-cell acute lymphoblastic leukemia (T-ALL), but these treatments can result in serious adverse effects; furthermore, patients who are resistant to chemotherapy or who relapse have inferior outcomes, together highlighting the need for improved therapeutic strategies. Despite recent advances in stratifying T-ALL into molecular subtypes with distinct driver mutations, efforts to target the tumor-intrinsic genomic alterations critical for T-ALL progression have yet to translate into more effective and less toxic therapies. Ample evidence now indicates that extrinsic factors in the leukemic microenvironment are critical for T-ALL growth, infiltration, and therapeutic resistance. Considering the diversity of organs infiltrated by T-ALL cells and the unique cellular components of the microenvironment encountered at each site, it is likely that there are both shared features of tumor-supportive niches across multiple organs and site-specific features that are key to leukemia cell survival. Therefore, elucidating the distinct microenvironmental cues supporting T-ALL in different anatomic locations could reveal novel therapeutic targets to improve therapies. This review summarizes the current understanding of the intricate interplay between leukemia cells and the diverse cells they encounter within their tumor microenvironments (TMEs), as well as opportunities to therapeutically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Aram Lyu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
3
|
Gu K, May HA, Kang MH. Targeting Molecular Signaling Pathways and Cytokine Responses to Modulate c-MYC in Acute Myeloid Leukemia. Front Biosci (Schol Ed) 2024; 16:15. [PMID: 39344393 DOI: 10.31083/j.fbs1603015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Overexpression of the MYC oncogene, encoding c-MYC protein, contributes to the pathogenesis and drug resistance of acute myeloid leukemia (AML) and many other hematopoietic malignancies. Although standard chemotherapy has predominated in AML therapy over the past five decades, the clinical outcomes and patient response to treatment remain suboptimal. Deeper insight into the molecular basis of this disease should facilitate the development of novel therapeutics targeting specific molecules and pathways that are dysregulated in AML, including fms-like tyrosine kinase 3 (FLT3) gene mutation and cluster of differentiation 33 (CD33) protein expression. Elevated expression of c-MYC is one of the molecular features of AML that determines the clinical prognosis in patients. Increased expression of c-MYC is also one of the cytogenetic characteristics of drug resistance in AML. However, direct targeting of c-MYC has been challenging due to its lack of binding sites for small molecules. In this review, we focused on the mechanisms involving the bromodomain and extra-terminal (BET) and cyclin-dependent kinase 9 (CDK9) proteins, phosphoinositide-Akt-mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase-signal transduction and activation of transcription (JAK/STAT) pathways, as well as various inflammatory cytokines, as an indirect means of regulating MYC overexpression in AML. Furthermore, we highlight Food and Drug Administration (FDA)-approved drugs for AML, and the results of preclinical and clinical studies on novel agents that have been or are currently being tested for efficacy and tolerability in AML therapy. Overall, this review summarizes our current knowledge of the molecular processes that promote leukemogenesis, as well as the various agents that intervene in specific pathways and directly or indirectly modulate c-MYC to disrupt AML pathogenesis and drug resistance.
Collapse
Affiliation(s)
- Kyle Gu
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Harry A May
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
4
|
DA Costa Machado AK, Machado CB, DE Pinho Pessoa FMC, Barreto IV, Gadelha RB, DE Sousa Oliveira D, Ribeiro RM, Lopes GS, DE Moraesfilho MO, DE Moraes MEA, Khayat AS, Moreira-Nunes CA. Development and Clinical Applications of PI3K/AKT/mTOR Pathway Inhibitors as a Therapeutic Option for Leukemias. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:9-24. [PMID: 38173664 PMCID: PMC10758851 DOI: 10.21873/cdp.10279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Leukemias are hematological neoplasms characterized by dysregulations in several cellular signaling pathways, prominently including the PI3K/AKT/mTOR pathway. Since this pathway is associated with several important cellular mechanisms, such as proliferation, metabolism, survival, and cell death, its hyperactivation significantly contributes to the development of leukemias. In addition, it is a crucial prognostic factor, often correlated with therapeutic resistance. Changes in the PI3K/AKT/mTOR pathway are identified in more than 50% of cases of acute leukemia, especially in myeloid lineages. Furthermore, these changes are highly frequent in cases of chronic lymphocytic leukemia, especially those with a B cell phenotype, due to the correlation between the hyperactivation of B cell receptors and the abnormal activation of PI3Kδ. Thus, the search for new therapies that inhibit the activity of the PI3K/AKT/mTOR pathway has become the objective of several clinical studies that aim to replace conventional oncological treatments that have high rates of toxicities and low specificity with target-specific therapies offering improved patient quality of life. In this review we describe the PI3K/AKT/mTOR signal transduction pathway and its implications in leukemogenesis. Furthermore, we provide an overview of clinical trials that employed PI3K/AKT/mTOR inhibitors either as monotherapy or in combination with other cytotoxic agents for treating patients with various types of leukemias. The varying degrees of treatment efficacy are also reported.
Collapse
Affiliation(s)
- Anna Karolyna DA Costa Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Flávia Melo Cunha DE Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renan Brito Gadelha
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | - Manoel Odorico DE Moraesfilho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral DE Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, PA, Brazil
- Clementino Fraga Group, Central Unity, Molecular Biology Laboratory, Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Wiese W, Barczuk J, Racinska O, Siwecka N, Rozpedek-Kaminska W, Slupianek A, Sierpinski R, Majsterek I. PI3K/Akt/mTOR Signaling Pathway in Blood Malignancies-New Therapeutic Possibilities. Cancers (Basel) 2023; 15:5297. [PMID: 37958470 PMCID: PMC10648005 DOI: 10.3390/cancers15215297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Blood malignancies remain a therapeutic challenge despite the development of numerous treatment strategies. The phosphatidylinositol-3 kinase (PI3K)/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway plays a central role in regulating many cellular functions, including cell cycle, proliferation, quiescence, and longevity. Therefore, dysregulation of this pathway is a characteristic feature of carcinogenesis. Increased activation of PI3K/Akt/mTOR signaling enhances proliferation, growth, and resistance to chemo- and immunotherapy in cancer cells. Overactivation of the pathway has been found in various types of cancer, including acute and chronic leukemia. Inhibitors of the PI3K/Akt/mTOR pathway have been used in leukemia treatment since 2014, and some of them have improved treatment outcomes in clinical trials. Recently, new inhibitors of PI3K/Akt/mTOR signaling have been developed and tested both in preclinical and clinical models. In this review, we outline the role of the PI3K/Akt/mTOR signaling pathway in blood malignancies' cells and gather information on the inhibitors of this pathway that might provide a novel therapeutic opportunity against leukemia.
Collapse
Affiliation(s)
- Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Olga Racinska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Wioletta Rozpedek-Kaminska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Artur Slupianek
- Department of Pathology, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA;
| | - Radoslaw Sierpinski
- Faculty of Medicine, Cardinal Stefan Wyszyński University, 01-938 Warsaw, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| |
Collapse
|
6
|
Parker J, Hockney S, Blaschuk OW, Pal D. Targeting N-cadherin (CDH2) and the malignant bone marrow microenvironment in acute leukaemia. Expert Rev Mol Med 2023; 25:e16. [PMID: 37132370 PMCID: PMC10407222 DOI: 10.1017/erm.2023.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
This review discusses current research on acute paediatric leukaemia, the leukaemic bone marrow (BM) microenvironment and recently discovered therapeutic opportunities to target leukaemia-niche interactions. The tumour microenvironment plays an integral role in conferring treatment resistance to leukaemia cells, this poses as a key clinical challenge that hinders management of this disease. Here we focus on the role of the cell adhesion molecule N-cadherin (CDH2) within the malignant BM microenvironment and associated signalling pathways that may bear promise as therapeutic targets. Additionally, we discuss microenvironment-driven treatment resistance and relapse, and elaborate the role of CDH2-mediated cancer cell protection from chemotherapy. Finally, we review emerging therapeutic approaches that directly target CDH2-mediated adhesive interactions between the BM cells and leukaemia cells.
Collapse
Affiliation(s)
- Jessica Parker
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Sean Hockney
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | | | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
7
|
Combined BCL-2 and PI3K/AKT Pathway Inhibition in KMT2A-Rearranged Acute B-Lymphoblastic Leukemia Cells. Int J Mol Sci 2023; 24:ijms24021359. [PMID: 36674872 PMCID: PMC9865387 DOI: 10.3390/ijms24021359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Numerous hematologic neoplasms, including acute B-lymphoblastic leukemia (B-ALL), are characterized by overexpression of anti-apoptotic BCL-2 family proteins. Despite the high clinical efficacy of the specific BCL-2 inhibitor venetoclax in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL), dose limitation and resistance argue for the early exploration of rational combination strategies. Recent data indicated that BCL-2 inhibition in B-ALL with KMT2A rearrangements is a promising intervention option; however, combinatorial approaches have not been in focus so far. The PI3K/AKT pathway has emerged as a possible target structure due to multiple interactions with the apoptosis cascade as well as relevant dysregulation in B-ALL. Herein, we demonstrate for the first time that combined BCL-2 and PI3K/AKT inhibition has synergistic anti-proliferative effects on B-ALL cell lines. Of note, all tested combinations (venetoclax + PI3K inhibitors idelalisib or BKM-120, as well as AKT inhibitors MK-2206 or perifosine) achieved comparable anti-leukemic effects. In a detailed analysis of apoptotic processes, among the PI3K/AKT inhibitors only perifosine resulted in an increased rate of apoptotic cells. Furthermore, the combination of venetoclax and perifosine synergistically enhanced the activity of the intrinsic apoptosis pathway. Subsequent gene expression studies identified the pro-apoptotic gene BBC3 as a possible player in synergistic action. All combinatorial approaches additionally modulated extrinsic apoptosis pathway genes. The present study provides rational combination strategies involving selective BCL-2 and PI3K/AKT inhibition in B-ALL cell lines. Furthermore, we identified a potential mechanistic background of the synergistic activity of combined venetoclax and perifosine application.
Collapse
|
8
|
Morell A, Budagaga Y, Vagiannis D, Zhang Y, Laštovičková L, Novotná E, Haddad A, Haddad M, Portillo R, Hofman J, Wsól V. Isocitrate dehydrogenase 2 inhibitor enasidenib synergizes daunorubicin cytotoxicity by targeting aldo-keto reductase 1C3 and ATP-binding cassette transporters. Arch Toxicol 2022; 96:3265-3277. [PMID: 35972551 DOI: 10.1007/s00204-022-03359-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Abstract
Targeting mutations that trigger acute myeloid leukaemia (AML) has emerged as a refined therapeutic approach in recent years. Enasidenib (Idhifa) is the first selective inhibitor of mutated forms of isocitrate dehydrogenase 2 (IDH2) approved against relapsed/refractory AML. In addition to its use as monotherapy, a combination trial of enasidenib with standard intensive induction therapy (daunorubicin + cytarabine) is being evaluated. This study aimed to decipher enasidenib off-target molecular mechanisms involved in anthracycline resistance, such as reduction by carbonyl reducing enzymes (CREs) and drug efflux by ATP-binding cassette (ABC) transporters. We analysed the effect of enasidenib on daunorubicin (Daun) reduction by several recombinant CREs and different human cell lines expressing aldo-keto reductase 1C3 (AKR1C3) exogenously (HCT116) or endogenously (A549 and KG1a). Additionally, A431 cell models overexpressing ABCB1, ABCG2, or ABCC1 were employed to evaluate enasidenib modulation of Daun efflux. Furthermore, the potential synergism of enasidenib over Daun cytotoxicity was quantified amongst all the cell models. Enasidenib selectively inhibited AKR1C3-mediated inactivation of Daun in vitro and in cell lines expressing AKR1C3, as well as its extrusion by ABCB1, ABCG2, and ABCC1 transporters, thus synergizing Daun cytotoxicity to overcome resistance. This work provides in vitro evidence on enasidenib-mediated targeting of the anthracycline resistance actors AKR1C3 and ABC transporters under clinically achievable concentrations. Our findings may encourage its combination with intensive chemotherapy and even suggest that the effectiveness of enasidenib as monotherapy against AML could lie beyond the targeting of mIDH2.
Collapse
Affiliation(s)
- Anselm Morell
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Youssif Budagaga
- Department of Pharmacology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Dimitrios Vagiannis
- Department of Pharmacology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Yu Zhang
- Department of Pharmacology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Lenka Laštovičková
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Eva Novotná
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Andrew Haddad
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Melodie Haddad
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Ramon Portillo
- Department of Pharmacology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Jakub Hofman
- Department of Pharmacology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Vladimír Wsól
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
9
|
PI3K Inhibitor Eruptions: an Overview of Diagnostic and Management Strategies for the Inpatient Dermatologist. CURRENT DERMATOLOGY REPORTS 2022. [DOI: 10.1007/s13671-022-00365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Abstract
Despite the therapeutic progress, relapse remains a major problem in the treatment of acute lymphoblastic leukemia (ALL). Most leukemia cells that survive chemotherapy are found in the bone marrow (BM), thus resistance to chemotherapy and other treatments may be partially attributed to pro-survival signaling to leukemic cells mediated by leukemia cell-microenvironment interactions. Adhesion of leukemia cells to BM stromal cells may lead to cell adhesion-mediated drug resistance (CAM-DR) mediating intracellular signaling changes that support survival of leukemia cells. In ALL and chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT signaling pathway has been shown to be critical in CAM-DR. PI3K targeting inhibitors have been approved for CLL and have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K signaling for normal hematopoietic and leukemia cells and summarize preclinical inhibitors of PI3K in ALL.
Collapse
Affiliation(s)
- Hye Na Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Vanessa Sanchez
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Cydney Nichols
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW To review the neurologic complications of systemic anti-cancer therapies and radiation therapy. RECENT FINDINGS Although many of the newer systemic therapies have more favorable side effect profiles than traditional cytotoxic chemotherapy, neurotoxicity has been seen with some of newer targeted therapies, immunotherapy, and T cell engaging therapies, including CAR-T therapy. The most recent advances in radiation-induced neurotoxicity have focused on the prevention and the management of cognitive dysfunction, a known long-term complication of brain irradiation. Cancer therapies can damage both the central and the peripheral nervous systems, and the damage may not always be reversible. Neurologists and oncologists must be aware of the neurotoxicities associated with newer treatments, particularly CAR-T therapy and immunotherapy. Early recognition and appropriate management can help minimize neurologic injury.
Collapse
|
12
|
Huang Y, Wang Y, Tang J, Qin S, Shen X, He S, Ju S. CAM-DR: Mechanisms, Roles and Clinical Application in Tumors. Front Cell Dev Biol 2021; 9:698047. [PMID: 34295898 PMCID: PMC8290360 DOI: 10.3389/fcell.2021.698047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the continuous improvement of various therapeutic techniques, the overall prognosis of tumors has been significantly improved, but malignant tumors in the middle and advanced stages still cannot be completely cured. It is now evident that cell adhesion-mediated resistance (CAM-DR) limits the success of cancer therapies and is a great obstacle to overcome in the clinic. The interactions between tumor cells and extracellular matrix (ECM) molecules or adjacent cells may play a significant role in initiating the intracellular signaling pathways that are associated with cell proliferation, survival upon binding to their ligands. Recent studies illustrate that these adhesion-related factors may contribute to the survival of cancer cells after chemotherapeutic therapy, advantageous to resistant cells to proliferate and develop multiple mechanisms of drug resistance. In this review, we focus on the molecular basis of these interactions and the main signal transduction pathways that are involved in the enhancement of the cancer cells’ survival. Furthermore, therapies targeting interactions between cancer cells and their environment to enhance drug response or prevent the emergence of drug resistance will also be discussed.
Collapse
Affiliation(s)
- Yuejiao Huang
- Medical School, Nantong University, Nantong, China.,Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuchan Wang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Jie Tang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Shiyi Qin
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
13
|
Xing J, Yang J, Gu Y, Yi J. Research update on the anticancer effects of buparlisib. Oncol Lett 2021; 21:266. [PMID: 33717263 PMCID: PMC7885152 DOI: 10.3892/ol.2021.12527] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
Buparlisib is a highly efficient and selective PI3K inhibitor and a member of the 2,6-dimorpholinopyrimidine-derived family of compounds. It selectively inhibits four isomers of PI3K, PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ, by competitively binding the lipid kinase domain on adenosine 5'-triphosphate (ATP), and serves an important role in inhibiting proliferation, promoting apoptosis and blocking angiogenesis, predominantly by antagonizing the PI3K/AKT pathway. Buparlisib has been confirmed to have a clinical effect in patients with solid tumors and hematological malignancies. A global, phase II clinical trial with buparlisib and paclitaxel in head and neck squamous cell carcinoma has now been completed, with a manageable safety profile. Buparlisib currently has fast-track status with the United States Food and Drug Administration. The present review examined the biochemical structure, pharmacokinetic characteristics, preclinical data and ongoing clinical studies of buparlisib. The various mechanisms of influence of buparlisib in tumors, particularly in preclinical research, were summarized, providing a theoretical basis and direction for basic research on and clinical treatment with buparlisib.
Collapse
Affiliation(s)
- Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jun Yang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
14
|
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int J Mol Sci 2021; 22:3464. [PMID: 33801659 PMCID: PMC8037248 DOI: 10.3390/ijms22073464] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Joan T. Garrett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; (R.M.); (H.P.); (S.A.); (M.K.K.)
| |
Collapse
|
15
|
Cardiovascular toxicity of PI3Kα inhibitors. Clin Sci (Lond) 2021; 134:2595-2622. [PMID: 33063821 DOI: 10.1042/cs20200302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinases (PI3Ks) are a family of intracellular lipid kinases that phosphorylate the 3'-hydroxyl group of inositol membrane lipids, resulting in the production of phosphatidylinositol 3,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. This results in downstream effects, including cell growth, proliferation, and migration. The heart expresses three PI3K class I enzyme isoforms (α, β, and γ), and these enzymes play a role in cardiac cellular survival, myocardial hypertrophy, myocardial contractility, excitation, and mechanotransduction. The PI3K pathway is associated with various disease processes but is particularly important to human cancers since many gain-of-function mutations in this pathway occur in various cancers. Despite the development, testing, and regulatory approval of PI3K inhibitors in recent years, there are still significant challenges when creating and utilizing these drugs, including concerns of adverse effects on the heart. There is a growing body of evidence from preclinical studies revealing that PI3Ks play a crucial cardioprotective role, and thus inhibition of this pathway could lead to cardiac dysfunction, electrical remodeling, vascular damage, and ultimately, cardiovascular disease. This review will focus on PI3Kα, including the mechanisms underlying the adverse cardiovascular effects resulting from PI3Kα inhibition and the potential clinical implications of treating patients with these drugs, such as increased arrhythmia burden, biventricular cardiac dysfunction, and impaired recovery from cardiotoxicity. Recommendations for future directions for preclinical and clinical work are made, highlighting the possible role of PI3Kα inhibition in the progression of cancer-related cachexia and female sex and pre-existing comorbidities as independent risk factors for cardiac abnormalities after cancer treatment.
Collapse
|
16
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
17
|
Zhabyeyev P, Chen X, Vanhaesebroeck B, Oudit GY. PI3Kα in cardioprotection: Cytoskeleton, late Na + current, and mechanism of arrhythmias. Channels (Austin) 2020; 13:520-532. [PMID: 31790629 PMCID: PMC6930018 DOI: 10.1080/19336950.2019.1697127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PI 3-kinase α (PI3Kα) is a lipid kinase that converts phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3). PI3Kα regulates a variety of cellular processes such as nutrient sensing, cell cycle, migration, and others. Heightened activity of PI3Kα in many types of cancer made it a prime oncology drug target, but also raises concerns of possible adverse effects on the heart. Indeed, recent advances in preclinical models demonstrate an important role of PI3Kα in the control of cytoskeletal integrity, Na+ channel activity, cardioprotection, and prevention of arrhythmias.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Xueyi Chen
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | | | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
18
|
Annageldiyev C, Tan SF, Thakur S, Dhanyamraju PK, Ramisetti SR, Bhadauria P, Schick J, Zeng Z, Sharma V, Dunton W, Dovat S, Desai D, Zheng H, Feith DJ, Loughran TP, Amin S, Sharma AK, Claxton D, Sharma A. The PI3K/AKT Pathway Inhibitor ISC-4 Induces Apoptosis and Inhibits Growth of Leukemia in Preclinical Models of Acute Myeloid Leukemia. Front Oncol 2020; 10:393. [PMID: 32296637 PMCID: PMC7140985 DOI: 10.3389/fonc.2020.00393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia is a heterogeneous disease with a 5-year survival rate of 28.3%, and current treatment options constrained by dose-limiting toxicities. One of the key signaling pathways known to be frequently activated and dysregulated in AML is PI3K/AKT. Its dysregulation is associated with aggressive cell growth and drug resistance. We investigated the activity of Phenybutyl isoselenocyanate (ISC-4) in primary cells obtained from newly diagnosed AML patients, diverse AML cell lines, and normal cord blood cells. ISC-4 significantly inhibited survival and clonogenicity of primary human AML cells without affecting normal cells. We demonstrated that ISC-4-mediated p-Akt inhibition caused apoptosis in primary AML (CD34+) stem cells and enhanced efficacy of cytarabine. ISC-4 impeded leukemia progression with improved overall survival in a syngeneic C1498 mouse model with no obvious toxic effects on normal myelopoiesis. In U937 xenograft model, bone marrow cells exhibited significant reduction in human CD45+ cells in ISC-4 (~87%) or AraC (~89%) monotherapy groups compared to control. Notably, combination treatment suppressed the leukemic infiltration significantly higher than the single-drug treatments (~94%). Together, the present findings suggest that ISC-4 might be a promising agent for AML treatment.
Collapse
Affiliation(s)
- Charyguly Annageldiyev
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Su-Fern Tan
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Shreya Thakur
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Pavan Kumar Dhanyamraju
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Srinivasa R Ramisetti
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Preeti Bhadauria
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jacob Schick
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Zheng Zeng
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Varun Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Wendy Dunton
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Hong Zheng
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - David J Feith
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States.,Division of Hematology and Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Thomas P Loughran
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States.,Division of Hematology and Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Shantu Amin
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Arun K Sharma
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
19
|
Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front Oncol 2020; 10:273. [PMID: 32185137 PMCID: PMC7059203 DOI: 10.3389/fonc.2020.00273] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia/lymphoma is an aggressive hematological neoplasm whose classification is still based on immunophenotypic findings. Frontline treatment encompass high intensity combination chemotherapy with good overall survival; however, relapsing/refractory patients have very limited options. In the last years, the understanding of molecular physiopathology of this disease, lead to the identification of a subset of patients with peculiar genetic profile, namely “early T-cell precursors” lymphoblastic leukemia, characterized by dismal outcome and indication to frontline allogeneic bone marrow transplant. In general, the most common mutations occur in the NOTCH1/FBXW7 pathway (60% of adult patients), with a positive prognostic impact. Other pathogenic steps encompass transcriptional deregulation of oncogenes/oncosuppressors, cell cycle deregulation, kinase signaling (including IL7R-JAK-STAT pathway, PI3K/AKT/mTOR pathway, RAS/MAPK signaling pathway, ABL1 signaling pathway), epigenetic deregulation, ribosomal dysfunction, and altered expression of oncogenic miRNAs or long non-coding RNA. The insight in the genomic landscape of the disease paves the way to the use of novel targeted drugs that might improve the outcome, particularly in relapse/refractory patients. In this review, we analyse available literature on T-ALL pathogenesis, focusing on molecular aspects of clinical, prognostic, and therapeutic significance.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Jessica Rosa
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Juri Alessandro Giannotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Luca Baldini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | | |
Collapse
|
20
|
PI3K Isoform-Selective Inhibitors in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:165-173. [PMID: 32949399 DOI: 10.1007/978-981-15-4494-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PI3K inhibitors are a common area of research in finding a successful treatment of cancer. The PI3K pathway is important for cell growth, apoptosis, cell metabolism, cell survival, and a multitude of other functions. There are multiple isoforms of PI3K that can be broken down into three categories: class I, II, and III. Each isoform has at least one subunit that helps with the functionality of the isoform. Mutations found in the PI3K isoforms are commonly seen in many different types of cancer and the use of inhibitors is being tested to stop the cell survival of cancer cells. Individual PI3K inhibitors have shown some inhibition of the pathway; however, there is room for improvement. To better treat cancer, PI3K inhibitors are being combined with other pathway inhibitors. These combination therapies have shown better results with cancer treatments. Both the monotherapy and dual therapy treatments are still currently being studied and data collected to better understand cancer and other treatment options.
Collapse
|
21
|
Durrant ST, Nagler A, Guglielmelli P, Lavie D, le Coutre P, Gisslinger H, Chuah C, Maffioli M, Bharathy S, Dong T, Wroclawska M, Lopez JM. Results from HARMONY: an open-label, multicenter, 2-arm, phase 1b, dose-finding study assessing the safety and efficacy of the oral combination of ruxolitinib and buparlisib in patients with myelofibrosis. Haematologica 2019; 104:e551-e554. [PMID: 31073072 PMCID: PMC6959180 DOI: 10.3324/haematol.2018.209965] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
| | - Arnon Nagler
- ALWP Office, Hospital Saint Antoine, Paris, France
| | - Paola Guglielmelli
- CRIMM-Centro Ricerca e Innovazione delle Malattie Mieloproliferative, Azienda Ospedaliera-Universitaria Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - David Lavie
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Philipp le Coutre
- Charité, Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | | | - Charles Chuah
- Singapore General Hospital, Duke-NUS Medical School, Singapore
| | - Margherita Maffioli
- Hematology Department, ASST Sette Laghi - Ospedale di Circolo, Varese, Italy
| | - Savita Bharathy
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Tuochuan Dong
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Joaquin Martinez Lopez
- Hematology Department, Hospital 12 de Octubre, CNIO, Univ Complutense, CIBERONC, Madrid, Spain
| |
Collapse
|
22
|
Simioni C, Bergamini F, Ferioli M, Rimondi E, Caruso L, Neri LM. New biomarkers and therapeutic strategies in acute lymphoblastic leukemias: Recent advances. Hematol Oncol 2019; 38:22-33. [PMID: 31487068 DOI: 10.1002/hon.2678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) represents a heterogeneous group of hematologic malignancies, and it is normally characterized by an aberrant proliferation of immature lymphoid cells. Moreover, dysregulation of multiple signaling pathways that normally regulate cellular transcription, growth, translation, and proliferation is frequently encountered in this malignancy. ALL is the most frequent tumor in childhood, and adult ALL patients still correlate with poor survival. This review focuses on modern therapies in ALL that move beyond standard chemotherapy, with a particular emphasis on immunotherapeutic approaches as new treatment strategies. Bi-specific T-cell Engagers (BiTE) antibodies, the chimeric antigen receptor (CAR)-T cells, or CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats [CRISPR]-associated nuclease 9) represent other new innovative approaches for this disease. Target and tailored therapy could make the difference in previously untreatable cases, i.e., precision and personalized medicine. Clinical trials will help to select the most efficient novel therapies in ALL management and to integrate them with existing treatments to achieve durable cures.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio Bergamini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Paganelli F, Lonetti A, Anselmi L, Martelli AM, Evangelisti C, Chiarini F. New advances in targeting aberrant signaling pathways in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100649. [PMID: 31523031 DOI: 10.1016/j.jbior.2019.100649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disorder characterized by malignant transformation of immature progenitors primed towards T-cell development. Over the past 15 years, advances in the molecular characterization of T-ALL have uncovered oncogenic key drivers and crucial signaling pathways of this disease, opening new chances for the development of novel therapeutic strategies. Currently, T-ALL patients are still treated with aggressive therapies, consisting of high dose multiagent chemotherapy. To minimize and overcome the unfavorable effects of these regimens, it is critical to identify innovative targets and test selective inhibitors of such targets. Major efforts are being made to develop small molecules against deregulated signaling pathways, which sustain T-ALL cell growth, survival, metabolism, and drug-resistance. This review will focus on recent improvements in the understanding of the signaling pathways involved in the pathogenesis of T-ALL and on the challenging opportunities for T-ALL targeted therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Lonetti
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Laura Anselmi
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
24
|
Crisci S, Amitrano F, Saggese M, Muto T, Sarno S, Mele S, Vitale P, Ronga G, Berretta M, Di Francia R. Overview of Current Targeted Anti-Cancer Drugs for Therapy in Onco-Hematology. ACTA ACUST UNITED AC 2019; 55:medicina55080414. [PMID: 31357735 PMCID: PMC6723645 DOI: 10.3390/medicina55080414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
The upgraded knowledge of tumor biology and microenviroment provides information on differences in neoplastic and normal cells. Thus, the need to target these differences led to the development of novel molecules (targeted therapy) active against the neoplastic cells' inner workings. There are several types of targeted agents, including Small Molecules Inhibitors (SMIs), monoclonal antibodies (mAbs), interfering RNA (iRNA) molecules and microRNA. In the clinical practice, these new medicines generate a multilayered step in pharmacokinetics (PK), which encompasses a broad individual PK variability, and unpredictable outcomes according to the pharmacogenetics (PG) profile of the patient (e.g., cytochrome P450 enzyme), and to patient characteristics such as adherence to treatment and environmental factors. This review focuses on the use of targeted agents in-human phase I/II/III clinical trials in cancer-hematology. Thus, it outlines the up-to-date anticancer drugs suitable for targeted therapies and the most recent finding in pharmacogenomics related to drug response. Besides, a summary assessment of the genotyping costs has been discussed. Targeted therapy seems to be an effective and less toxic therapeutic approach in onco-hematology. The identification of individual PG profile should be a new resource for oncologists to make treatment decisions for the patients to minimize the toxicity and or inefficacy of therapy. This could allow the clinicians to evaluate benefits and restrictions, regarding costs and applicability, of the most suitable pharmacological approach for performing a tailor-made therapy.
Collapse
Affiliation(s)
- Stefania Crisci
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Filomena Amitrano
- Gruppo Oncologico Ricercatori Italiano GORI ONLUS, Pordenone 33100, Italy
| | - Mariangela Saggese
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Tommaso Muto
- Hematology and Cellular Immunology (Clinical Biochemistry) A.O. dei Colli Monaldi Hospital, Naples 80131, Italy
| | - Sabrina Sarno
- Anatomia Patologica, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Sara Mele
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Pasquale Vitale
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Giuseppina Ronga
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO National Cancer Institute, Aviano (PN) 33081, Italy
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), Ancona 60125, Italy.
| |
Collapse
|
25
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
26
|
Strategies to Overcome Resistance Mechanisms in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20123021. [PMID: 31226848 PMCID: PMC6627878 DOI: 10.3390/ijms20123021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Chemoresistance is a major cause of recurrence and death from T-cell acute lymphoblastic leukemia (T-ALL), both in adult and pediatric patients. In the majority of cases, drug-resistant disease is treated by selecting a combination of other drugs, without understanding the molecular mechanisms by which malignant cells escape chemotherapeutic treatments, even though a more detailed genomic characterization and the identification of actionable disease targets may enable informed decision of new agents to improve patient outcomes. In this work, we describe pathways of resistance to common chemotherapeutic agents including glucocorticoids and review the resistance mechanisms to targeted therapy such as IL7R, PI3K-AKT-mTOR, NOTCH1, BRD4/MYC, Cyclin D3: CDK4/CDK6, BCL2 inhibitors, and selective inhibitors of nuclear export (SINE). Finally, to overcome the limitations of the current trial-and-error method, we summarize the experiences of anti-cancer drug sensitivity resistance profiling (DSRP) approaches as a rapid and relevant strategy to infer drug activity and provide functional information to assist clinical decision one patient at a time.
Collapse
|
27
|
Orthotopic Patient-Derived Xenografts of Gastric Cancer to Decipher Drugs Effects on Cancer Stem Cells and Metastatic Dissemination. Cancers (Basel) 2019; 11:cancers11040560. [PMID: 31010193 PMCID: PMC6520896 DOI: 10.3390/cancers11040560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is the third leading cause of cancer mortality worldwide. Cancer stem cells (CSC) are at the origin of tumor initiation, chemoresistance, and the formation of metastases. However, there is a lack of mouse models enabling the study of the metastatic process in gastric adenocarcinoma (GC). The aims of this study were to develop original mouse models of patient-derived primary GC orthotopic xenografts (PDOX) allowing the development of distant metastases as preclinical models to study the anti-metastatic efficiency of drugs such as the phosphatidylinositol 3-kinase (PI3K) inhibitor Buparlisib (BKM120). Luciferase-encoding cells generated from primary GC were injected into the stomach wall of immunocompromised mice; gastric tumor and metastases development were followed by bioluminescence imaging. The anti-CSC properties of BKM120 were evaluated on the GC cells’ phenotype (CD44 expression) and tumorigenic properties in vitro and in vivo on BKM120-treated mice. After eight weeks, PDOX mice formed tumors in the stomach as well as distant metastases, that were enriched in CSC, in the liver, the lung, and the peritoneal cavity. BKM120 treatment significantly inhibited the CSC properties in vitro and reduced the number of distant metastases in mice. These new preclinical models offer the opportunity to study the anti-metastatic efficiency of new CSC-based therapeutic strategies.
Collapse
|
28
|
Buparlisib is a novel inhibitor of daunorubicin reduction mediated by aldo-keto reductase 1C3. Chem Biol Interact 2019; 302:101-107. [DOI: 10.1016/j.cbi.2019.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
|
29
|
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019; 18:26. [PMID: 30782187 PMCID: PMC6379961 DOI: 10.1186/s12943-019-0954-x] [Citation(s) in RCA: 1009] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling is one of the most important intracellular pathways, which can be considered as a master regulator for cancer. Enormous efforts have been dedicated to the development of drugs targeting PI3K signaling, many of which are currently employed in clinical trials evaluation, and it is becoming increasingly clear that PI3K inhibitors are effective in inhibiting tumor progression. PI3K inhibitors are subdivided into dual PI3K/mTOR inhibitors, pan-PI3K inhibitors and isoform-specific inhibitors. In this review, we performed a critical review to summarize the role of the PI3K pathway in tumor development, recent PI3K inhibitors development based on clinical trials, and the mechanisms of resistance to PI3K inhibition.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
Targeting PI3K Signaling in Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20020412. [PMID: 30669372 PMCID: PMC6358886 DOI: 10.3390/ijms20020412] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 01/11/2023] Open
Abstract
Adhesion of acute lymphoblastic leukemia (ALL) cells to bone marrow stroma cells triggers intracellular signals regulating cell-adhesion-mediated drug resistance (CAM-DR). Stromal cell protection of ALL cells has been shown to require active AKT. In chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT pathway is reported. A novel FDA-approved PI3Kδ inhibitor, CAL-101/idelalisib, leads to downregulation of p-AKT and increased apoptosis of CLL cells. Recently, two additional PI3K inhibitors have received FDA approval. As the PI3K/AKT pathway is also implicated in adhesion-mediated survival of ALL cells, PI3K inhibitors have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K in normal hematopoietic cells, and in ALL. We focus on summarizing targeting strategies of PI3K in ALL.
Collapse
|
31
|
Safaroghli-Azar A, Bashash D, Kazemi A, Pourbagheri-Sigaroodi A, Momeny M. Anticancer effect of pan-PI3K inhibitor on multiple myeloma cells: Shedding new light on the mechanisms involved in BKM120 resistance. Eur J Pharmacol 2018; 842:89-98. [PMID: 30401630 DOI: 10.1016/j.ejphar.2018.10.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The correlation between the Phosphoinositide 3-kinase (PI3K) axis and crucial mechanisms involved in the maintenance of the neoplastic nature of multiple myeloma (MM) has recently evolved a general agreement that PI3K inhibition-based therapies could construct an exciting perspective for the future treatment strategies. Our results outlined that abrogation of PI3K using pan-PI3K inhibitor BKM120 decreased survival of MM cells through induction of a caspase-3-dependent apoptosis coupled with SIRT1-mediated G2/M arrest in both KMM-1 and RPMI 8226 cell lines; however, the cell responses to the inhibitor was quite different, introducing wild-type PTEN-expressing RPMI 8226 as less sensitive cells. By investigating the sensitivity extent of a panel of hematological cell lines to BKM120, we found no significant association with respect to PTEN status. As far as we are aware, the results of the present study propose for the first time that the inhibitory effect of BKM120 was overshadowed, at least partially, through over-expression of either c-Myc or nuclear factor (NF)-κB in less sensitive MM cells. While there was no significant effect of the inhibitor on the expression of c-Myc in RPMI 8226, we found an enhanced cytotoxic effect when BKM120 was used in combination with a small molecule inhibitor of c-Myc. Noteworthy, the results of the synergistic experiments also revealed that BKM120 could produce a synergistic anti-cancer effect with carfilzomib (CFZ) and provided an enhanced therapeutic efficacy in MM cells, highlighting that PI3K inhibition might be a befitting approach in MM both in mono and combined therapy.
Collapse
Affiliation(s)
- Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Kazemi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Cancer Cell Signaling, Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
32
|
Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma VR. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev 2018; 39:517-560. [PMID: 30302772 PMCID: PMC6585651 DOI: 10.1002/med.21531] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
Autophagy is a crucial recycling process that is increasingly being recognized as an important factor in cancer initiation, cancer (stem) cell maintenance as well as the development of resistance to cancer therapy in both solid and hematological malignancies. Furthermore, it is being recognized that autophagy also plays a crucial and sometimes opposing role in the complex cancer microenvironment. For instance, autophagy in stromal cells such as fibroblasts contributes to tumorigenesis by generating and supplying nutrients to cancerous cells. Reversely, autophagy in immune cells appears to contribute to tumor‐localized immune responses and among others regulates antigen presentation to and by immune cells. Autophagy also directly regulates T and natural killer cell activity and is required for mounting T‐cell memory responses. Thus, within the tumor microenvironment autophagy has a multifaceted role that, depending on the context, may help drive tumorigenesis or may help to support anticancer immune responses. This multifaceted role should be taken into account when designing autophagy‐based cancer therapeutics. In this review, we provide an overview of the diverse facets of autophagy in cancer cells and nonmalignant cells in the cancer microenvironment. Second, we will attempt to integrate and provide a unified view of how these various aspects can be therapeutically exploited for cancer therapy.
Collapse
Affiliation(s)
- Hendrik Folkerts
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susan Hilgendorf
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Aasebø E, Bartaula-Brevik S, Hernandez-Valladares M, Bruserud Ø. Vacuolar ATPase as a possible therapeutic target in human acute myeloid leukemia. Expert Rev Hematol 2017; 11:13-24. [PMID: 29168399 DOI: 10.1080/17474086.2018.1407239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION V-ATPase is a proton pump expressed both in the membrane of intracellular organelles (e.g. endosomes, lysosomes, Golgi structures) and the plasma membrane. It is an important regulator of organellar functions, intracellular molecular trafficking, intercellular communication and intracellular signaling. It is therefore considered as a possible therapeutic target in the treatment of human malignancies. Areas covered: Relevant publications were identified through literature searches in the PubMed database. We searched for original articles and reviews describing the possible importance of V-ATPase for leukemogenesis and chemosensitivity in human myeloid cells, especially acute myeloid leukemia (AML) cells. Expert commentary: The expression of V-ATPase in the primary human AML cells varies between patients, and high levels are associated with high constitutive release of a wide range of soluble mediators. Several of the molecules included in the V-ATPase interactome may also be important in leukemogenesis and/or development of chemoresistance in human AML. Therapeutic targeting of V-ATPase should therefore be regarded as a possible therapeutic strategy in human AML, but the efficiency of such targeting will probably differ between patients. The possibility of toxicity, especially hematological toxicity and immunosuppression, also has to be clarified.
Collapse
Affiliation(s)
- Elise Aasebø
- a Section for Hematology, Department of Clinical Science , University of Bergen , Bergen , Norway.,b Proteomics Unit (PROBE), Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Sushma Bartaula-Brevik
- a Section for Hematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Maria Hernandez-Valladares
- a Section for Hematology, Department of Clinical Science , University of Bergen , Bergen , Norway.,b Proteomics Unit (PROBE), Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Øystein Bruserud
- a Section for Hematology, Department of Clinical Science , University of Bergen , Bergen , Norway.,c Department of Medicine , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
34
|
Robak P, Robak T. Novel synthetic drugs currently in clinical development for chronic lymphocytic leukemia. Expert Opin Investig Drugs 2017; 26:1249-1265. [PMID: 28942659 DOI: 10.1080/13543784.2017.1384814] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Over the last few years, several new synthetic drugs, particularly Bruton's tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K) and BCL-2 inhibitors have been developed and investigated in chronic lymphocytic leukemia (CLL). Areas covered: This review highlights key aspects of BTK, PI3K and BCL-2 inhibitors that are currently at various stages of preclinical and clinical development in CLL. A literature review of the MEDLINE database for articles in English concerning CLL, B-cell receptor, BCL-2 antagonists, BTK inhibitors and PI3K inhibitors, was conducted via PubMed. Publications from 2000 through July 2017 were scrutinized. The search terms used were acalabrutinib, ACP-196, BGB-3111, ONO-4059, GS-4059, duvelisib, IPI-145, TGR-1202, copanlisib, Bay 80-6946, buparlisib, BKM-120, BCL-2 inhibitors, venetoclax, ABT-263, navitoclax, CDK inhibitors, alvocidib, flavopiridol, dinaciclib, SCH 727,965, palbociclib, PD-0332991, in conjunction with CLL. Conference proceedings from the previous five years of the ASH and EHA Annual Scientific Meetings were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. Expert opinion: The use of new synthetic drugs is a promising strategy for the treatment of CLL. Data from ongoing and future clinical trials will aid in better defining the status of new drugs in the treatment of CLL.
Collapse
Affiliation(s)
- Pawel Robak
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Tadeusz Robak
- b Department of Hematology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
35
|
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K Pathway in Human Disease. Cell 2017; 170:605-635. [PMID: 28802037 PMCID: PMC5726441 DOI: 10.1016/j.cell.2017.07.029] [Citation(s) in RCA: 1773] [Impact Index Per Article: 221.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) activity is stimulated by diverse oncogenes and growth factor receptors, and elevated PI3K signaling is considered a hallmark of cancer. Many PI3K pathway-targeted therapies have been tested in oncology trials, resulting in regulatory approval of one isoform-selective inhibitor (idelalisib) for treatment of certain blood cancers and a variety of other agents at different stages of development. In parallel to PI3K research by cancer biologists, investigations in other fields have uncovered exciting and often unpredicted roles for PI3K catalytic and regulatory subunits in normal cell function and in disease. Many of these functions impinge upon oncology by influencing the efficacy and toxicity of PI3K-targeted therapies. Here we provide a perspective on the roles of class I PI3Ks in the regulation of cellular metabolism and in immune system functions, two topics closely intertwined with cancer biology. We also discuss recent progress developing PI3K-targeted therapies for treatment of cancer and other diseases.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| | - Honyin Chiu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Benjamin D Hopkins
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Shubha Bagrodia
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646/CB4 Science Center Drive, San Diego, CA 92121, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Robert T Abraham
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646/CB4 Science Center Drive, San Diego, CA 92121, USA
| |
Collapse
|
36
|
Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M, Tafuri A. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul 2017; 65:36-58. [PMID: 28549531 DOI: 10.1016/j.jbior.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Over the last few decades, there has been significant progress in the understanding of the pathogenetic mechanisms of the Acute Myeloid Leukemia (AML). However, despite important advances in elucidating molecular mechanisms, the treatment of AML has not improved significantly, remaining anchored at the standard chemotherapy regimen "3 + 7", with the prognosis of patients remaining severe, especially for the elderly and for those not eligible for transplant procedures. The biological and clinical heterogeneity of AML represents the major obstacle that hinders the improvement of prognosis and the identification of new effective therapeutic approaches. To date, abundant information has been collected on the genetic and molecular alterations of AML carrying prognostic significance. However, not enough is known on how AML progenitors regulate proliferation and survival by redundant and cross-talking signal transduction pathways (STP). Furthermore, it remains unclear how such complicated network affects prognosis and therapeutic treatment options, although many of these molecular determinants are potentially attractive for their druggable characteristics. In this review, some of the key STP frequently deregulated in AML, such as PI3k/Akt/mTOR pathway, GSK3 and components of Bcl-2 family of proteins, are summarized, highlighting in addition their interplay. Based on this information, we reviewed new targeted therapeutic approaches, focusing on the aberrant networks that sustain the AML blast proliferation, survival and drug resistance, aiming to improve disease treatment. Finally, we reported the approaches aimed at disrupting key signaling cross-talk overcoming resistances based on the combination of different targeting therapeutic strategies.
Collapse
Affiliation(s)
- Maria Rosaria Ricciardi
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Simone Mirabilii
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy.
| | - Roberto Licchetta
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Monica Piedimonte
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Agostino Tafuri
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| |
Collapse
|
37
|
Berndt N, Karim RM, Schönbrunn E. Advances of small molecule targeting of kinases. Curr Opin Chem Biol 2017; 39:126-132. [PMID: 28732278 DOI: 10.1016/j.cbpa.2017.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
Abstract
Reversible protein phosphorylation regulates virtually all aspects of life in the cell. As a result, dysregulation of protein kinases, the enzymes responsible for transferring phosphate groups from ATP to proteins, are often the cause or consequence of many human diseases including cancer. Almost three dozen protein kinase inhibitors (PKIs) have been approved for clinical applications since 1995, the vast majority of them for the treatment of cancer. According to the NCI, there are more than 100 types of cancer. However, FDA-approved PKIs only target 14 of them. Importantly, of the more than 500 protein kinases encoded by the human genome, only 22 are targets for currently approved PKIs, suggesting that the reservoir of PKIs still has room to grow significantly. In this short review we will discuss the most recent advances, challenges, and alternatives to currently adopted strategies in this burgeoning field.
Collapse
Affiliation(s)
- Norbert Berndt
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Rezaul M Karim
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
38
|
Sellar R, Losman JA. Targeting Aberrant Signaling in Myeloid Malignancies: Promise Versus Reality. Hematol Oncol Clin North Am 2017; 31:565-576. [PMID: 28673388 DOI: 10.1016/j.hoc.2017.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clonal myeloid disorders are characterized by genetic alterations that activate cytokine signaling pathways and stimulate cell proliferation. These activated signaling pathways have been extensively studied as potential therapeutic targets, and tyrosine kinase inhibitors have indeed had extraordinary success in treating BCR/ABL-positive chronic myeloiud leukemia. However, although inhibitors of other activated kinases have been developed that perform well in preclinical studies, the therapeutic efficacy of these drugs in patients has been unimpressive. This article discusses potential reasons for these discordant results and outlines recent scientific advances that are informing future efforts to target activated kinases in clonal myeloid disorders.
Collapse
Affiliation(s)
- Rob Sellar
- Division of Hematology, Brigham and Women's Hospital, 1 Blackfan Circle, Karp Building, CHRB05.125, Boston, MA 02115, USA
| | - Julie-Aurore Losman
- Department of Medical Oncology, Division of Hematology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
39
|
The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells. Leukemia 2015; 30:337-45. [PMID: 26338274 DOI: 10.1038/leu.2015.241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/05/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022]
Abstract
The phosphoinositide 3-kinases (PI3Ks) are critical components of the B-cell receptor (BCR) pathway and have an important role in the pathobiology of chronic lymphocytic leukemia (CLL). Inhibitors of PI3Kδ block BCR-mediated cross-talk between CLL cells and the lymph node microenvironment and provide significant clinical benefit to CLL patients. However, the PI3Kδ inhibitors applied thus far have limited direct impact on leukemia cell survival and thus are unlikely to eradicate the disease. The use of inhibitors of multiple isoforms of PI3K might lead to deeper remissions. Here we demonstrate that the pan-PI3K/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) was more pro-apoptotic to CLL cells--irrespective of their ATM/p53 status--than PI3Kα or PI3Kδ isoform selective inhibitors. Furthermore, SAR245409 blocked CLL survival, adhesion and proliferation. Moreover, SAR245409 was a more potent inhibitor of T-cell-mediated production of cytokines, which support CLL survival. Taken together, our in vitro data provide a rationale for the evaluation of a pan-PI3K inhibitor in CLL patients.
Collapse
|
40
|
Fransecky L, Mochmann LH, Baldus CD. Outlook on PI3K/AKT/mTOR inhibition in acute leukemia. MOLECULAR AND CELLULAR THERAPIES 2015; 3:2. [PMID: 26056603 PMCID: PMC4452048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/05/2015] [Indexed: 11/21/2023]
Abstract
Technological advances allowing high throughput analyses across numerous cancer tissues have allowed much progress in understanding complex cellular signaling. In the future, the genetic landscape in cancer may have more clinical relevance than diagnosis based on tumor origin. This progress has emphasized PI3K/AKT/mTOR, among others, as a central signaling center of cancer development due to its governing control in cellular growth, survival, and metabolism. The discovery of high frequencies of mutations in the PI3K/AKT/mTOR pathway in different cancer entities has sparked interest to inhibit elements of this pathway. In acute leukemia pharmacological interruption has yet to achieve desirable efficacy as targetable downstream mutations in PI3K/AKT/mTOR are absent. Nevertheless, mutations in membrane-associated genes upstream of PI3K/AKT/mTOR are frequent in acute leukemia and are associated with aberrant activation of PI3K/AKT/mTOR thus providing a good rationale for further exploration. This review attempts to summarize key findings leading to aberrant activation and to reflect on both promises and challenges of targeting PI3K/AKT/mTOR in acute leukemia. Our emphasis lies on the insights gained through high-throughput data acquisition that open up new avenues for identifying specific subgroups of acute leukemia as ideal candidates for PI3K/AKT/mTOR targeted therapy.
Collapse
Affiliation(s)
- Lars Fransecky
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Liliana H Mochmann
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Claudia D Baldus
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
41
|
Fransecky L, Mochmann LH, Baldus CD. Outlook on PI3K/AKT/mTOR inhibition in acute leukemia. MOLECULAR AND CELLULAR THERAPIES 2015; 3:2. [PMID: 26056603 PMCID: PMC4452048 DOI: 10.1186/s40591-015-0040-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/05/2015] [Indexed: 02/08/2023]
Abstract
Technological advances allowing high throughput analyses across numerous cancer tissues have allowed much progress in understanding complex cellular signaling. In the future, the genetic landscape in cancer may have more clinical relevance than diagnosis based on tumor origin. This progress has emphasized PI3K/AKT/mTOR, among others, as a central signaling center of cancer development due to its governing control in cellular growth, survival, and metabolism. The discovery of high frequencies of mutations in the PI3K/AKT/mTOR pathway in different cancer entities has sparked interest to inhibit elements of this pathway. In acute leukemia pharmacological interruption has yet to achieve desirable efficacy as targetable downstream mutations in PI3K/AKT/mTOR are absent. Nevertheless, mutations in membrane-associated genes upstream of PI3K/AKT/mTOR are frequent in acute leukemia and are associated with aberrant activation of PI3K/AKT/mTOR thus providing a good rationale for further exploration. This review attempts to summarize key findings leading to aberrant activation and to reflect on both promises and challenges of targeting PI3K/AKT/mTOR in acute leukemia. Our emphasis lies on the insights gained through high-throughput data acquisition that open up new avenues for identifying specific subgroups of acute leukemia as ideal candidates for PI3K/AKT/mTOR targeted therapy.
Collapse
Affiliation(s)
- Lars Fransecky
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Liliana H Mochmann
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Claudia D Baldus
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|