1
|
Thi Hong Van N, Hyun Nam J. Intermediate conductance calcium-activated potassium channel (KCa3.1) in cancer: Emerging roles and therapeutic potentials. Biochem Pharmacol 2024; 230:116573. [PMID: 39396649 DOI: 10.1016/j.bcp.2024.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The KCa3.1 channel (also known as the KCNN4, IK1, or SK4 channel) is an intermediate-conductance calcium-activated potassium channel that regulates the membrane potential and maintains calcium homeostasis. Recently, KCa3.1 channels have attracted increasing attention because of their diverse roles in various types of cancers. In cancer cells, KCa3.1 channels regulate key processes, including cell proliferation, cell cycle, migration, invasion, tumor microenvironments, and therapy resistance. In addition, abnormal KCa3.1 expression in cancers is utilized to distinguish between tumor and normal tissues, classify cancer stages, and predict patient survival outcomes. This review comprehensively examines the current understanding of the contribution of KCa3.1 channels to tumor formation, metastasis, and its mechanisms. We evaluated the potential of KCa3.1 as a biomarker for cancer diagnosis and prognosis. Finally, we discuss the advances and challenges of applying KCa3.1 modulators in cancer treatment and propose approaches to overcome these obstacles. In summary, this review highlights the importance of this ion channel as a potent therapeutic target and prognostic biomarker of cancer.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea.
| |
Collapse
|
2
|
Van NTH, Kim WK, Nam JH. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications. Int J Mol Sci 2024; 25:2965. [PMID: 38474212 PMCID: PMC10932353 DOI: 10.3390/ijms25052965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Calcium-activated potassium (KCa) channels are ubiquitously expressed throughout the body and are able to regulate membrane potential and intracellular calcium concentrations, thereby playing key roles in cellular physiology and signal transmission. Consequently, it is unsurprising that KCa channels have been implicated in various diseases, making them potential targets for pharmaceutical interventions. Over the past two decades, numerous studies have been conducted to develop KCa channel-targeting drugs, including those for disorders of the central and peripheral nervous, cardiovascular, and urinary systems and for cancer. In this review, we synthesize recent findings regarding the structure and activating mechanisms of KCa channels. We also discuss the role of KCa channel modulators in therapeutic medicine. Finally, we identify the major reasons behind the delay in bringing these modulators to the pharmaceutical market and propose new strategies to promote their application.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Allegrini B, Jedele S, David Nguyen L, Mignotet M, Rapetti-Mauss R, Etchebest C, Fenneteau O, Loubat A, Boutet A, Thomas C, Durin J, Petit A, Badens C, Garçon L, Da Costa L, Guizouarn H. New KCNN4 Variants Associated With Anemia: Stomatocytosis Without Erythrocyte Dehydration. Front Physiol 2022; 13:918620. [PMID: 36003639 PMCID: PMC9393219 DOI: 10.3389/fphys.2022.918620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The K+ channel activated by the Ca2+, KCNN4, has been shown to contribute to red blood cell dehydration in the rare hereditary hemolytic anemia, the dehydrated hereditary stomatocytosis. We report two de novo mutations on KCNN4, We reported two de novo mutations on KCNN4, V222L and H340N, characterized at the molecular, cellular and clinical levels. Whereas both mutations were shown to increase the calcium sensitivity of the K+ channel, leading to channel opening for lower calcium concentrations compared to WT KCNN4 channel, there was no obvious red blood cell dehydration in patients carrying one or the other mutation. The clinical phenotype was greatly different between carriers of the mutated gene ranging from severe anemia for one patient to a single episode of anemia for the other patient or no documented sign of anemia for the parents who also carried the mutation. These data compared to already published KCNN4 mutations question the role of KCNN4 gain-of-function mutations in hydration status and viability of red blood cells in bloodstream.
Collapse
Affiliation(s)
- B. Allegrini
- Université Côte d’Azur, CNRS, INSERM, iBV, Nice, France
| | - S. Jedele
- Université Paris Cité and Université des Antilles, Inserm, BIGR, Paris, France
| | - L. David Nguyen
- Université Paris Cité, Paris, France
- AP-HP, Service d’Hématologie Biologique, Hôpital R. Debré, Paris, France
| | - M. Mignotet
- Université Côte d’Azur, CNRS, INSERM, iBV, Nice, France
| | | | - C. Etchebest
- Université Paris Cité and Université des Antilles, Inserm, BIGR, Paris, France
| | - O. Fenneteau
- AP-HP, Service d’Hématologie Biologique, Hôpital R. Debré, Paris, France
| | - A. Loubat
- Université Côte d’Azur, CNRS, INSERM, iBV, Nice, France
| | - A. Boutet
- Hôpital Saint Nazaire, Saint-Nazaire, France
| | - C. Thomas
- CHU Nantes, Service Oncologie-hématologie et Immunologie Pédiatrique, Nantes, France
| | - J. Durin
- Sorbonne Université, AP-HP, Hôpital Armand Trousseau, Service d'Hématologie Oncologie Pédiatrique, Paris, France
| | - A. Petit
- Sorbonne Université, AP-HP, Hôpital Armand Trousseau, Service d'Hématologie Oncologie Pédiatrique, Paris, France
| | - C. Badens
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- AP-HM, Department of Genetic, Marseille, France
| | - L. Garçon
- Université Picardie Jules Verne, Unité EA4666 Hematim, Amiens, France
- CHU Amiens, Service d'Hématologie Biologique, Amiens, France
| | - L. Da Costa
- Université Paris Cité, Paris, France
- AP-HP, Service d’Hématologie Biologique, Hôpital R. Debré, Paris, France
- Université Picardie Jules Verne, Unité EA4666 Hematim, Amiens, France
| | - H. Guizouarn
- Université Côte d’Azur, CNRS, INSERM, iBV, Nice, France
- *Correspondence: H. Guizouarn,
| |
Collapse
|
4
|
|
5
|
The Gardos effect drives erythrocyte senescence and leads to Lu/BCAM and CD44 adhesion molecule activation. Blood Adv 2021; 4:6218-6229. [PMID: 33351118 DOI: 10.1182/bloodadvances.2020003077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Senescence of erythrocytes is characterized by a series of changes that precede their removal from the circulation, including loss of red cell hydration, membrane shedding, loss of deformability, phosphatidyl serine exposure, reduced membrane sialic acid content, and adhesion molecule activation. Little is known about the mechanisms that initiate these changes nor is it known whether they are interrelated. In this study, we show that Ca2+-dependent K+ efflux (the Gardos effect) drives erythrocyte senescence. We found that increased intracellular Ca2+ activates the Gardos channel, leading to shedding of glycophorin-C (GPC)-containing vesicles. This results in a loss of erythrocyte deformability but also in a marked loss of membrane sialic acid content. We found that GPC-derived sialic acid residues suppress activity of both Lutheran/basal cell adhesion molecule (Lu/BCAM) and CD44 by the formation of a complex on the erythrocyte membrane, and Gardos channel-mediated shedding of GPC results in Lu/BCAM and CD44 activation. This phenomenon was observed as erythrocytes aged and on erythrocytes that were otherwise prone to clearance from the circulation, such as sickle erythrocytes, erythrocytes stored for transfusion, or artificially dehydrated erythrocytes. These novel findings provide a unifying concept on erythrocyte senescence in health and disease through initiation of the Gardos effect.
Collapse
|
6
|
Red cell membrane disorders: structure meets function. Blood 2021; 136:1250-1261. [PMID: 32702754 DOI: 10.1182/blood.2019000946] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
The mature red blood cell (RBC) lacks a nucleus and organelles characteristic of most cells, but it is elegantly structured to perform the essential function of delivering oxygen and removing carbon dioxide from all other cells while enduring the shear stress imposed by navigating small vessels and sinusoids. Over the past several decades, the efforts of biochemists, cell and molecular biologists, and hematologists have provided an appreciation of the complexity of RBC membrane structure, while studies of the RBC membrane disorders have offered valuable insights into structure-function relationships. Within the last decade, advances in genetic testing and its increased availability have made it possible to substantially build upon this foundational knowledge. Although disorders of the RBC membrane due to altered structural organization or altered transport function are heterogeneous, they often present with common clinical findings of hemolytic anemia. However, they may require substantially different management depending on the underlying pathophysiology. Accurate diagnosis is essential to avoid emergence of complications or inappropriate interventions. We propose an algorithm for laboratory evaluation of patients presenting with symptoms and signs of hemolytic anemia with a focus on RBC membrane disorders. Here, we review the genotypic and phenotypic variability of the RBC membrane disorders in order to raise the index of suspicion and highlight the need for correct and timely diagnosis.
Collapse
|
7
|
Sørensen LK, Petersen A, Granfeldt A, Simonsen U, Hasselstrøm JB. A validated UHPLC-MS/MS method for rapid determination of senicapoc in plasma samples. J Pharm Biomed Anal 2021; 197:113956. [PMID: 33626443 PMCID: PMC7869607 DOI: 10.1016/j.jpba.2021.113956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
The clinically tested KCa3.1 channel blocker, senicapoc, has been proven to have excellent pharmacological properties and prior clinical trials found it to be safe for use in patients with sickle cell anaemia. Currently, several preclinical projects are aiming to repurpose senicapoc for other indications, but well-described analytical methods in the literature are lacking. Our aim was to develop a sensitive, rapid and accurate ultra-high-performance liquid chromatography-tandem mass spectrometry method using pneumatically assisted electrospray ionisation (UHPLC-ESI-MS/MS) suitable for the determination of senicapoc in plasma samples. Unfortunately, direct analysis of senicapoc in crude acetonitrile extracts of human plasma samples by UHPLC-ESI-MS/MS was subjected to significant and variable ion suppression from coeluting phospholipids (PLs). The interferences were mainly caused by the presence of phosphatidylcholine and phosphatidylethanolamine classes of PLs, including their lyso-products. However, the PLs were easily removed from crude extracts by filtration through a sorbent with Lewis acid properties which decreased the total ion suppression effect to approximately 5%. Based on this technique, a simple high-throughput UHPLC-MS/MS method was developed and validated for the determination of senicapoc in 100-μL plasma samples. The lower limit of quantification was 0.1 ng/mL. The mean true extraction recovery was close to 100 %. The relative intra-laboratory reproducibility standard deviations of the measured concentrations were 8% and 4% at concentrations of 0.1 ng/mL and 250 ng/mL, respectively. The trueness expressed as the relative bias of the test results was within ± 2% at concentrations of 1 ng/mL or higher.
Collapse
Affiliation(s)
- Lambert K Sørensen
- Section for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Asbjørn Petersen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | - Asger Granfeldt
- Department of Clinical Medicine, Anaesthesiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | - Jørgen B Hasselstrøm
- Section for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
8
|
Andolfo I, Rosato BE, Manna F, De Rosa G, Marra R, Gambale A, Girelli D, Russo R, Iolascon A. Gain-of-function mutations in PIEZO1 directly impair hepatic iron metabolism via the inhibition of the BMP/SMADs pathway. Am J Hematol 2020; 95:188-197. [PMID: 31737919 DOI: 10.1002/ajh.25683] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Dehydrated hereditary stomatocytosis (DHS), or xerocytosis, is an autosomal dominant hemolytic anemia. Most patients with DHS carry mutations in the PIEZO1 gene encoding a mechanosensitive cation channel. We here demonstrate that patients with DHS have low levels of hepcidin and only a slight increase of ERFE, the erythroid negative regulator of hepcidin. We demonstrated that at the physiological level, PIEZO1 activation induced Ca2+ influx and suppression of HAMP expression in primary hepatocytes. In two hepatic cellular models expressing PIEZO1 WT and two PIEZO1 gain-of-function mutants (R2456H and R2488Q), we highlight altered expression of a few genes/proteins involved in iron metabolism. Mutant cells showed increased intracellular Ca2+ compared to WT, which was correlated to increased phosphorylation of ERK1/2, inhibition of the BMP-SMADs pathway, and suppression of HAMP transcription. Moreover, the HuH7 cells, treated with PD0325901, a potent inhibitor of ERK1/2 phosphorylation, reduced the phosphorylation of ERK1/2 with the consequent increased phosphorylation of SMAD1/5/8, confirming the link between the two pathways. Another "proof of concept" for the mechanism that links PIEZO1 to HAMP regulation was obtained by mimicking PIEZO1 activation by cell Ca2+ overload, by the Ca2+ ionophore A23187. There was strong down-regulation of HAMP gene expression after this Ca2+ overload. Finally, the inhibition of PIEZO1 by GsMTx4 leads to phenotype rescue. This is the first demonstration of a direct link between PIEZO1 and iron metabolism, which defines the channel as a new hepatic iron metabolism regulator and as a possible therapeutic target of iron overload in DHS and other iron-loading anemias.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli ‘Federico II’ Naples Italy
- CEINGE, Biotecnologie Avanzate Naples Italy
| | - Barbara Eleni Rosato
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli ‘Federico II’ Naples Italy
- CEINGE, Biotecnologie Avanzate Naples Italy
| | - Francesco Manna
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli ‘Federico II’ Naples Italy
- CEINGE, Biotecnologie Avanzate Naples Italy
| | - Gianluca De Rosa
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli ‘Federico II’ Naples Italy
- CEINGE, Biotecnologie Avanzate Naples Italy
| | - Roberta Marra
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli ‘Federico II’ Naples Italy
- CEINGE, Biotecnologie Avanzate Naples Italy
| | - Antonella Gambale
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli ‘Federico II’ Naples Italy
- CEINGE, Biotecnologie Avanzate Naples Italy
| | - Domenico Girelli
- Section of Internal Medicine, Department of MedicineUniversity of Verona Verona Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli ‘Federico II’ Naples Italy
- CEINGE, Biotecnologie Avanzate Naples Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli ‘Federico II’ Naples Italy
- CEINGE, Biotecnologie Avanzate Naples Italy
| |
Collapse
|
9
|
Iolascon A, Andolfo I, Russo R. Advances in understanding the pathogenesis of red cell membrane disorders. Br J Haematol 2019; 187:13-24. [PMID: 31364155 DOI: 10.1111/bjh.16126] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hereditary erythrocyte membrane disorders are caused by mutations in genes encoding various transmembrane or cytoskeletal proteins of red blood cells. The main consequences of these genetic alterations are decreased cell deformability and shortened erythrocyte survival. Red blood cell membrane defects encompass a heterogeneous group of haemolytic anaemias caused by either (i) altered membrane structural organisation (hereditary spherocytosis, hereditary elliptocytosis, hereditary pyropoikilocytosis and Southeast Asian ovalocytosis) or (ii) altered membrane transport function (overhydrated hereditary stomatocytosis, dehydrated hereditary stomatocytosis or xerocytosis, familial pseudohyperkalaemia and cryohydrocytosis). Herein we provide a comprehensive review of the recent literature on the molecular genetics of erythrocyte membrane defects and their reported clinical consequences. We also describe the effect of low-expression genetic variants on the high inter- and intra-familial phenotype variability of erythrocyte structural defects.
Collapse
Affiliation(s)
- Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
10
|
Brown BM, Shim H, Christophersen P, Wulff H. Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels. Annu Rev Pharmacol Toxicol 2019; 60:219-240. [PMID: 31337271 DOI: 10.1146/annurev-pharmtox-010919-023420] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three small-conductance calcium-activated potassium (KCa2) channels and the related intermediate-conductance KCa3.1 channel are voltage-independent K+ channels that mediate calcium-induced membrane hyperpolarization. When intracellular calcium increases in the channel vicinity, it calcifies the flexible N lobe of the channel-bound calmodulin, which then swings over to the S4-S5 linker and opens the channel. KCa2 and KCa3.1 channels are highly druggable and offer multiple binding sites for venom peptides and small-molecule blockers as well as for positive- and negative-gating modulators. In this review, we briefly summarize the physiological role of KCa channels and then discuss the pharmacophores and the mechanism of action of the most commonly used peptidic and small-molecule KCa2 and KCa3.1 modulators. Finally, we describe the progress that has been made in advancing KCa3.1 blockers and KCa2.2 negative- and positive-gating modulators toward the clinic for neurological and cardiovascular diseases and discuss the remaining challenges.
Collapse
Affiliation(s)
- Brandon M Brown
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Heesung Shim
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | | | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| |
Collapse
|
11
|
Frederiksen H. Dehydrated hereditary stomatocytosis: clinical perspectives. J Blood Med 2019; 10:183-191. [PMID: 31308777 PMCID: PMC6613601 DOI: 10.2147/jbm.s179764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Dehydrated hereditary stomatocytosis (DHSt) is a nonimmune congenital hemolytic disorder characterized by red blood cell (RBC) dehydration and lysis. It has been a recognized diagnostic entity for almost 50 years, and autosomal dominant inheritance has long been suspected, but it was not until 2011 that the first genetic alterations were identified. The current study reviews 73 articles published during 1971–2019 and focuses on clinical perspectives of the disease. All but one of the published clinical data in DHSt were either single case reports or case series. From these, it can be seen that patients with DHSt often have fully or partially compensated hemolysis with few symptoms. Despite this, iron overload is an almost universal finding even in patients without or with only sporadic blood transfusions, and this may lead to organ dysfunction. Other severe complications, such as thrombosis and perinatal fluid effusions unrelated to fetal hemoglobin concentration, may also occur. No specific treatment for symptomatic hemolysis exists, and splenectomy should be avoided as it seems to aggravate the risk of thrombosis. Recently, treatment with senicapoc has shown activity against RBC dehydration in vitro; however, it is not known if this translates into relevant clinical effects. In conclusion, despite recent advances in the understanding of pathophysiology in DHSt, options for clinical management have not improved. Entering data into international registries has the potential to fill gaps in knowledge and eventually care of these rare patients.
Collapse
|
12
|
Rivera A, Vandorpe DH, Shmukler BE, Andolfo I, Iolascon A, Archer NM, Shabani E, Auerbach M, Hamerschlak N, Morton J, Wohlgemuth JG, Brugnara C, Snyder LM, Alper SL. Erythrocyte ion content and dehydration modulate maximal Gardos channel activity in KCNN4 V282M/+ hereditary xerocytosis red cells. Am J Physiol Cell Physiol 2019; 317:C287-C302. [PMID: 31091145 DOI: 10.1152/ajpcell.00074.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hereditary xerocytosis (HX) is caused by missense mutations in either the mechanosensitive cation channel PIEZO1 or the Ca2+-activated K+ channel KCNN4. All HX-associated KCNN4 mutants studied to date have revealed increased current magnitude and red cell dehydration. Baseline KCNN4 activity was increased in HX red cells heterozygous for KCNN4 mutant V282M. However, HX red cells maximally stimulated by Ca2+ ionophore A23187 or by PMCA Ca2+-ATPase inhibitor orthovanadate displayed paradoxically reduced KCNN4 activity. This reduced Ca2+-stimulated mutant KCNN4 activity in HX red cells was associated with unchanged sensitivity to KCNN4 inhibitor senicapoc and KCNN4 activator Ca2+, with slightly elevated Ca2+ uptake and reduced PMCA activity, and with decreased KCNN4 activation by calpain inhibitor PD150606. The altered intracellular monovalent cation content of HX red cells prompted experimental nystatin manipulation of red cell Na and K contents. Nystatin-mediated reduction of intracellular K+ with corresponding increase in intracellular Na+ in wild-type cells to mimic conditions of HX greatly suppressed vanadate-stimulated and A23187-stimulated KCNN4 activity in those wild-type cells. However, conferral of wild-type cation contents on HX red cells failed to restore wild-type-stimulated KCNN4 activity to those HX cells. The phenotype of reduced, maximally stimulated KCNN4 activity was shared by HX erythrocytes expressing heterozygous PIEZO1 mutants R2488Q and V598M, but not by HX erythrocytes expressing heterozygous KCNN4 mutant R352H or PIEZO1 mutant R2456H. Our data suggest that chronic KCNN4-driven red cell dehydration and intracellular cation imbalance can lead to reduced KCNN4 activity in HX and wild-type red cells.
Collapse
Affiliation(s)
- Alicia Rivera
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - David H Vandorpe
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Boris E Shmukler
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Natasha M Archer
- Division of Hematology and Oncology, Boston Children's Hospital, Dana-Farber Cancer Center, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Estela Shabani
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - Nelson Hamerschlak
- Department of Hematology, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - James Morton
- Quest Diagnostics, San Juan Capistrano, California
| | | | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - L Michael Snyder
- Quest Diagnostics, Marlborough, Massachusetts.,Departments of Medicine and Laboratory Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts
| | - Seth L Alper
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
13
|
Brown BM, Pressley B, Wulff H. KCa3.1 Channel Modulators as Potential Therapeutic Compounds for Glioblastoma. Curr Neuropharmacol 2018; 16:618-626. [PMID: 28676010 PMCID: PMC5997873 DOI: 10.2174/1570159x15666170630164226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022] Open
Abstract
Background The intermediate-conductance Ca2+-activated K+ channel KCa3.1 is widely expressed in cells of the immune system such as T- and B-lymphocytes, mast cells, macrophages and microglia, but also found in dedifferentiated vascular smooth muscle cells, fibroblasts and many cancer cells including pancreatic, prostate, leukemia and glioblastoma. In all these cell types KCa3.1 plays an important role in cellular activation, migration and proliferation by regulating membrane potential and Ca2+ signaling. Methods and Results KCa3.1 therefore constitutes an attractive therapeutic target for diseases involving excessive proliferation or activation of one more of these cell types and researchers both in academia and in the pharmaceutical industry have developed several potent and selective small molecule inhibitors of KCa3.1. This article will briefly review the available compounds (TRAM-34, senicapoc, NS6180), their binding sites and mechanisms of action, and then discuss the potential usefulness of these compounds for the treatment of brain tumors based on their brain penetration and their efficacy in reducing microglia activation in animal models of ischemic stroke and Alzheimer’s disease. Conclusion Senicapoc, which has previously been in Phase III clinical trials, would be available for repurposing, and could be used to quickly translate findings made with other KCa3.1 blocking tool compounds into clinical trials.
Collapse
Affiliation(s)
- Brandon M Brown
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616, United States
| | - Brandon Pressley
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616, United States
| |
Collapse
|
14
|
Lee CH, MacKinnon R. Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 2018; 360:508-513. [PMID: 29724949 DOI: 10.1126/science.aas9466] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
Abstract
Small-conductance Ca2+-activated K+ (SK) channels mediate neuron excitability and are associated with synaptic transmission and plasticity. They also regulate immune responses and the size of blood cells. Activation of SK channels requires calmodulin (CaM), but how CaM binds and opens SK channels has been unclear. Here we report cryo-electron microscopy (cryo-EM) structures of a human SK4-CaM channel complex in closed and activated states at 3.4- and 3.5-angstrom resolution, respectively. Four CaM molecules bind to one channel tetramer. Each lobe of CaM serves a distinct function: The C-lobe binds to the channel constitutively, whereas the N-lobe interacts with the S4-S5 linker in a Ca2+-dependent manner. The S4-S5 linker, which contains two distinct helices, undergoes conformational changes upon CaM binding to open the channel pore. These structures reveal the gating mechanism of SK channels and provide a basis for understanding SK channel pharmacology.
Collapse
Affiliation(s)
- Chia-Hsueh Lee
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
15
|
Caulier A, Rapetti-Mauss R, Guizouarn H, Picard V, Garçon L, Badens C. Primary red cell hydration disorders: Pathogenesis and diagnosis. Int J Lab Hematol 2018; 40 Suppl 1:68-73. [DOI: 10.1111/ijlh.12820] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/09/2018] [Indexed: 11/26/2022]
Affiliation(s)
- A. Caulier
- EA HEMATIM; Université Picardie Jules Verne; Amiens France
| | | | - H. Guizouarn
- CNRS, INSERM, IBV; Université Côte d'Azur; Nice France
| | - V. Picard
- Faculté de Pharmacie; Université Paris Sud-Paris Saclay; Chatenay Malabry France
- AP-HP; Département d'Hématologie; Hôpital Bicêtre; Le Kremlin-Bicêtre France
| | - L. Garçon
- EA HEMATIM; Université Picardie Jules Verne; Amiens France
- Service d'Hématologie Biologique; CHU Amiens; Amiens France
| | - C. Badens
- INSERM, MMG; Aix Marseille University; Marseille France
- Laboratoire de Génétique Moléculaire; APHM; Marseille France
| |
Collapse
|
16
|
Abstract
Cell dehydration is a distinguishing characteristic of sickle cell disease and an important contributor to disease pathophysiology. Due to the unique dependence of Hb S polymerization on cellular Hb S concentration, cell dehydration promotes polymerization and sickling. In double heterozygosis for Hb S and C (SC disease) dehydration is the determining factor in disease pathophysiology. Three major ion transport pathways are involved in sickle cell dehydration: the K-Cl cotransport (KCC), the Gardos channel (KCNN4) and Psickle, the polymerization induced membrane permeability, most likely mediated by the mechano-sensitive ion channel PIEZO1. Each of these pathways exhibit unique characteristics in regulation by oxygen tension, intracellular and extracellular environment, and functional expression in reticulocytes and mature red cells. The unique dependence of K-Cl cotransport on intracellular Mg and the abnormal reduction of erythrocyte Mg content in SS and SC cells had led to clinical studies assessing the effect of oral Mg supplementation. Inhibition of Gardos channel by clotrimazole and senicapoc has led to Phase 1,2,3 trials in patients with sickle cell disease. While none of these studies has resulted in the approval of a novel therapy for SS disease, they have highlighted the key role played by these pathways in disease pathophysiology.
Collapse
Affiliation(s)
- Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Andolfo I, Russo R, Gambale A, Iolascon A. Hereditary stomatocytosis: An underdiagnosed condition. Am J Hematol 2018; 93:107-121. [PMID: 28971506 DOI: 10.1002/ajh.24929] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Hereditary stomatocytoses are a wide class of hemolytic anemias characterized by alterations of ionic flux with increased cation permeability that results in inappropriate shrinkage or swelling of the erythrocytes, and water lost or gained osmotically. The last few years have been crucial for new acquisitions in this field in terms of identifying new causative genes and of studying their pathogenetic mechanisms. This review summarizes the main features of erythrocyte membrane transport diseases, dividing them into forms with either isolated erythroid phenotype (nonsyndromic) or extra-hematological manifestations (syndromic), and focusing particularly on the most recent advances regarding dehydrated forms of hereditary stomatocytosis and familial pseudohyperkalemia.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Antonella Gambale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| |
Collapse
|
18
|
Lew VL, Tiffert T. On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels. Front Physiol 2017; 8:977. [PMID: 29311949 PMCID: PMC5732905 DOI: 10.3389/fphys.2017.00977] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/15/2017] [Indexed: 11/13/2022] Open
Abstract
In a healthy adult, the transport of O2 and CO2 between lungs and tissues is performed by about 2 · 1013 red blood cells, of which around 1.7 · 1011 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55-0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of Psickle in sickle cells, and the Ca2+-sensitive, K+-selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity.
Collapse
Affiliation(s)
- Virgilio L Lew
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Teresa Tiffert
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Abstract
The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte.
Collapse
|
20
|
Rapetti-Mauss R, Picard V, Guitton C, Ghazal K, Proulle V, Badens C, Soriani O, Garçon L, Guizouarn H. Red blood cell Gardos channel (KCNN4): the essential determinant of erythrocyte dehydration in hereditary xerocytosis. Haematologica 2017; 102:e415-e418. [PMID: 28619848 DOI: 10.3324/haematol.2017.171389] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Véronique Picard
- Univ Paris Sud-Paris Saclay, Faculté de pharmacie, Service d'Hématologie biologique, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | - Corinne Guitton
- Service d'Hématologie et Rhumatologie Pédiatrique, Centre de Référence 'Maladies constitutionnelles du Globule rouge', Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | - Khaldoun Ghazal
- Service de biochimie, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | - Valérie Proulle
- Service d'Hématologie biologique, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, GMGF, Marseille, France.,APHM Département de Génétique Médicale, Hôpital de la Timone, Centre de Référence Thalassémie, Marseille, France
| | | | - Loïc Garçon
- EA4666, UPJV et Service d'Hématologie Biologique, CHU Amiens, France
| | | |
Collapse
|