1
|
Abeykoon JP, Go RS, Azoulay LD, Haroche J. Methotrexate and cytarabine in adult LCH: High risk, high reward and maintenance free? Br J Haematol 2024. [PMID: 39535303 DOI: 10.1111/bjh.19903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Lin et al. report the long-term follow-up of a phase II trial involving 95 adult patients with Langerhans cell histiocytosis (LCH), investigating the combination of methotrexate and cytarabine (MA). After a median follow-up of 6.5 years, the study showed high response rates, with 90% overall response; 55% of patients free from an event such as disease progression, poor response or death; and 93% of patients were alive, though nearly half experienced febrile neutropenia. This prospective study helps fill gaps in understanding adult LCH treatment, indicating that fixed-duration chemotherapy can yield durable responses despite its associated risks. It emphasizes the importance of personalized treatment decisions, considering both fixed-duration chemotherapy and continuous targeted agents based on patient and disease-specific factors. Commentary on: Lin et al. Long term follow-up of methotrexate and cytarabine in adult patients with Langerhans cell histiocytosis. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19830.
Collapse
Affiliation(s)
- Jithma P Abeykoon
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ronald S Go
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Levi-Dan Azoulay
- Sorbonne Université, INSERM UMRS-1135, CIMI, Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Référence Maladies Systémiques Rares, Hôpital Pitié-Salpêtrière, Paris, France
| | - Julien Haroche
- Internal Medicine Department 2, French National Referral Center for Rare Systemic Diseases and Histiocytoses, Pitié-Salpêtrière Hospital, AP-HP and Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Lin H, Chang L, Lang M, Liu ZZ, Duan MH, Zhou DB, Cao XX. Long-term follow-up of methotrexate and cytarabine in adult patients with Langerhans cell histiocytosis. Br J Haematol 2024. [PMID: 39428688 DOI: 10.1111/bjh.19830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
The optimal treatment strategy for adult Langerhans cell histiocytosis (LCH) remains unclear. Our previous study demonstrated the remarkable efficacy of combined methotrexate and cytarabine (Ara-C) [MA] therapy in patients newly diagnosed with LCH, with a median follow-up of 2 years. The present article reports long-term follow-up data spanning a median of 78 months (6.5 years) from a single-arm, single-centre, prospective phase 2 clinical trial (NCT02389400) conducted between January 2014 and December 2020. Ninety-five adults with newly diagnosed LCH exhibiting multisystem disease or multifocal single-system involvement underwent MA therapy every 35 days for six cycles. Methotrexate (1 g/m2) was administered by 24 h infusion on day 1 and AraC (0.1 g/m2) by 24 h infusion for 5 days. The primary end-point was event-free survival (EFS). The median patient age was 32 years (range 18-65 years). The overall response rate was 89.5%. Seven patients in this cohort died, and 38 experienced disease reactivation. No degenerative central nervous system diseases were observed. The estimated 6-year overall survival (OS) and EFS rates were 93.2% and 55.2% respectively. Multivariate analysis revealed that risk organ (RO) involvement at baseline (hazard ratio [HR] 6.135 [95% confidence interval (CI) 1.185-32.259]; p = 0.031) and age >40 years at diagnosis (HR 7.299 [95% CI 1.056-21.277]; p = 0.042) were associated with inferior OS. RO (HR 2.604 [95% CI 1.418-4.762]; p = 0.002) and skin (HR 2.232 [95% CI 1.171-4.255]; p = 0.015) involvement at baseline were poor prognostic factors for EFS. Regarding adverse events, four patients developed a second primary malignancy. In conclusion, the MA regimen was a valid and safe therapeutic approach for adult patients newly diagnosed with LCH.
Collapse
Affiliation(s)
- He Lin
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Long Chang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Min Lang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Zheng-Zheng Liu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Ming-Hui Duan
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Dao-Bin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
3
|
Lin H, Cao XX. Current State of Targeted Therapy in Adult Langerhans Cell Histiocytosis and Erdheim-Chester Disease. Target Oncol 2024; 19:691-703. [PMID: 38990463 DOI: 10.1007/s11523-024-01080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is a key driver in many histiocytic disorders, including Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD). This has led to successful and promising treatment with targeted therapies, including BRAF inhibitors and MEK inhibitors. Additional novel inhibitors have also demonstrated encouraging results. Nevertheless, there are several problems concerning targeted therapy that need to be addressed. These include, among others, incomplete responsiveness and the emergence of resistance to BRAF inhibition as observed in other BRAF-mutant malignancies. Drug resistance and relapse after treatment interruption remain problems with current targeted therapies. Targeted therapy does not seem to eradicate the mutated clone, leading to inevitable relapes, which is a huge challenge for the future. More fundamental research and clinical trials are needed to address these issues and to develop improved targeted therapies that can overcome resistance and achieve long-lasting remissions.
Collapse
Affiliation(s)
- He Lin
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
4
|
Bielamowicz K, Dimitrion P, Abla O, Bomken S, Campbell P, Collin M, Degar B, Diamond E, Eckstein OS, El-Mallawany N, Fluchel M, Goyal G, Henry MM, Hermiston M, Hogarty M, Jeng M, Jubran R, Lubega J, Kumar A, Ladisch S, McClain KL, Merad M, Mi QS, Parsons DW, Peckham-Gregory E, Picarsic J, Prudowsky ZD, Rollins BJ, Shaw PH, Wistinghausen B, Rodriguez-Galindo C, Allen CE. Langerhans cell histiocytosis: NACHO update on progress, chaos, and opportunity on the path to rational cures. Cancer 2024; 130:2416-2439. [PMID: 38687639 PMCID: PMC11214602 DOI: 10.1002/cncr.35301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 05/02/2024]
Abstract
Langerhans cell histiocytosis (LCH) is a myeloid neoplastic disorder characterized by lesions with CD1a-positive/Langerin (CD207)-positive histiocytes and inflammatory infiltrate that can cause local tissue damage and systemic inflammation. Clinical presentations range from single lesions with minimal impact to life-threatening disseminated disease. Therapy for systemic LCH has been established through serial trials empirically testing different chemotherapy agents and durations of therapy. However, fewer than 50% of patients who have disseminated disease are cured with the current standard-of-care vinblastine/prednisone/(mercaptopurine), and treatment failure is associated with long-term morbidity, including the risk of LCH-associated neurodegeneration. Historically, the nature of LCH-whether a reactive condition versus a neoplastic/malignant condition-was uncertain. Over the past 15 years, seminal discoveries have broadly defined LCH pathogenesis; specifically, activating mitogen-activated protein kinase pathway mutations (most frequently, BRAFV600E) in myeloid precursors drive lesion formation. LCH therefore is a clonal neoplastic disorder, although secondary inflammatory features contribute to the disease. These paradigm-changing insights offer a promise of rational cures for patients based on individual mutations, clonal reservoirs, and extent of disease. However, the pace of clinical trial development behind lags the kinetics of translational discovery. In this review, the authors discuss the current understanding of LCH biology, clinical characteristics, therapeutic strategies, and opportunities to improve outcomes for every patient through coordinated agent prioritization and clinical trial efforts.
Collapse
Affiliation(s)
- Kevin Bielamowicz
- College of Medicine at the University of Arkansas for Medical Sciences, Department of Pediatrics; Arkansas Children’s Hospital, Pediatric Hematology and Oncology Little Rock, AR, USA
| | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA
| | - Oussama Abla
- Division of Hematology/Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon Bomken
- Translational and Clinical Research Institute, Newcastle University; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Patrick Campbell
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University; National Institute for Health and Care Research, Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| | - Barbara Degar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Eli Diamond
- Departments of Neurology and Medicine, Memorial Sloan Kettering Center, New York, NY, USA
| | - Olive S. Eckstein
- Department of Pediatrics, Baylor College of Medicine; Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, USA
| | - Nader El-Mallawany
- Department of Pediatrics, Baylor College of Medicine; Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, USA
| | - Mark Fluchel
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, Washington, USA
| | - Gaurav Goyal
- Division of Hematology-Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael M. Henry
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ, USA
| | - Michelle Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Hogarty
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Michael Jeng
- Department of Pediatrics, Pediatric Hematology/Oncology, Lucile Packard Children’s Hospital, Stanford University, Palo Alto, CA, USA
| | - Rima Jubran
- Division of Pediatric Hematology/Oncology, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Joseph Lubega
- Department of Pediatrics, Baylor College of Medicine; Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, USA
| | - Ashish Kumar
- University of Cincinnati College of Medicine, Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Stephan Ladisch
- Marc and Jennifer Lipschultz Precision Immunology Institute; The Tisch Cancer Institute; Department of Oncology Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth L. McClain
- Department of Pediatrics, Baylor College of Medicine; Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, USA
| | - Miriam Merad
- Center for Cancer and Immunology Research, Children’s National Medical Center and George Washington University School of Medicine, Washington, DC, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA
| | - D. Williams Parsons
- Department of Pediatrics, Baylor College of Medicine; Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, USA
| | - Erin Peckham-Gregory
- Department of Pediatrics, Baylor College of Medicine; Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, USA
| | - Jennifer Picarsic
- University of Cincinnati College of Medicine and Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Zachary D. Prudowsky
- Department of Pediatrics, Baylor College of Medicine; Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, USA
| | - Barrett J. Rollins
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter H. Shaw
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Birte Wistinghausen
- Marc and Jennifer Lipschultz Precision Immunology Institute; The Tisch Cancer Institute; Department of Oncology Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Rodriguez-Galindo
- Department of Global Pediatric Medicine and Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Carl E. Allen
- Department of Pediatrics, Baylor College of Medicine; Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
5
|
Friedman JS, Durham BH, Reiner AS, Yabe M, Petrova-Drus K, Dogan A, Pulitzer M, Busam KJ, Francis JH, Rampal RK, Ulaner GA, Reddy R, Yeh R, Hatzoglou V, Lacouture ME, Rotemberg V, Mazor RD, Hershkovitz-Rokah O, Shpilberg O, Goyal G, Go RS, Abeykoon JP, Rech K, Morlote D, Fidai S, Gannamani V, Zia M, Abdel-Wahab O, Panageas KS, Rosenblum MK, Diamond EL. Mixed histiocytic neoplasms: A multicentre series revealing diverse somatic mutations and responses to targeted therapy. Br J Haematol 2024; 205:127-137. [PMID: 38613141 PMCID: PMC11245369 DOI: 10.1111/bjh.19462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Histiocytic neoplasms are diverse clonal haematopoietic disorders, and clinical disease is mediated by tumorous infiltration as well as uncontrolled systemic inflammation. Individual subtypes include Langerhans cell histiocytosis (LCH), Rosai-Dorfman-Destombes disease (RDD) and Erdheim-Chester disease (ECD), and these have been characterized with respect to clinical phenotypes, driver mutations and treatment paradigms. Less is known about patients with mixed histiocytic neoplasms (MXH), that is two or more coexisting disorders. This international collaboration examined patients with biopsy-proven MXH with respect to component disease subtypes, oncogenic driver mutations and responses to conventional (chemotherapeutic or immunosuppressive) versus targeted (BRAF or MEK inhibitor) therapies. Twenty-seven patients were studied with ECD/LCH (19/27), ECD/RDD (6/27), RDD/LCH (1/27) and ECD/RDD/LCH (1/27). Mutations previously undescribed in MXH were identified, including KRAS, MAP2K2, MAPK3, non-V600-BRAF, RAF1 and a BICD2-BRAF fusion. A repeated-measure generalized estimating equation demonstrated that targeted treatment was statistically significantly (1) more likely to result in a complete response (CR), partial response (PR) or stable disease (SD) (odds ratio [OR]: 17.34, 95% CI: 2.19-137.00, p = 0.007), and (2) less likely to result in progression (OR: 0.08, 95% CI: 0.03-0.23, p < 0.0001). Histiocytic neoplasms represent an entity with underappreciated clinical and molecular diversity, poor responsiveness to conventional therapy and exquisite sensitivity to targeted therapy.
Collapse
Affiliation(s)
- Joshua S Friedman
- Departments of Neurology, Neurosurgery, and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin H Durham
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology, Sloan Kettering Institute, New York, New York, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mariko Yabe
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kseniya Petrova-Drus
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Melissa Pulitzer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jasmine H Francis
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raajit K Rampal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, California, USA
- Molecular Imaging and Therapy, University of Southern California, Los Angeles, California, USA
| | - Ryan Reddy
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, California, USA
- Molecular Imaging and Therapy, University of Southern California, Los Angeles, California, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mario E Lacouture
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Veronica Rotemberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roei D Mazor
- Clinic of Histiocytic Neoplasms, Institute of Hematology, Assuta Medical Center, Tel-Aviv, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel
| | - Ofer Shpilberg
- Clinic of Histiocytic Neoplasms, Institute of Hematology, Assuta Medical Center, Tel-Aviv, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Gaurav Goyal
- Department of Hematology Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Rare Histiocytic Disorders Steering Committee of the Histiocyte Society
| | - Ronald S Go
- Rare Histiocytic Disorders Steering Committee of the Histiocyte Society
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Karen Rech
- Department of Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Rare Histiocytic Disorders Steering Committee of the Histiocyte Society
| | - Diana Morlote
- Department of Hematology Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shiraz Fidai
- Department of Pathology, John H. Stroger Hospital of Cook County, Chicago, Illinois, USA
| | - Vedavyas Gannamani
- Department of Pathology, John H. Stroger Hospital of Cook County, Chicago, Illinois, USA
| | - Maryam Zia
- Department of Pathology, John H. Stroger Hospital of Cook County, Chicago, Illinois, USA
| | - Omar Abdel-Wahab
- Department of Molecular Pharmacology, Sloan Kettering Institute, New York, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eli L Diamond
- Rare Histiocytic Disorders Steering Committee of the Histiocyte Society
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Zhang SY, Fu GN, Du LH, Lin H, Zhang AY, Xie HJ, Sheng ZK, Xue MM, Yan BL, Liu Y, Ruan ZX, Pan BL, Zhou TY, Luo XP. Continuous flow biocatalysis: synthesis of purine nucleoside esters catalyzed by lipase TL IM from Thermomyces lanuginosus. RSC Adv 2024; 14:10953-10961. [PMID: 38577433 PMCID: PMC10993233 DOI: 10.1039/d4ra00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Purine nucleoside ester is one of the derivatives of purine nucleoside, which has antiviral and anticancer activities. In this work, a continuous flow synthesis of purine nucleoside esters catalyzed by lipase TL IM from Thermomyces lanuginosus was successfully achieved. Various parameters including solvent, reaction temperature, reaction time/flow rate and substrate ratio were investigated. The best yields were obtained with a continuous flow microreactor for 35 min at 50 °C with the substrate ratio of 1 : 5 (nucleosides to vinyl esters) in the solvent of tert-amyl alcohol. 12 products were efficiently synthesized with yields of 78-93%. Here we reported for the first time the use of lipase TL IM from Thermomyces lanuginosus in the synthesis of purine nucleoside esters. The significant advantages of this methodology are a green solvent and mild conditions, a simple work-up procedure and the highly reusable biocatalyst. This research provides a new technique for rapid synthesis of anticancer and antiviral nucleoside drugs and is helpful for further screening of drug activity.
Collapse
Affiliation(s)
- Shi-Yi Zhang
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Guo-Neng Fu
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Li-Hua Du
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Hang Lin
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Ao-Ying Zhang
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Han-Jia Xie
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Zhi-Kai Sheng
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Miao-Miao Xue
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Bing-Lin Yan
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Yi Liu
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Zhi-Xuan Ruan
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Bing-Le Pan
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Tong-Yao Zhou
- College of Pharmaceutical Science, ZheJiang University of Technology Hangzhou 310014 China +86-189-690-693-99
| | - Xi-Ping Luo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University Hangzhou 311300 China
| |
Collapse
|
7
|
Chang L, Lang M, Lin H, Cai H, Duan MH, Zhou DB, Cao XX. Phase 2 study using low dose cytarabine for adult patients with newly diagnosed Langerhans cell histiocytosis. Leukemia 2024; 38:803-809. [PMID: 38388646 DOI: 10.1038/s41375-024-02174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Langerhans cell histiocytosis (LCH) lacks a standardized first-line therapy. This single-center, phase 2 prospective study (NCT04121819) enrolled 61 newly diagnosed adult LCH patients with multisystem or multifocal single system disease from October 2019 to June 2022. Subcutaneous cytarabine (100 mg/m2 for 5 days) was administered in 35-day cycles for 12 total cycles. The primary endpoint was event-free survival (EFS). The median age was 33 years (range 18-66). Twelve patients (19.7%) had liver involvement, of which 2 also had spleen involvement. Among 43 patients undergoing next-generation sequencing, BRAF alterations (44.2%) were most frequent, followed by TP53 (16.3%), MAP2K1 (14.0%) and IDH2 (11.6%). MAPK pathway alterations occurred in 28 patients (65.1%). The overall response rate was 93.4%, with 20 (32.7%) achieving complete response and 37 (60.7%) partial response. After a median 30 months follow-up, 21 (34.4%) relapsed without deaths. Estimated 3-year OS and EFS were 100.0% and 58.5%, respectively. Multivariate analysis identified ≥3 involved organs (P = 0.007; HR 3.937, 95% CI: 1.456-9.804) and baseline lung involvement (P = 0.028; HR 2.976, 95% CI: 1.126-7.874) as poor prognostic factors for EFS. The most common grade 3-4 toxicities were neutropenia (27.9%), thrombocytopenia (1.6%), and nausea (1.6%). In conclusion, cytarabine monotherapy is an effective and safe regimen for newly diagnosed adults, while baseline lung or ≥3 involved organs confers poor prognosis.
Collapse
Affiliation(s)
- Long Chang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Min Lang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - He Lin
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Hao Cai
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Ming-Hui Duan
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Dao-Bin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
8
|
Johnson SR, Shaw DE, Avoseh M, Soomro I, Pointon KS, Kokosi M, Nicholson AG, Desai SR, George PM. Diagnosis of cystic lung diseases: a position statement from the UK Cystic Lung Disease Rare Disease Collaborative Network. Thorax 2024; 79:366-377. [PMID: 38182428 DOI: 10.1136/thorax-2022-219738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Rare cystic lung diseases are increasingly recognised due the wider application of CT scanning making cystic lung disease management a growing part of respiratory care. Cystic lung diseases tend to have extrapulmonary features that can both be diagnostic but also require surveillance and treatment in their own right. As some of these diseases now have specific treatments, making a precise diagnosis is crucial. While Langerhans cell histiocytosis, Birt-Hogg-Dubé syndrome, lymphoid interstitial pneumonia and lymphangioleiomyomatosis are becoming relatively well-known diseases to respiratory physicians, a targeted and thorough workup improves diagnostic accuracy and may suggest other ultrarare diseases such as light chain deposition disease, cystic pulmonary amyloidosis, low-grade metastatic neoplasms or infections. In many cases, diagnostic information is overlooked leaving uncertainty over the disease course and treatments. AIMS This position statement from the Rare Disease Collaborative Network for cystic lung diseases will review how clinical, radiological and physiological features can be used to differentiate between these diseases. NARRATIVE We highlight that in many cases a multidisciplinary diagnosis can be made without the need for lung biopsy and discuss where tissue sampling is necessary when non-invasive methods leave diagnostic doubt. We suggest an initial workup focusing on points in the history which identify key disease features, underlying systemic and familial diseases and a clinical examination to search for connective tissue disease and features of genetic causes of lung cysts. All patients should have a CT of the thorax and abdomen to characterise the pattern and burden of lung cysts and extrapulmonary features and also spirometry, gas transfer and a 6 min walk test. Discussion with a rare cystic lung disease centre is suggested before a surgical biopsy is undertaken. CONCLUSIONS We suggest that this focused workup should be performed in all people with multiple lung cysts and would streamline referral pathways, help guide early treatment, management decisions, improve patient experience and reduce overall care costs. It could also potentially catalyse a national research database to describe these less well-understood and unidentified diseases, categorise disease phenotypes and outcomes, potentially leading to better prognostic data and generating a stronger platform to understand specific disease biology.
Collapse
Affiliation(s)
- Simon R Johnson
- Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Dominick E Shaw
- Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Michael Avoseh
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Irshad Soomro
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Kate S Pointon
- Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | - Sujal R Desai
- Radiology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Peter M George
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Reiner AS, Durham BH, Yabe M, Petrova-Drus K, Francis JH, Rampal RK, Lacouture ME, Rotemberg V, Abdel-Wahab O, Panageas KS, Diamond EL. Outcomes after interruption of targeted therapy in patients with histiocytic neoplasms. Br J Haematol 2023; 203:389-394. [PMID: 37400251 PMCID: PMC10615682 DOI: 10.1111/bjh.18964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Little is known about outcomes following interruption of targeted therapy in adult patients with histiocytic neoplasms. This is an IRB-approved study of patients with histiocytic neoplasms whose BRAF and MEK inhibitors were interrupted after achieving complete or partial response by 18-fluorodeoxyglucose positron emission tomography (FDG-PET). 17/22 (77%) of patients experienced disease relapse following treatment interruption. Achieving a complete response prior to interruption, having a mutation other than BRAFV600E, and receiving MEK inhibition only were each associated with a statistically significant improvement in relapse-free survival. Relapse is common following treatment interruption however some patients may be suitable for limited-duration treatment.
Collapse
Affiliation(s)
- Anne S. Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin H. Durham
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mariko Yabe
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kseniya Petrova-Drus
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jasmine H. Francis
- Ophthalmic Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raajit K. Rampal
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mario E. Lacouture
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Veronica Rotemberg
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katherine S. Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eli L. Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
10
|
Evseev D, Osipova D, Kalinina I, Raykina E, Ignatova A, Lyudovskikh E, Baidildina D, Popov A, Zhogov V, Semchenkova A, Litvin E, Kotskaya N, Cherniak E, Voronin K, Burtsev E, Bronin G, Vlasova I, Purbueva B, Fink O, Pristanskova E, Dzhukaeva I, Erega E, Novichkova G, Maschan A, Maschan M. Vemurafenib combined with cladribine and cytarabine results in durable remission of pediatric BRAF V600E-positive LCH. Blood Adv 2023; 7:5246-5257. [PMID: 37216396 PMCID: PMC10500470 DOI: 10.1182/bloodadvances.2022009067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) is a disorder with a variety of clinical signs. The most severe forms affect risk organs (RO). The established role of the BRAF V600E mutation in LCH led to a targeted approach. However, targeted therapy cannot cure the disease, and cessation leads to quick relapses. Here, we combined cytosine-arabinoside (Ara-C) and 2'-chlorodeoxyadenosine (2-CdA) with targeted therapy to achieve stable remission. Nineteen children were enrolled in the study: 13 were RO-positive (RO+) and 6 RO-negative (RO-). Five patients received the therapy upfront, whereas the other 14 received it as a second or third line. The protocol starts with 28 days of vemurafenib (20 mg/kg), which is followed by 3 courses of Ara-C and 2-CdA (100 mg/m2 every 12 h, 6 mg/m2 per day, days 1-5) with concomitant vemurafenib therapy. After that, vemurafenib therapy was stopped, and 3 courses of mono 2-CdA followed. All patients rapidly responded to vemurafenib: the median disease activity score decreased from 13 to 2 points in the RO+ group and from 4.5 to 0 points in the RO- group on day 28. All patients except 1 received complete protocol treatment, and 15 of them did not have disease progression. The 2-year reactivation/progression-free survival (RFS) for RO+ was 76.9% with a median follow-up of 21 months and 83.3% with a median follow-up of 29 months for RO-. Overall survival is 100%. Importantly, 1 patient experienced secondary myelodysplastic syndrome after 14 months from vemurafenib cessation. Our study demonstrates that combined vemurafenib plus 2-CdA and Ara-C is effective in a cohort of children with LCH, and the toxicity is manageable. This trial is registered at www.clinicaltrials.gov as NCT03585686.
Collapse
Affiliation(s)
- Dmitry Evseev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Daria Osipova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Irina Kalinina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Raykina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Ignatova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Evelina Lyudovskikh
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dina Baidildina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Vladimir Zhogov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexandra Semchenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Eugeny Litvin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natalia Kotskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Cherniak
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Kirill Voronin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Eugeny Burtsev
- Hematopoietic Stem Cell Transplantation Department, Morozov Children Hospital, Moscow, Russia
| | - Gleb Bronin
- Hematopoietic Stem Cell Transplantation Department, Morozov Children Hospital, Moscow, Russia
| | - Irina Vlasova
- Hematopoietic Stem Cell Transplantation Department, Morozov Children Hospital, Moscow, Russia
| | - Bazarma Purbueva
- Hematology and Chemotherapy Department №1, Russian Children’s Clinical Hospital, Moscow, Russia
| | - Olesya Fink
- Hematology and Chemotherapy Department №1, Russian Children’s Clinical Hospital, Moscow, Russia
| | - Ekaterina Pristanskova
- Hematology and Chemotherapy Department №1, Russian Children’s Clinical Hospital, Moscow, Russia
| | - Irina Dzhukaeva
- Pediatric Hematology and Oncology Department, Piotrovich Regional Children Clinical Hospital, Khabarovsk, Russia
| | - Elena Erega
- Pediatric Hematology and Oncology Department, Piotrovich Regional Children Clinical Hospital, Khabarovsk, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
11
|
Rocamora-Blanch G, Climent F, Solanich X. [Histiocytosis]. Med Clin (Barc) 2023; 161:166-175. [PMID: 37263840 DOI: 10.1016/j.medcli.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
Histiocytosis is a group of rare diseases characterized by inflammation and accumulation of cells derived from monocytes and macrophages in different tissues. The symptoms are highly variable, from mild forms with involvement of a single organ to severe multisystem forms that can be life compromising. The diagnosis of histiocytosis is based on the clinic, radiological findings and pathological anatomy. A biopsy of the affected tissue is recommended in all cases as it may have therapeutic implications. During the last decade, some mutations have been identified in the affected tissue that condition activation of the MAPK/ERK and PI3K/AKT pathway, in a variable proportion depending on the type of histiocytosis. In this review we mainly focus on Langerhans Cell Histiocytosis, Erdheim-Chester Disease and Rosai-Dorfman Disease.
Collapse
Affiliation(s)
- Gemma Rocamora-Blanch
- Servicio de Medicina Interna, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, España; Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, España.
| | - Fina Climent
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, España; Servicio de Anatomía Patológica, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, España
| | - Xavier Solanich
- Servicio de Medicina Interna, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, España; Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, España
| |
Collapse
|
12
|
Banks SA, Sartori Valinotti JC, Go RS, Abeykoon JP, Goyal G, Young JR, Koster MJ, Vassallo R, Ryu JH, Davidge-Pitts CJ, Ravindran A, Bennani NN, Shah MV, Rech KL, Tobin WO. Neurological Manifestations of Histiocytic Disorders. Curr Neurol Neurosci Rep 2023; 23:277-286. [PMID: 37209319 DOI: 10.1007/s11910-023-01272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE OF REVIEW Histiocytic disorders, including Erdheim-Chester disease (ECD), Langerhans cell histiocytosis (LCH), and Rosai-Dorfman disease (RDD), are rare neoplasms that may present with a spectrum of neurologic involvement. Diagnostic delay is common due to heterogeneity in presentation and challenging pathology. RECENT FINDINGS Recent advances in the treatment of these diseases targeted towards mutations in the MAP kinase pathway have led to an improved prognosis in these patients with neurologic involvement. It is critical for clinicians to have a high index of suspicion to allow for early targeted treatment and optimize neurologic outcomes. A systematic approach to diagnosis is presented in this article to allow for accurate diagnosis of these rare diseases.
Collapse
Affiliation(s)
- Samantha A Banks
- Department of Neurology, Mayo Clinic Rochester, 200 First St SW, Rochester, MN, 55905, USA
| | | | - Ronald S Go
- Division of Hematology, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Gaurav Goyal
- Division of Hematology-Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason R Young
- Department of Radiology, Mayo Clinic in Jacksonville, Jacksonville, FL, USA
| | - Matthew J Koster
- Division of Rheumatology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Jay H Ryu
- Division of Hematology, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Aishwarya Ravindran
- Division of Laboratory Medicine-Hematopathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - N Nora Bennani
- Division of Hematology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Mithun V Shah
- Division of Hematology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Karen L Rech
- Division of Hematopathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - W Oliver Tobin
- Department of Neurology, Mayo Clinic Rochester, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
Adult Onset Langerhans Cell Histiocytosis: Clinical Characteristics and Treatment Outcomes. Clin Hematol Int 2023:10.1007/s44228-023-00034-w. [PMID: 36826750 DOI: 10.1007/s44228-023-00034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE Langerhans cell histiocytosis (LCH) is a rare disease that can affect all tissues and organs. Our study evaluated the clinical characteristics and treatment outcomes of adult-onset LCH patients in a tertiary center. MATERIALS AND METHODS Adult patients diagnosed with LCH were retrospectively evaluated. Their initial symptoms, stratification according to disease involvement, treatment details, treatment responses, and overall and progression-free survival (PFS) were analyzed. RESULTS Thirty-three patients were included. There were 21 single system LCH, 10 multisystem LCH, and 2 pulmonary LCH patients. Patients with single system unifocal involvement were successfully treated with local therapies such as surgery and radiotherapy. Most of the multisystem LCH patients and patients with single system multifocal involvement were treated with systemic chemotherapy. Cladribine was the first choice in 10 out of 11 patients who received chemotherapy. Among all patients, the overall response rate (ORR) was 97%. Among those who had cladribine in the first-line the ORR was 81%. All these patients achieved a complete remission and were alive at the last visit. The median follow-up was 38 (range, 2-183) months. The median PFS has not yet been reached. Ten-year PFS was 90.9%. CONCLUSION Besides successful local treatments with surgery and radiotherapy, our study provides information for front-line cladribine treatment.
Collapse
|
14
|
Potapenko VG, Baykov VV, Zinchenko AV, Potikhonova NA. Langerhans cell histiocytosis in adults: literature review. ONCOHEMATOLOGY 2022. [DOI: 10.17650/1818-8346-2022-17-4-16-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Langerhans cells histiocytosis is a variant of malignant histiocytosis. The course and symptoms vary. patients with localized forms have a better prognosis, because local therapy is effective. patients with multifocal forms of histiocytosis receive systemic drug therapy, which cures some of the patients. This review provides up-to-date data about typical presentation of the organ involvement, diagnosis, course and therapy of various forms of Langerhans cells histiocytosis.
Collapse
Affiliation(s)
| | - V. V. Baykov
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - A. V. Zinchenko
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
| | - N. A. Potikhonova
- Russian Research Institute of Hematology and Transfusiology, Federal Medical and Biological Agency
| |
Collapse
|
15
|
Phase 2 study of oral thalidomide-cyclophosphamide-dexamethasone for recurrent/refractory adult Langerhans cell histiocytosis. Leukemia 2022; 36:1619-1624. [PMID: 35361865 DOI: 10.1038/s41375-022-01555-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a clonal histiocytic neoplasm with various clinical manifestations and heterogeneous prognoses. No standard therapy is available for recurrent/refractory LCH patients. This single-center, single-arm, phase 2 study enrolled 32 patients diagnosed with recurrent/refractory LCH. The TCD regimen (thalidomide 100 mg daily, cyclophosphamide 300 mg/m2 Day 1, 8, 15, and dexamethasone 40 mg Day 1, 8, 15, 22 every 4 weeks) was administered for 12 cycles and thalidomide alone as maintenance for 12 months. The primary endpoint was event-free survival (EFS). Events were defined as progression during or after TCD therapy or death from any cause. After a median follow-up of 22 months (range 5-24 months), no patient died of all causes. The overall response rate was 87.5%, including 18 patients (56.3%) achieving complete remission and 10 patients (31.3%) as partial remission. The estimated 24-month EFS was 64.0%. Patients with risk organ involvement had similar EFS compared to patients without risk organ involvement (P = 0.38). The common toxicities of TCD regimen include grade 1-2 neutropenia (18.8%), grade 1-2 constipation (12.5%), grade 1-2 tiredness (9.4%) and grade 2 peripheral neuropathy (12.5%). Oral thalidomide, cyclophosphamide and dexamethasone are effective and safe regimen for recurrent/refractory LCH patients, particularly for patients with risk organ involvement.
Collapse
|
16
|
Goyal G, Tazi A, Go RS, Rech KL, Picarsic JL, Vassallo R, Young JR, Cox CW, Van Laar J, Hermiston ML, Cao XX, Makras P, Kaltsas G, Haroche J, Collin M, McClain KL, Diamond EL, Girschikofsky M. International expert consensus recommendations for the diagnosis and treatment of Langerhans cell histiocytosis in adults. Blood 2022; 139:2601-2621. [PMID: 35271698 PMCID: PMC11022927 DOI: 10.1182/blood.2021014343] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/24/2022] [Indexed: 11/20/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) can affect children and adults with a wide variety of clinical manifestations, including unifocal, single-system multifocal, single-system pulmonary (smoking-associated), or multisystem disease. The existing paradigms in the management of LCH in adults are mostly derived from the pediatric literature. Over the last decade, the discovery of clonality and MAPK-ERK pathway mutations in most cases led to the recognition of LCH as a hematopoietic neoplasm, opening the doors for treatment with targeted therapies. These advances have necessitated an update of the existing recommendations for the diagnosis and treatment of LCH in adults. This document presents consensus recommendations that resulted from the discussions at the annual Histiocyte Society meeting in 2019, encompassing clinical features, classification, diagnostic criteria, treatment algorithm, and response assessment for adults with LCH. The recommendations favor the use of 18F-Fluorodeoxyglucose positron emission tomography-based imaging for staging and response assessment in the majority of cases. Most adults with unifocal disease may be cured by local therapies, while the first-line treatment for single-system pulmonary LCH remains smoking cessation. Among patients not amenable or unresponsive to these treatments and/or have multifocal and multisystem disease, systemic treatments are recommended. Preferred systemic treatments in adults with LCH include cladribine or cytarabine, with the emerging role of targeted (BRAF and MEK inhibitor) therapies. Despite documented responses to treatments, many patients struggle with a high symptom burden from pain, fatigue, and mood disorders that should be acknowledged and managed appropriately.
Collapse
Affiliation(s)
- Gaurav Goyal
- Division of Hematology-Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Abdellatif Tazi
- Université de Paris, INSERM UMR 976, Saint Louis Research Institute, Paris, France
- French National Reference Center for Histiocytoses, Department of Pulmonology, Saint-Louis Teaching Hospital, Assistance Publique-Hôpiaux de Paris, Paris, France
| | | | - Karen L. Rech
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Jennifer L. Picarsic
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | | | | | - Jan Van Laar
- Department of Internal Medicine
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michelle L. Hermiston
- Division of Pediatric Hematology-Oncology, University of California, San Francisco, San Francisco, CA
| | - Xin-Xin Cao
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Polyzois Makras
- LCH Adult Clinic
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force and VA General Hospital, Athens, Greece
| | - Gregory Kaltsas
- 1st Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, Greece
| | - Julien Haroche
- Service de médecine interne 2, Centre de Référence des Histiocytoses, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
| | - Matthew Collin
- Newcastle University and Newcastle Upon Tyne Hospitals, Newcastle Upon Tyne, United Kingdom
| | - Kenneth L. McClain
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Eli L. Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Girschikofsky
- Internal Medicine I (Hemostasis, Hematology and Stem, Cell Transplantation and Medical Oncology), Ordensklinikum Linz Elisabethinen, Linz, Austria
| |
Collapse
|
17
|
Georgakopoulou D, Anastasilakis AD, Makras P. Adult Langerhans Cell Histiocytosis and the Skeleton. J Clin Med 2022; 11:jcm11040909. [PMID: 35207181 PMCID: PMC8875624 DOI: 10.3390/jcm11040909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare inflammatory neoplasia in which somatic mutations in components of the MAPK/ERK pathway have been identified. Osseous involvement is evident in approximately 80% of all patients and may present as a single osteolytic lesion, as a multi-ostotic single system disease or as part of multisystem disease. Both exogenous, such as treatment with glucocorticoids, and endogenous parameters, such as anterior pituitary hormone deficiencies and inflammatory cytokines, may severely affect bone metabolism in LCH. Computed tomography (CT) or magnetic resonance imaging (MRI) are usually required to precisely assess the degree of bone involvement; 18F-fluorodeoxyglucose (FDG) positron emission tomography-CT can both detect otherwise undetectable LCH lesions and differentiate metabolically active from inactive or resolved disease, while concomitantly being useful in the assessment of treatment response. Treatment of skeletal involvement may vary depending on location, extent, size, and symptoms of the disease from close observation and follow-up in unifocal single-system disease to chemotherapy and gene-targeted treatment in cases with multisystem involvement. In any case of osseous involvement, bisphosphonates might be considered as a treatment option especially if pain relief is urgently needed. Finally, a patient-specific approach is suggested to avoid unnecessary extensive surgical interventions and/or medical overtreatment.
Collapse
Affiliation(s)
- Danae Georgakopoulou
- LCH Adult Clinic, 251 Hellenic Air Force & VA General Hospital, 11525 Athens, Greece;
| | | | - Polyzois Makras
- Department of Medical Research, 251 Hellenic Air Force & VA General Hospital, 11525 Athens, Greece
- Correspondence: ; Tel.: +30-210-7463606
| |
Collapse
|
18
|
Kemps PG, Picarsic J, Durham BH, Hélias-Rodzewicz Z, Hiemcke-Jiwa L, van den Bos C, van de Wetering MD, van Noesel CJM, van Laar JAM, Verdijk RM, Flucke UE, Hogendoorn PCW, Woei-A-Jin FJSH, Sciot R, Beilken A, Feuerhake F, Ebinger M, Möhle R, Fend F, Bornemann A, Wiegering V, Ernestus K, Méry T, Gryniewicz-Kwiatkowska O, Dembowska-Baginska B, Evseev DA, Potapenko V, Baykov VV, Gaspari S, Rossi S, Gessi M, Tamburrini G, Héritier S, Donadieu J, Bonneau-Lagacherie J, Lamaison C, Farnault L, Fraitag S, Jullié ML, Haroche J, Collin M, Allotey J, Madni M, Turner K, Picton S, Barbaro PM, Poulin A, Tam IS, El Demellawy D, Empringham B, Whitlock JA, Raghunathan A, Swanson AA, Suchi M, Brandt JM, Yaseen NR, Weinstein JL, Eldem I, Sisk BA, Sridhar V, Atkinson M, Massoth LR, Hornick JL, Alexandrescu S, Yeo KK, Petrova-Drus K, Peeke SZ, Muñoz-Arcos LS, Leino DG, Grier DD, Lorsbach R, Roy S, Kumar AR, Garg S, Tiwari N, Schafernak KT, Henry MM, van Halteren AGS, Abla O, Diamond EL, Emile JF. ALK-positive histiocytosis: a new clinicopathologic spectrum highlighting neurologic involvement and responses to ALK inhibition. Blood 2022; 139:256-280. [PMID: 34727172 PMCID: PMC8759533 DOI: 10.1182/blood.2021013338] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022] Open
Abstract
ALK-positive histiocytosis is a rare subtype of histiocytic neoplasm first described in 2008 in 3 infants with multisystemic disease involving the liver and hematopoietic system. This entity has subsequently been documented in case reports and series to occupy a wider clinicopathologic spectrum with recurrent KIF5B-ALK fusions. The full clinicopathologic and molecular spectra of ALK-positive histiocytosis remain, however, poorly characterized. Here, we describe the largest study of ALK-positive histiocytosis to date, with detailed clinicopathologic data of 39 cases, including 37 cases with confirmed ALK rearrangements. The clinical spectrum comprised distinct clinical phenotypic groups: infants with multisystemic disease with liver and hematopoietic involvement, as originally described (Group 1A: 6/39), other patients with multisystemic disease (Group 1B: 10/39), and patients with single-system disease (Group 2: 23/39). Nineteen patients of the entire cohort (49%) had neurologic involvement (7 and 12 from Groups 1B and 2, respectively). Histology included classic xanthogranuloma features in almost one-third of cases, whereas the majority displayed a more densely cellular, monomorphic appearance without lipidized histiocytes but sometimes more spindled or epithelioid morphology. Neoplastic histiocytes were positive for macrophage markers and often conferred strong expression of phosphorylated extracellular signal-regulated kinase, confirming MAPK pathway activation. KIF5B-ALK fusions were detected in 27 patients, whereas CLTC-ALK, TPM3-ALK, TFG-ALK, EML4-ALK, and DCTN1-ALK fusions were identified in single cases. Robust and durable responses were observed in 11/11 patients treated with ALK inhibition, 10 with neurologic involvement. This study presents the existing clinicopathologic and molecular landscape of ALK-positive histiocytosis and provides guidance for the clinical management of this emerging histiocytic entity.
Collapse
Affiliation(s)
- Paul G Kemps
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jennifer Picarsic
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Department of Medicine, and
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Zofia Hélias-Rodzewicz
- Department of Pathology, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris, Boulogne, France
- EA4340-Biomarqueurs et Essais Cliniques en Cancérologie et Onco-Hématologie, Versailles Saint-Quentin-en-Yvelines University, Boulogne, France
| | | | - Cor van den Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Emma Children's Hospital, and
| | - Marianne D van de Wetering
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Emma Children's Hospital, and
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jan A M van Laar
- Department of Internal Medicine and Immunology, and
- Section of Clinical Immunology, Department of Immunology, and
| | - Robert M Verdijk
- Department of Pathology, Erasmus Medical Center University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Uta E Flucke
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - F J Sherida H Woei-A-Jin
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | - Martin Ebinger
- Department I - General Pediatrics, Children's Hospital, Hematology and Oncology
| | | | - Falko Fend
- Department of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tuebingen, Tuebingen, Germany
| | - Antje Bornemann
- Department of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tuebingen, Tuebingen, Germany
| | - Verena Wiegering
- Department of Oncology, Hematology and Stem Cell Transplantation, University Children's Hospital Würzburg, Würzburg, Germany
| | - Karen Ernestus
- Department of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Tina Méry
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Klinikum Chemnitz, Chemnitz, Germany
| | | | | | - Dmitry A Evseev
- Dmitriy Rogachev National Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Vsevolod Potapenko
- Department of Hematology and Oncology, Municipal Educational Hospital N°31, Saint Petersburg, Russia
- Department of Bone Marrow Transplantation and
| | - Vadim V Baykov
- Department of Pathology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Stefania Gaspari
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Laboratories Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Gianpiero Tamburrini
- Department of Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sébastien Héritier
- Department of Pediatric Hematology and Oncology, Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean Donadieu
- EA4340-Biomarqueurs et Essais Cliniques en Cancérologie et Onco-Hématologie, Versailles Saint-Quentin-en-Yvelines University, Boulogne, France
- Department of Pediatric Hematology and Oncology, Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Claire Lamaison
- Department of Pathology, Rennes University Hospital, Rennes, France
| | - Laure Farnault
- Department of Hematology, La Conception, University Hospital of Marseille, Marseille, France
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie-Laure Jullié
- Department of Pathology, University Hospital of Bordeaux, Bordeaux, France
| | - Julien Haroche
- Department of Internal Medicine, University Hospital La Pitié-Salpêtrière Paris, French National Reference Center for Histiocytoses, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Matthew Collin
- Newcastle upon Tyne Hospitals, Newcastle upon Tyne, United Kingdom
| | | | - Majid Madni
- Department of Pediatric Hematology and Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | | | - Susan Picton
- Department of Pediatric Oncology, Leeds Children's Hospital, Leeds, United Kingdom
| | - Pasquale M Barbaro
- Department of Hematology, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Alysa Poulin
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ingrid S Tam
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dina El Demellawy
- Department of Pathology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Brianna Empringham
- Department of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - James A Whitlock
- Department of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Amy A Swanson
- Division of Anatomic Pathology, Mayo Clinic Rochester, Rochester, MN
| | - Mariko Suchi
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Jon M Brandt
- Department of Pediatric Oncology, Hospital Sisters Health System St Vincent Children's Hospital, Green Bay, WI
| | - Nabeel R Yaseen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Joanna L Weinstein
- Department of Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Irem Eldem
- Department of Pediatric Hematology and Oncology, St Louis Children's Hospital, Washington University in St Louis, St Louis, MO
| | - Bryan A Sisk
- Department of Pediatric Hematology and Oncology, St Louis Children's Hospital, Washington University in St Louis, St Louis, MO
| | - Vaishnavi Sridhar
- Department of Pediatric Hematology and Oncology, Carilion Children's Pediatric Hematology and Oncology, Roanoke, VA
| | - Mandy Atkinson
- Department of Pediatric Hematology and Oncology, Carilion Children's Pediatric Hematology and Oncology, Roanoke, VA
| | - Lucas R Massoth
- Department of Pathology, Massachusetts General Hospital, and
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sanda Alexandrescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Boston Children's Hospital, Boston, MA
| | - Kee Kiat Yeo
- Department of Pediatric Oncology, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | | | - Stephen Z Peeke
- Department of Hematology and Medical Oncology, Maimonides Medical Center, Brooklyn, NY
| | - Laura S Muñoz-Arcos
- Department of Internal Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Daniel G Leino
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - David D Grier
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Robert Lorsbach
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Somak Roy
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Ashish R Kumar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | | | | | - Michael M Henry
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Astrid G S van Halteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Oussama Abla
- Department of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Eli L Diamond
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jean-François Emile
- Department of Pathology, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris, Boulogne, France
- EA4340-Biomarqueurs et Essais Cliniques en Cancérologie et Onco-Hématologie, Versailles Saint-Quentin-en-Yvelines University, Boulogne, France
| |
Collapse
|
19
|
Go RS, Jacobsen E, Baiocchi R, Buhtoiarov I, Butler EB, Campbell PK, Coulter DW, Diamond E, Flagg A, Goodman AM, Goyal G, Gratzinger D, Hendrie PC, Higman M, Hogarty MD, Janku F, Karmali R, Morgan D, Raldow AC, Stefanovic A, Tantravahi SK, Walkovich K, Zhang L, Bergman MA, Darlow SD. Histiocytic Neoplasms, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19:1277-1303. [PMID: 34781268 DOI: 10.6004/jnccn.2021.0053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histiocytic neoplasms are rare hematologic disorders accounting for less than 1% of cancers of the soft tissue and lymph nodes. Clinical presentation and prognosis of these disorders can be highly variable, leading to challenges for diagnosis and optimal management of these patients. Treatment often consists of systemic therapy, and recent studies support use of targeted therapies for patients with these disorders. Observation ("watch and wait") may be sufficient for select patients with mild disease. These NCCN Guidelines for Histiocytic Neoplasms include recommendations for diagnosis and treatment of adults with the most common histiocytic disorders: Langerhans cell histiocytosis, Erdheim-Chester disease, and Rosai-Dorfman disease.
Collapse
Affiliation(s)
| | - Eric Jacobsen
- Dana-Farber/Brigham and Women's Cancer Center
- Massachusetts General Hospital Cancer Center
| | - Robert Baiocchi
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Ilia Buhtoiarov
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute Cleveland Clinic Children's Hospital
| | | | - Patrick K Campbell
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | | | | | - Aron Flagg
- Yale Cancer Center/Smilow Cancer Hospital
| | | | | | | | - Paul C Hendrie
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | | | - Filip Janku
- The University of Texas MD Anderson Cancer Center
| | - Reem Karmali
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
McClain KL, Bigenwald C, Collin M, Haroche J, Marsh RA, Merad M, Picarsic J, Ribeiro KB, Allen CE. Histiocytic disorders. Nat Rev Dis Primers 2021; 7:73. [PMID: 34620874 PMCID: PMC10031765 DOI: 10.1038/s41572-021-00307-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
The historic term 'histiocytosis' meaning 'tissue cell' is used as a unifying concept for diseases characterized by pathogenic myeloid cells that share histological features with macrophages or dendritic cells. These cells may arise from the embryonic yolk sac, fetal liver or postnatal bone marrow. Prior classification schemes align disease designation with terminal phenotype: for example, Langerhans cell histiocytosis (LCH) shares CD207+ antigen with physiological epidermal Langerhans cells. LCH, Erdheim-Chester disease (ECD), juvenile xanthogranuloma (JXG) and Rosai-Dorfman disease (RDD) are all characterized by pathological ERK activation driven by activating somatic mutations in MAPK pathway genes. The title of this Primer (Histiocytic disorders) was chosen to differentiate the above diseases from Langerhans cell sarcoma and malignant histiocytosis, which are hyperproliferative lesions typical of cancer. By comparison LCH, ECD, RDD and JXG share some features of malignant cells including activating MAPK pathway mutations, but are not hyperproliferative. 'Inflammatory myeloproliferative neoplasm' may be a more precise nomenclature. By contrast, haemophagocytic lymphohistiocytosis is associated with macrophage activation and extreme inflammation, and represents a syndrome of immune dysregulation. These diseases affect children and adults in varying proportions depending on which of the entities is involved.
Collapse
Affiliation(s)
- Kenneth L McClain
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Camille Bigenwald
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Collin
- Human Dendritic Cell Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Julien Haroche
- Department of Internal Medicine, Institut E3M French Reference Centre for Histiocytosis, Pitié-Salpȇtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, OH, USA
| | - Miriam Merad
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Picarsic
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karina B Ribeiro
- Faculdade de Ciȇncias Médicas da Santa Casa de São Paulo, Department of Collective Health, São Paulo, Brazil
| | - Carl E Allen
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Cohen Aubart F, Idbaih A, Emile JF, Amoura Z, Abdel-Wahab O, Durham BH, Haroche J, Diamond EL. Histiocytosis and the nervous system: from diagnosis to targeted therapies. Neuro Oncol 2021; 23:1433-1446. [PMID: 33993305 PMCID: PMC8408883 DOI: 10.1093/neuonc/noab107] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Histiocytoses are heterogeneous hematopoietic diseases characterized by the accumulation of CD68(+) cells with various admixed inflammatory infiltrates. The identification of the pivotal role of the mitogen-activated protein kinase (MAPK) pathway has opened new avenues of research and therapeutic approaches. We review the neurologic manifestations of 3 histiocytic disorders with frequent involvement of the brain and spine: Langerhans cell histiocytosis (LCH), Erdheim-Chester disease (ECD), and Rosai-Dorfman-Destombes disease (RDD). Central nervous system (CNS) manifestations occur in 10%-25% of LCH cases, with both tumorous or neurodegenerative forms. These subtypes differ by clinical and radiological presentation, pathogenesis, and prognosis. Tumorous or degenerative neurologic involvement occurs in 30%-40% of ECD patients and affects the hypothalamic-pituitary axis, meninges, and brain parenchyma. RDD lesions are typically tumorous with meningeal or parenchymal masses with strong contrast enhancement. Unlike LCH and ECD, neurodegenerative lesions or syndromes have not been described with RDD. Familiarity with principles of evaluation and treatment both shared among and distinct to each of these 3 diseases is critical for effective management. Refractory or disabling neurohistiocytic involvement should prompt the consideration for use of targeted kinase inhibitor therapies.
Collapse
Affiliation(s)
- Fleur Cohen Aubart
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Référence Maladies Systémiques Rares et Histiocytoses, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Ahmed Idbaih
- Assistance Publique-Hôpitaux de Paris, Service de Neurologie 1, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Jean-François Emile
- Assistance Publique Hôpitaux de Paris, Hôpital Ambroise Paré, Département de Pathologie, Université Versailles-Saint Quentin, Boulogne, France
| | - Zahir Amoura
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Référence Maladies Systémiques Rares et Histiocytoses, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Omar Abdel-Wahab
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Benjamin H Durham
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Julien Haroche
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne 2, Centre National de Référence Maladies Systémiques Rares et Histiocytoses, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Eli L Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|