1
|
Tkachenko AG, Kashevarova NM, Tyuleneva EA, Shumkov MS. Stationary-phase genes upregulated by polyamines are responsible for the formation of Escherichia coli persister cells tolerant to netilmicin. FEMS Microbiol Lett 2017; 364:3739793. [PMID: 28431088 DOI: 10.1093/femsle/fnx084] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022] Open
Abstract
Persisters are rare phenotypic variants of regular bacterial cells that survive lethal antibiotics or stresses owing to slowing down of their metabolism. Recently, we have shown that polyamine putrescine can upregulate persister cell formation in Escherichia coli via the stimulation of rpoS expression, encoding a master regulator of general stress response. We hypothesized that rmf and yqjD, the stationary-phase genes responsible for ribosome inactivation, might be good candidates for the similar role owing to their involvement in translational arrest and the ability to be affected by polyamines. Using reporter gene fusions or single and multiple knockout mutations in rpoS, rmf and yqjD genes, we show in this work that (i) E. coli polyamines spermidine and cadaverine can upregulate persistence, like putrescine; (ii) polyamine effects on persister cell formation are mediated through stimulation of expression of rpoS, rmf and yqjD genes; (iii) these genes are involved in persister cell formation sequentially in a dynamic fashion as cells enter the stationary phase. The data obtained in this work can be used to develop novel tools relying on a suppression of polyamine metabolism in bacteria to combat persister cells as an important cause of infections refractory to antibiotics.
Collapse
Affiliation(s)
- Alexander G Tkachenko
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, 13 Golev str., Perm 614081, Russia.,Perm State National Research University, 15 Bukirev str., Perm 614068, Russia
| | - Natalya M Kashevarova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, 13 Golev str., Perm 614081, Russia
| | - Elena A Tyuleneva
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, 13 Golev str., Perm 614081, Russia
| | - Mikhail S Shumkov
- Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 33 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
2
|
Quilter CR, Sargent CA, Bauer J, Bagga MR, Reiter CP, Hutchinson EL, Southwood OI, Evans G, Mileham A, Griffin DK, Affara NA. An association and haplotype analysis of porcine maternal infanticide: a model for human puerperal psychosis? Am J Med Genet B Neuropsychiatr Genet 2012; 159B:908-27. [PMID: 22976950 DOI: 10.1002/ajmg.b.32097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/09/2012] [Indexed: 12/16/2022]
Abstract
An association analysis using the Illumina porcine SNP60 beadchip was performed to identify SNPs significantly associated with porcine maternal infanticide. We previously hypothesised that this was a good animal model for human puerperal psychosis, an extreme form of postnatal mood disorder. Animals were selected from carefully phenotyped unrelated infanticide and control groups (representing extremes of the phenotypic spectrum), from four different lines. Permutation and sliding window analyses and an analysis to see which haplotypes were in linkage disequilibrium (LD) were compared to identify concordant regions. Across all analyses, intervals on SSCs 1, 3, 4, 10, and 13 were constant, contained genes associated with psychiatric or neurological disorders and were significant in multiple lines. The strongest (near GWS) consistent candidate region across all analyses and all breeds was the one located on SSC3 with one peak at 23.4 Mb, syntenic to a candidate region for bipolar disorder and another at 31.9 Mb, syntenic to a candidate region for human puerperal psychosis (16p13). From the haplotype/LD analysis, two regions reached genome wide significance (GWS): the first on SSC4 (KHDRBS3 to FAM135B), which was significant (-logP 5.57) in one Duroc based breed and is syntenic to a region in humans associated with cognition and neurotism; the second on SSC15, which was significant (-log10P 5.68) in two breeds and contained PAX3, which is expressed in the brain.
Collapse
Affiliation(s)
- C R Quilter
- Human Molecular Genetics Group, Department of Pathology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Whole-genome linkage and association studies of bipolar disorder are beginning to provide some compelling evidence for the involvement of several chromosomal regions and susceptibility genes in the pathogenesis of bipolar disorder. Developments in genotyping technology and efforts to combine data from different studies have helped in identifying chromosomes 6q16-q25, 13q, and 16p12 as probable susceptibility loci for bipolar disorder and confirmed CACNA1C and ANK3 as susceptibility genes for bipolar disorder. However, a lack of replication is still apparent in the literature. New studies focusing on copy number variants as well as new analytical approaches utilizing pathway analysis offer a new direction in the study of the genetics of bipolar disorder.
Collapse
Affiliation(s)
- Shaza Alsabban
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, Box PO82, De Crespigny Park, Denmark Hill, London, England SE5 8AF, UK.
| | | | | |
Collapse
|
4
|
Oedegaard KJ, Greenwood TA, Lunde A, Fasmer OB, Akiskal HS, Kelsoe JR. A genome-wide linkage study of bipolar disorder and co-morbid migraine: replication of migraine linkage on chromosome 4q24, and suggestion of an overlapping susceptibility region for both disorders on chromosome 20p11. J Affect Disord 2010; 122:14-26. [PMID: 19819557 PMCID: PMC5660919 DOI: 10.1016/j.jad.2009.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 12/29/2022]
Abstract
Migraine and Bipolar Disorder (BPAD) are clinically heterogeneous disorders of the brain with a significant, but complex, genetic component. Epidemiological and clinical studies have demonstrated a high degree of co-morbidity between migraine and BPAD. Several genome-wide linkage studies in BPAD and migraine have shown overlapping regions of linkage on chromosomes, and two functionally similar voltage-dependent calcium channels CACNA1A and CACNA1C have been identified in familial hemiplegic migraine and recently implicated in two whole genome BPAD association studies, respectively. We hypothesized that using migraine co-morbidity to look at subsets of BPAD families in a genetic linkage analysis would prove useful in identifying genetic susceptibility regions in both of these disorders. We used BPAD with co-morbid migraine as an alternative phenotype definition in a re-analysis of the NIMH Bipolar Genetics Initiative wave 4 data set. In this analysis we selected only those families in which at least two members were diagnosed with migraine by a doctor according to patients' reports. Nonparametric linkage analysis performed on 31 families segregating both BPAD and migraine identified a linkage signal on chromosome 4q24 for migraine (but not BPAD) with a peak LOD of 2.26. This region has previously been implicated in two independent migraine linkage studies. In addition we identified a locus on chromosome 20p11 with overlapping elevated LOD scores for both migraine (LOD=1.95) and BPAD (LOD=1.67) phenotypes. This region has previously been implicated in two BPAD linkage studies, and, interestingly, it harbors a known potassium dependant sodium/calcium exchanger gene, SLC24A3, that plays a critical role in neuronal calcium homeostasis. Our findings replicate a previously identified migraine linkage locus on chromosome 4 (not co-segregating with BPAD) in a sample of BPAD families with co-morbid migraine, and suggest a susceptibility locus on chromosome 20, harboring a gene for the migraine/BPAD phenotype. Together these data suggest that some genes may predispose to both bipolar disorder and migraine.
Collapse
Affiliation(s)
- K J Oedegaard
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0603, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Bipolar disorder, especially the most severe type (type I), has a strong genetic component. Family studies suggest that a small number of genes of modest effect are involved in this disorder. Family-based studies have identified a number of chromosomal regions linked to bipolar disorder, and progress is currently being made in identifying positional candidate genes within those regions, À number of candidate genes have also shown evidence of association with bipolar disorder, and genome-wide association studies are now under way, using dense genetic maps. Replication studies in larger or combined datasets are needed to definitively assign a role for specific genes in this disorder. This review covers our current knowledge of the genetics of bipolar disorder, and provides a commentary on current approaches used to identify the genes involved in this complex behavioral disorder.
Collapse
Affiliation(s)
- Michael A Escamilla
- University of Texas Health Science Center at San Antonio, South Texas Medical Genetics Research Center, 1214 Schunior St, Edinburg, TX 78539, USA.
| | | |
Collapse
|
6
|
Mérette C, Roy MA, Bureau A, Fournier A, Emond C, Cliche D, Jomphe V, Chagnon YC, Maziade M. Replication of linkage with bipolar disorder on chromosome 16p in the Eastern Quebec population. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:737-44. [PMID: 18165973 DOI: 10.1002/ajmg.b.30673] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In a previous study [Maziade et al. (2005); Mol Psychiatry 10:486-499], we provided evidence for linkage (parametric lod score of 4.05) on chromosome 16p for bipolar affective disorder (BP) in 21 kindreds from Eastern Quebec, a population characterized by a founder effect. Using a stringent design, we performed a replication study in a second sample of 27 kindreds (sample 2) collected from the same population and assessed with the same methodologies as in our original sample (sample 1), that is with the same diagnostic procedure and using a common set of 23 markers studied with model-based (parametric) and model-free (nonparametric) linkage analyses. We replicated our initial finding with P values <0.001. Indeed, maximum NPL(all) scores of 3.7 and 3.52 were found at marker D16S3060 in sample 2 for the narrow and broad BP phenotype definition, respectively. For the latter definition, the nonparametric score reached 3.87 in the combined sample, a value that exceeded the maximum NPL score obtained in each individual sample (NPL(all) = 2.32 in sample 1; NPL(all) = 3.52 in sample 2). Moreover, a refined phenotype restricted to BP associated with psychosis yielded significant evidence for linkage in each individual sample (NPL(all) = 2.38 in sample 1; NPL(all) = 2.72) while yielding the best result (NPL(all) score = 3.90) in the combined sample (samples 1 and 2), despite an important reduction in the number of affected individuals. It is also noteworthy that the use of the refined phenotype provided a location of the maximum linkage peak shared by both samples, that is, at marker D16S668 in 16p13.12, suggesting consistency across samples. Our study provided one of the strongest pieces of evidence for linkage with BP in 16p and illustrated the heuristic potential of a replication study in a second sample ascertained from the same population and using homogeneous methodologies.
Collapse
|
7
|
Genome-wide parametric linkage analyses of 644 bipolar pedigrees suggest susceptibility loci at chromosomes 16 and 20. Psychiatr Genet 2008; 18:191-8. [PMID: 18628681 DOI: 10.1097/ypg.0b013e3283050aa5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Our aim is to map chromosomal regions that harbor loci that increase susceptibility to bipolar disorder. METHODS We analyzed 644 bipolar families ascertained by the National Institute of Mental Health Human Genetics Initiative for bipolar disorder. The families have been genotyped with microsatellite loci spaced every approximately 10 cM or less across the genome. Earlier analyses of these pedigrees have been limited to nonparametric (model-free) methods and thus, information from unaffected subjects with genotypes was not considered. In this study, we used parametric analyses assuming dominant and recessive transmission and specifying a maximum penetrance of 70%, so that information from unaffecteds could be weighed in the linkage analyses. As in previous linkage analyses of these pedigrees, we analyzed three diagnostic categories: model 1 included only bipolar I and schizoaffective, bipolar cases (1565 patients of whom approximately 4% were schizoaffective, bipolar); model 2 included all individuals in model 1 plus bipolar II patients (1764 total individuals); and model 3 included all individuals in model 2 with the addition of patients with recurrent major depressive disorder (2046 total persons). RESULTS Assuming dominant inheritance the highest genome-wide pair-wise logarithm of the odds (LOD) score was 3.2 with D16S749 using model 2 patients. Multipoint analyses of this region yielded a maximum LOD score of 4.91. Under recessive transmission a number of chromosome 20 markers were positive and multipoint analyses of the area gave a maximum LOD of 3.0 with model 2 cases. CONCLUSION The chromosome 16p and 20 regions have been implicated by some studies and the data reported herein provide additional suggestive evidence of bipolar susceptibility genes in these regions.
Collapse
|
8
|
Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J, Rodd ZA, Paulus M, Geyer MA, Edenberg HJ, Glatt SJ, Faraone SV, Nurnberger JI, Kuczenski R, Tsuang MT, Niculescu AB. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:134-66. [PMID: 18247375 DOI: 10.1002/ajmg.b.30707] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We had previously identified the clock gene D-box binding protein (Dbp) as a potential candidate gene for bipolar disorder and for alcoholism, using a Convergent Functional Genomics (CFG) approach. Here we report that mice with a homozygous deletion of DBP have lower locomotor activity, blunted responses to stimulants, and gain less weight over time. In response to a chronic stress paradigm, these mice exhibit a diametric switch in these phenotypes. DBP knockout mice are also activated by sleep deprivation, similar to bipolar patients, and that activation is prevented by treatment with the mood stabilizer drug valproate. Moreover, these mice show increased alcohol intake following exposure to stress. Microarray studies of brain and blood reveal a pattern of gene expression changes that may explain the observed phenotypes. CFG analysis of the gene expression changes identified a series of novel candidate genes and blood biomarkers for bipolar disorder, alcoholism, and stress reactivity.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Further evidence for association of GRK3 to bipolar disorder suggests a second disease mutation. Psychiatr Genet 2008; 17:315-22. [PMID: 18075471 DOI: 10.1097/ypg.0b013e3282efeeb4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Two genome-wide linkage surveys suggest chromosome 22q12 may contain a susceptibility locus for bipolar disorder (BPD) in the immediate region of the gene G protein receptor kinase-3 (GRK3). We previously published evidence that a single nucleotide polymorphism (SNP) in the promoter region of GRK3, designated P5, was associated with BPD. This SNP, however, was too rare (allele frequency 0.007) to explain the evidence for linkage. METHODS To identify other SNPs or haplotypes associated with illness, we have now sequenced an additional 28-kb genomic segment of GRK3 and tested an additional 35 SNPs for association with BPD in 181 Caucasian nuclear families. RESULTS Transmission disequilibrium test analyses identified two closely related disease-associated haplotypes defined by four SNPs located upstream of the promoter region: transmission to nontransmission ratios=54:22 and 20:9, odds ratios=2.50 and 2.36, and P values=0.0009 and 0.05. The best P value remained significant after correction for multiple testing. These two haplotypes were found on an entirely different set of chromosomes from the previously identified SNP P5. They had a combined frequency of approximately 0.10 and, therefore, a much greater population attributable risk for disease than the previously identified P5 haplotype. CONCLUSIONS These data provide evidence that at least two distinct haplotypes, and possibly two or more different underlying mutations, in GRK3 might be associated with BPD. These new findings add support for the hypothesis that a dysregulation in GRK3 expression alters signaling desensitization and thereby predisposes to the development of BPD.
Collapse
|
10
|
|
11
|
Savitz J, van der Merwe L, Solms M, Ramesar R. A linkage and family-based association analysis of a potential neurocognitive endophenotype of bipolar disorder. Neuromolecular Med 2007; 9:101-16. [PMID: 17627031 DOI: 10.1007/bf02685885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/07/2006] [Accepted: 07/26/2006] [Indexed: 12/15/2022]
Abstract
The identification of the genetic variants underpinning bipolar disorder (BPD) has been impeded by a complex pattern of inheritance characterized by genetic and phenotypic heterogeneity, genetic epistasis, and gene-environment interactions. In this paper two strategies were used to ameliorate these confounding factors. A unique South African sample including 190 individuals of the relatively, reproductively isolated Afrikaner population was assessed with a battery of neuropsychological tests in an attempt to identify a BPD-associated quantitative trait or endophenotype. BPD individuals performed significantly worse than their unaffected relatives on visual and verbal memory tasks, a finding congruent with the literature. Afocused linkage and family-based association study was carried out using this memory-related endophenotype. In the largest 77-strong Afrikaner pedigree significant evidence for linkage was detected on chromosome 22q11, a region previously implicated in BPD. The quantitative transmission disequilibrium tests-based association analysis suggested that functional variants of the DRD4 and MAO-A genes modulate memory-related cognition. We speculate that polymorphisms at these loci may predispose to a subtype of BPD characterized by memory-related deficits.
Collapse
Affiliation(s)
- Jonathan Savitz
- Division of Human Genetics, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| | | | | | | |
Collapse
|
12
|
Newton JR. Linked gene ontology categories are novel and differ from associated gene ontology categories for the bipolar disorders. Psychiatr Genet 2007; 17:29-34. [PMID: 17167342 DOI: 10.1097/ypg.0b013e328010f28c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Family, and twin genetic studies strongly indicate gene variants as predisposing to the bipolar disorders. Now, about 3000 genes are genetically linked and about 44 genes are genetically associated. Rank differences, however, exist between the linked gene Genetic ontology categories and the associated gene Genetic ontology categories. For the linked gene Genetic ontology categories, the activation of NF-kappaB-inducing kinase category is over-represented; in contrast, the associated genes show the Synaptic transmission category as over-represented. Association studies report selecting positional candidate genes from previous linkage studies, or, selecting genes on the basis of pathophysiologic hypotheses. Only a few of the pathophysiologic hypotheses genes, however, had been previously linked to the bipolar disorders. In particular, only a couple of the Synaptic transmission genes had been previously linked to bipolar disorders.
Collapse
|
13
|
Savitz J, Cupido CL, Ramesar RK. Preliminary evidence for linkage to chromosome 1q31-32, 10q23.3, and 16p13.3 in a South African cohort with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:383-7. [PMID: 17171663 DOI: 10.1002/ajmg.b.30461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the genetic variants predisposing to the development of bipolar disorder (BPD) have yet to be conclusively identified, replicated reports of linkage to particular chromosomal regions have been encouraging. Here we carried out a non-parametric linkage analysis of nine of these candidate loci in a unique South African sample of 47 BPD pedigrees (N = 350). Three polymorphic markers per region of interest (3 x 9) were typed in a Caucasian cohort of Afrikaner and British origin. Statistically significant evidence for linkage was obtained at 1q31-32, 10q23.3, and 16p13.3 with maximum NPL scores of 2.52, 2.01, and 1.84, respectively. Our results add to the growing evidence that these chromosomal regions harbor genetic variants that play a role in the development of bipolar spectrum illness. Negative results were obtained for the remaining six candidate loci, possibly due to limited statistical power.
Collapse
Affiliation(s)
- Jonathan Savitz
- Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | | | | |
Collapse
|
14
|
Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, Edenberg HJ, Kuczenski R, Geyer MA, Nurnberger JI, Faraone SV, Tsuang MT, Niculescu AB. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:129-58. [PMID: 17266109 DOI: 10.1002/ajmg.b.30481] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kerner B, Brugman DL, Freimer NB. Evidence of linkage to psychosis on chromosome 5q33-34 in pedigrees ascertained for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:74-8. [PMID: 16958032 DOI: 10.1002/ajmg.b.30402] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is hypothesized that the presence of psychotic features may define a subtype of bipolar disorder that is more homogeneous in its genetic predisposition than bipolar disorder as a whole. We used psychosis as an alternative phenotype definition in a re-analysis of the NIMH Bipolar Genetics Initiative data sets. In this analysis we selected only those families in which at least two members were diagnosed with bipolar disorder type 1 with psychotic features. This analysis identified a linkage signal on chromosome 5q33-q34, a region previously implicated in independent linkage studies of schizophrenia and of psychosis, broadly defined. This finding is consistent with the hypothesis that susceptibility to psychosis may characterize at least a subtype of bipolar disorder.
Collapse
Affiliation(s)
- Berit Kerner
- Department of Psychiatry and Biobehavioral Sciences, Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, CA 90095-1761, USA.
| | | | | |
Collapse
|
16
|
Abstract
Bipolar disorder (BPD) is an often devastating illness characterized by extreme mood dysregulation. Although family, twin and adoption studies consistently indicate a strong genetic component, specific genes that contribute to the illness remain unclear. This study gives an overview of linkage studies of BPD, concluding that the regions with the best evidence for linkage include areas on chromosomes 2p, 4p, 4q, 6q, 8q, 11p, 12q, 13q, 16p, 16q, 18p, 18q, 21q, 22q and Xq. Association studies are summarized, which support a possible role for numerous candidate genes in BPD including COMT, DAT, HTR4, DRD4, DRD2, HTR2A, 5-HTT, the G72/G30 complex, DISC1, P2RX7, MAOA and BDNF. Animal models related to bipolar illness are also reviewed, with special attention paid to those with clear genetic implications. We conclude with suggestions for strategies that may help clarify the genetic bases of this complex illness.
Collapse
Affiliation(s)
- E P Hayden
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | |
Collapse
|
17
|
Craddock N, O'Donovan MC, Owen MJ. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 2006; 42:193-204. [PMID: 15744031 PMCID: PMC1736023 DOI: 10.1136/jmg.2005.030718] [Citation(s) in RCA: 424] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Much work has been done to identify susceptibility genes in schizophrenia and bipolar disorder. Several well established linkages have emerged in schizophrenia. Strongly supported regions are 6p24-22, 1q21-22, and 13q32-34, while other promising regions include 8p21-22, 6q16-25, 22q11-12, 5q21-q33, 10p15-p11, and 1q42. Genomic regions of interest in bipolar disorder include 6q16-q22, 12q23-q24, and regions of 9p22-p21, 10q21-q22, 14q24-q32, 13q32-q34, 22q11-q22, and chromosome 18. Recently, specific genes or loci have been implicated in both disorders and, crucially, replicated. Current evidence supports NRG1, DTNBP1, DISC1, DAOA(G72), DAO, and RGS4 as schizophrenia susceptibility loci. For bipolar disorder the strongest evidence supports DAOA(G72) and BDNF. Increasing evidence suggests an overlap in genetic susceptibility across the traditional classification systems that dichotomised psychotic disorders into schizophrenia or bipolar disorder, most notably with association findings at DAOA(G72), DISC1, and NRG1. Future identification of psychosis susceptibility genes will have a major impact on our understanding of disease pathophysiology and will lead to changes in classification and the clinical practice of psychiatry.
Collapse
Affiliation(s)
- N Craddock
- Department of Psychological Medicine, The Henry Wellcome Building for Biomedical Research, Wales School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | | | |
Collapse
|
18
|
Greenwood TA, Schork NJ, Eskin E, Kelsoe JR. Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatry 2006; 11:125-33, 115. [PMID: 16261167 DOI: 10.1038/sj.mp.4001764] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dopamine transporter (DAT) is the site of action of stimulants, and variations in the human DAT gene (DAT1) have been associated with susceptibility to several psychiatric disorders including attention deficit hyperactivity disorder (ADHD) and bipolar disorder. We have previously reported the association of bipolar disorder to novel SNPs in the 3' end of DAT1. We now report the identification of 20 additional SNPs in DAT1 for a total of 63 variants. We also report evidence for association to bipolar disorder in a second independent sample of families. Eight newly identified SNPs and 14 previously identified SNPs were analyzed in two independent samples of 50 and 70 families each using the transmission disequilibrium test. Two of the eight new SNPs, one in intron 8 and one in intron 13, were found to be moderately associated with bipolar disorder, each in one of the two independent samples. Analysis of haplotypes comprised of all 22 SNPs in sliding windows of five adjacent SNPs revealed an association to the region near introns 7 and 8 in both samples (empirical P-values 0.002 and 0.001, respectively, for the same window). The haplotype block structure observed in the gene in our previous study was confirmed in this sample with greater resolution allowing for discrimination of a third haplotype block in the middle of the gene. Together, these data are consistent with the presence of multiple variants in DAT1 that convey susceptibility to bipolar disorder.
Collapse
Affiliation(s)
- T A Greenwood
- Department of Psychiatry, University of California at San Diego, and San Diego VA Health Care System, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
19
|
McQueen MB, Devlin B, Faraone SV, Nimgaonkar VL, Sklar P, Smoller JW, Abou Jamra R, Albus M, Bacanu SA, Baron M, Barrett TB, Berrettini W, Blacker D, Byerley W, Cichon S, Coryell W, Craddock N, Daly MJ, Depaulo JR, Edenberg HJ, Foroud T, Gill M, Gilliam TC, Hamshere M, Jones I, Jones L, Juo SH, Kelsoe JR, Lambert D, Lange C, Lerer B, Liu J, Maier W, Mackinnon JD, McInnis MG, McMahon FJ, Murphy DL, Nothen MM, Nurnberger JI, Pato CN, Pato MT, Potash JB, Propping P, Pulver AE, Rice JP, Rietschel M, Scheftner W, Schumacher J, Segurado R, Van Steen K, Xie W, Zandi PP, Laird NM. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet 2005; 77:582-95. [PMID: 16175504 PMCID: PMC1275607 DOI: 10.1086/491603] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 07/21/2005] [Indexed: 11/03/2022] Open
Abstract
Several independent studies and meta-analyses aimed at identifying genomic regions linked to bipolar disorder (BP) have failed to find clear and consistent evidence of linkage regions. Our hypothesis is that combining the original genotype data provides benefits of increased power and control over sources of heterogeneity that outweigh the difficulty and potential pitfalls of the implementation. We conducted a combined analysis using the original genotype data from 11 BP genomewide linkage scans comprising 5,179 individuals from 1,067 families. Heterogeneity among studies was minimized in our analyses by using uniform methods of analysis and a common, standardized marker map and was assessed using novel methods developed for meta-analysis of genome scans. To date, this collaboration is the largest and most comprehensive analysis of linkage samples involving a psychiatric disorder. We demonstrate that combining original genome-scan data is a powerful approach for the elucidation of linkage regions underlying complex disease. Our results establish genomewide significant linkage to BP on chromosomes 6q and 8q, which provides solid information to guide future gene-finding efforts that rely on fine-mapping and association approaches.
Collapse
Affiliation(s)
- Matthew B McQueen
- Harvard School of Public Health, Department of Epidemiology, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin PI, McInnis MG, Potash JB, Willour VL, MacKinnon DF, Miao K, DePaulo JR, Zandi PP. Assessment of the effect of age at onset on linkage to bipolar disorder: evidence on chromosomes 18p and 21q. Am J Hum Genet 2005; 77:545-55. [PMID: 16175501 PMCID: PMC1275604 DOI: 10.1086/491602] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 07/18/2005] [Indexed: 01/31/2023] Open
Abstract
Previous evidence suggests that the inheritance of bipolar disorder (BP) may vary depending on the age at onset (AAO). Therefore, we sought to incorporate AAO as a covariate in linkage analyses of BP using two different methods, LODPAL and ordered-subset analysis (OSA), in genomewide scans of 150 multiplex pedigrees with 874 individuals. The LODPAL analysis identified two loci, on chromosomes 21q22.13 (LOD = 3.29; empirical chromosomewide P value = .009) and 18p11.2 (LOD = 2.83; empirical chromosomewide P = .05), with increased linkage among subjects who had early onset (AAO < or = 21 years) and later onset (AAO >21 years), respectively. The finding on 21q22.13 was significant at the chromosomewide level, even after correction for multiple testing. Moreover, a similar finding was observed in an independent sample of 65 pedigrees (LOD = 2.88; empirical chromosomewide P = .025). The finding on 18p11.2 was only nominally significant and was not observed in the independent sample. However, 18p11.2 emerged as one of the strongest regions in the OSA (LOD = 2.92; empirical P = .001), in which it was the only finding to meet chromosomewide levels of significance after correction for multiple testing. These results suggest that 21q22.13 and 18p11.2 may harbor genes that increase the risks for early-onset and later-onset forms of BP, respectively. There have been previous reports of linkage on 21q22.13 and 18p11.2, but the findings have not been consistent. This inconsistency may be due to differences in the AAO characteristics of the samples examined. Future studies to fine map susceptibility genes for BP on chromosomes 21q22.13 and 18p11.2 should take AAO into account.
Collapse
Affiliation(s)
- Ping-I Lin
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - Melvin G. McInnis
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - James B. Potash
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - Virginia L. Willour
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - Dean F. MacKinnon
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - Kuangyi Miao
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - J. Raymond DePaulo
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| | - Peter P. Zandi
- Department of Mental Health, the Bloomberg School of Public Health, and Department of Psychiatry and Behavioral Sciences, School of Medicine, The Johns Hopkins University, Baltimore
| |
Collapse
|
21
|
Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N, Dion C, Lavallée JC, Garneau Y, Gingras N, Nicole L, Pirès A, Ponton AM, Potvin A, Wallot H, Mérette C. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 2005; 10:486-99. [PMID: 15534619 DOI: 10.1038/sj.mp.4001594] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The goal of this study was to identify susceptibility loci shared by schizophrenia (SZ) and bipolar disorder (BP), or specific to each. To this end, we performed a dense genome scan in a first sample of 21 multigenerational families of Eastern Quebec affected by SZ, BP or both (N=480 family members). This probably constitutes the first genome scan of SZ and BP that used the same ascertainment, statistical and molecular methods for the concurrent study of the two disorders. We genotyped 607 microsatellite markers of which 350 were spaced by 10 cM and 257 others were follow-up markers in positive regions at the 10 cM scan. Lander and Kruglyak thresholds were conservatively adjusted for multiple testings. We maximized the lod scores (mod score) over eight combinations (2 phenotype severity levels x 2 models of transmission x 2 analyses, affected/unaffected vs affected-only). We observed five genomewide significant linkages with mod score >4.0: three for BP (15q11.1, 16p12.3, 18q12-q21) and two for the shared phenotype, that is, the common locus (CL) phenotype (15q26,18q12-q21). Nine mod scores exceeded the suggestive threshold of 2.6: three for BP (3q21, 10p13, 12q23), three for SZ (6p22, 13q13, 18q21) and three for the CL phenotype (2q12.3, 13q14, 16p13). Mod scores >1.9 might represent confirmatory linkages of formerly reported genomewide significant findings such as our finding in 6p22.3 for SZ. Several regions appeared to be shared by SZ and BP. One linkage signal (15q26) appeared novel, whereas others overlapped formerly reported susceptibility regions. Despite the methodological limitations we raised, our data support the following trends: (i) results from several genome scans of SZ and BP in different populations tend to converge in specific genomic regions and (ii) some of these susceptibility regions may be shared by SZ and BP, whereas others may be specific to each. The present results support the relevance of investigating concurrently SZ and BP within the same study and have implications for the modelling of genetic effects.
Collapse
Affiliation(s)
- M Maziade
- Department of Psychiatry, Laval University, Quebec G1J 2G3, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
McInnis MG, Dick DM, Willour VL, Avramopoulos D, MacKinnon DF, Simpson SG, Potash JB, Edenberg HJ, Bowman ES, McMahon FJ, Smiley C, Chellis JL, Huo Y, Diggs T, Meyer ET, Miller M, Matteini AT, Rau NL, DePaulo JR, Gershon ES, Badner JA, Rice JP, Goate AM, Detera-Wadleigh SD, Nurnberger JI, Reich T, Zandi PP, Foroud TM. Genome-wide scan and conditional analysis in bipolar disorder: evidence for genomic interaction in the National Institute of Mental Health genetics initiative bipolar pedigrees. Biol Psychiatry 2003; 54:1265-73. [PMID: 14643094 DOI: 10.1016/j.biopsych.2003.08.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND In 1989 the National Institute of Mental Health began a collaborative effort to identify genes for bipolar disorder. The first 97 pedigrees showed evidence of linkage to chromosomes 1, 6, 7, 10, 16, and 22 (Nurnberger et al 1997). An additional 56 bipolar families have been genotyped, and the combined sample of 153 pedigrees studied. METHODS Three hierarchical affection status models were analyzed with 513 simple sequence repeat markers; 298 were common across all pedigrees. The primary analysis was a nonparametric genome-wide scan. We performed conditional analyses based on epistasis or heterogeneity for five regions. RESULTS One region, on 16p13, was significant at the genome-wide p <.05 level. Four additional chromosomal regions (20p12, 11p15, 6q24, and 10p12) showed nominally significant linkage findings (p </=.01). Conditional analysis assuming epistasis identified a significant increase in linkage at four regions. Families linked to 6q24 showed a significant increase in nonparametric logarithms of the odds (NPL) scores at 5q11 and 7q21. Epistasis also was observed between 20p12 and 13q21, and 16p13 and 9q21. CONCLUSIONS The findings are presented in rank order of nominal significance. Several of these regions have been previously implicated in independent studies of either bipolar disorder or schizophrenia. The strongest finding is at 16p13 at D16S748 with an NPL of 3.3, there is evidence of epistasis between this locus and 9q21. Application of conditional analyses is potentially useful in larger sample collections to identify susceptibility genes of modest influence that may not be identified in a genome-wide scan aimed to identify single gene effects.
Collapse
Affiliation(s)
- Melvin G McInnis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287-7463, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Willour VL, Zandi PP, Huo Y, Diggs TL, Chellis JL, MacKinnon DF, Simpson SG, McMahon FJ, Potash JB, Gershon ES, Reich T, Foroud T, Nurnberger JI, DePaulo JR, McInnis MG. Genome scan of the fifty-six bipolar pedigrees from the NIMH genetics initiative replication sample: chromosomes 4, 7, 9, 18, 19, 20, and 21. Am J Med Genet B Neuropsychiatr Genet 2003; 121B:21-7. [PMID: 12898570 DOI: 10.1002/ajmg.b.20051] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The NIMH genetics initiative on bipolar disorder was established to collect uniformly ascertained bipolar pedigrees for genetic studies. In 1997, the four participating sites published a genome scan on the initial set of 97 bipolar pedigrees. Fifty-six additional bipolar pedigrees have now been ascertained and evaluated. This replication pedigree set contains 354 genotyped subjects, including 139 bipolar I (BPI) subjects, five schizoaffective bipolar type SA/BP subjects, 41 bipolar II (BPII) subjects, and 43 recurrent unipolar (RUP) depression subjects. Our site has recently genotyped the replication study bipolar pedigrees using 107 microsatellite markers from chromosomes 4, 7, 9, 18, 19, 20, and 21. We are now reporting parametric and nonparametric linkage results from this effort. Multipoint nonparametric linkage analysis produced three candidate regions with allele sharing LOD scores >/= 1.0. The linkage signal on 4q35 peaked between markers D4S3335 and D4S2390 with an allele sharing LOD score of 2.49. This finding exceeds standard criteria for suggestive linkage. Two additional loci approach suggestive linkage levels: the 4q32 finding had its maximum near marker D4S1629 with an allele sharing LOD score of 2.16, and the 20p12 finding peaked at D20S162 with an allele sharing LOD score of 1.82. Multipoint parametric linkage analysis produced similar findings. When we combined the genotype data from the original and the replication pedigree sets, 20p12 yielded a nonparametric LOD score of 2.38, which exceeds standard criteria for suggestive linkage, and a corresponding parametric HLOD score of 2.98. The combined analysis did not provide further support for linkage to 4q32 and 4q35.
Collapse
|
24
|
Ekholm JM, Kieseppä T, Hiekkalinna T, Partonen T, Paunio T, Perola M, Ekelund J, Lönnqvist J, Pekkarinen-Ijäs P, Peltonen L. Evidence of susceptibility loci on 4q32 and 16p12 for bipolar disorder. Hum Mol Genet 2003; 12:1907-15. [PMID: 12874110 DOI: 10.1093/hmg/ddg199] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We performed a genome-wide scan for susceptibility loci in bipolar disorder in a study sample colleted from the isolated Finnish population, consisting of 41 families with at least two affected siblings. We identified one distinct locus on 16p12 providing significant evidence for linkage in two-point analysis (Z(max)=3.4). Furthermore, three loci with a two-point LOD score >2.0 were observed with markers on 4q32, 12q23 and Xq25, the latter locus having been earlier identified in one extended Finnish pedigree. In the second stage we fine mapped these chromosomal regions and also genotyped additional family members. In the fine mapping stage, 4q32 provided significant evidence of linkage for the three-point analyses (Z(max)=3.6) and 16p12 produced a three-point LOD score of 2.7. Since the identified chromosomal regions replicate earlier linkage findings in either bipolar disorder or other mental disorders, they should be considered good targets for further genetic analyses.
Collapse
Affiliation(s)
- Jenny M Ekholm
- Department of Molecular Medicine, National Public Health Institute, 00251 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL, Moe PR, Samavedy N, El-Mallakh R, Manji H, Glitz DA, Meyer ET, Smiley C, Hahn R, Widmark C, McKinney R, Sutton L, Ballas C, Grice D, Berrettini W, Byerley W, Coryell W, DePaulo R, MacKinnon DF, Gershon ES, Kelsoe JR, McMahon FJ, McInnis M, Murphy DL, Reich T, Scheftner W, Nurnberger JI. Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. Am J Hum Genet 2003; 73:107-14. [PMID: 12772088 PMCID: PMC1180573 DOI: 10.1086/376562] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Accepted: 04/17/2003] [Indexed: 11/03/2022] Open
Abstract
We conducted genomewide linkage analyses on 1,152 individuals from 250 families segregating for bipolar disorder and related affective illnesses. These pedigrees were ascertained at 10 sites in the United States, through a proband with bipolar I affective disorder and a sibling with bipolar I or schizoaffective disorder, bipolar type. Uniform methods of ascertainment and assessment were used at all sites. A 9-cM screen was performed by use of 391 markers, with an average heterozygosity of 0.76. Multipoint, nonparametric linkage analyses were conducted in affected relative pairs. Additionally, simulation analyses were performed to determine genomewide significance levels for this study. Three hierarchical models of affection were analyzed. Significant evidence for linkage (genomewide P<.05) was found on chromosome 17q, with a peak maximum LOD score of 3.63, at the marker D17S928, and on chromosome 6q, with a peak maximum LOD score of 3.61, near the marker D6S1021. These loci met both standard and simulation-based criteria for genomewide significance. Suggestive evidence of linkage was observed in three other regions (genomewide P<.10), on chromosomes 2p, 3q, and 8q. This study, which is based on the largest linkage sample for bipolar disorder analyzed to date, indicates that several genes contribute to bipolar disorder.
Collapse
Affiliation(s)
- Danielle M Dick
- Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202-4887, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zandi PP, Willour VL, Huo Y, Chellis J, Potash JB, MacKinnon DF, Simpson SG, McMahon FJ, Gershon E, Reich T, Foroud T, Nurnberger J, DePaulo JR, McInnis MG. Genome scan of a second wave of NIMH genetics initiative bipolar pedigrees: chromosomes 2, 11, 13, 14, and X. Am J Med Genet B Neuropsychiatr Genet 2003; 119B:69-76. [PMID: 12707942 DOI: 10.1002/ajmg.b.10063] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As part of the on-going NIMH Genetics Initiative on Bipolar Disorder, we have ascertained 153 multiplex bipolar pedigrees and genotyped them in two waves. We report here the genome scan results for chromosomes 2, 11, 13, 14, and X in the second wave of 56 families. A total of 354 individuals were genotyped and included in the current analyses, including 5 with schizoaffective/bipolar (SA/BP), 139 with bipolar I disorder (BPI), 41 with bipolar II disorder (BPII), and 43 with recurrent unipolar depression (RUP). Linkage analyses were carried out with multi-point parametric and non-parametric affected relative pair methods using three different definitions of the affected phenotype: (model 1) SA/BP and BPI; (model 2) SA/BP, BPI, and BPII; and (model 3) SA/BP, BPI, BPII, and RUP. The best findings were on 11p15.5 (NPL = 2.96, P = 0.002) and Xp11.3 (NPL = 2.19, P = 0.01). These findings did not reach conventional criteria for significance, but they were located near regions that have been identified in previous genetic studies of bipolar disorder. The relatively modest but consistent findings across studies may suggest that these loci harbor susceptibility genes of modest effect in a subset of families. Large samples such as that being collected by the NIMH Initiative will be necessary to examine the heterogeneity and identify these susceptibility genes.
Collapse
MESH Headings
- Bipolar Disorder/classification
- Bipolar Disorder/genetics
- Chromosomes, Human
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 2
- Chromosomes, Human, X
- Genetic Heterogeneity
- Genetic Linkage
- Genetic Predisposition to Disease
- Genome, Human
- Genotype
- Humans
- National Institute of Mental Health (U.S.)
- Pedigree
- Phenotype
- United States
Collapse
Affiliation(s)
- Peter P Zandi
- Department of Mental Hygiene, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21204, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|