1
|
Zhang Y, Gao H, Zhang L, Zhao Y, Qiu C, Liu X. Novel Germline KIT Variants in Families With Severe Piebaldism: Case Series and Literature Review. J Clin Lab Anal 2024; 38:e25073. [PMID: 38887855 PMCID: PMC11252829 DOI: 10.1002/jcla.25073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Piebaldism is a rare autosomal dominant disorder characterized by congenital white forelock and depigmented patches, which is most commonly caused by deleterious variants in the KIT gene. METHODS Four KIT variants were identified in a piebaldism case series by whole-exome sequencing. Functional experiments, including in vitro minigene reporter assay and enzyme-linked immunosorbent assay, were carried out to elucidate the pathogenicity of the variants. The genotype-phenotype correlation was summarized through extensive literature reviewing. RESULTS All the four cases had severe piebaldism presented with typical white forelock and diffuse depigmentation on the ventral trunk and limbs. Four germline variants at the tyrosine kinase (TK) domains of the KIT gene were identified: two novel variants c.1990+1G>A (p.Pro627_Gly664delinsArg) and c.2716T>C (p.Cys906Arg), and two known variants c.1879+1G>A (p.Gly592_Pro627delinsAla) and c.1747G>A (p.Glu583Lys). Both splicing variants caused exon skipping and inframe deletions in the TK1 domain. The missense variants resided at the TK1 and TK2 domains respectively impairing PI3K/AKT and MAPK/ERK signaling pathways, the downstream of KIT. All severe cases were associated with variants in the TK domains, eliciting a major dominant-negative mechanism of the disease. CONCLUSION Our data expand the mutation spectrum of KIT, emphasized by a dominant-negative effect of variants in the critical TK domains in severe cases. We also share the experience of prenatal diagnosis and informed reproductive choices for the affected families.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Clinical GeneticsShengjing Hospital of China Medical UniversityShenyangChina
| | - Haiming Gao
- Department of Clinical GeneticsShengjing Hospital of China Medical UniversityShenyangChina
| | - Lu Zhang
- Department of Clinical GeneticsShengjing Hospital of China Medical UniversityShenyangChina
| | - Yunjing Zhao
- Department of Developmental PediatricsShengjing Hospital of China Medical UniversityShenyangChina
| | - Chuang Qiu
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiaoliang Liu
- Department of Clinical GeneticsShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
2
|
Budair FM. KIT Mutation Associated with Depigmented Patches Regression and Multiple Café-au-lait Macules Development in a Patient with Piebaldism: A Case Report. Clin Cosmet Investig Dermatol 2024; 17:713-716. [PMID: 38524391 PMCID: PMC10961011 DOI: 10.2147/ccid.s449691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/03/2024] [Indexed: 03/26/2024]
Abstract
Piebaldism is a rare genetic disorder caused by KIT mutations and clinically characterized by fixed depigmented patches throughout the body. Herein, a case of piebaldism in which the depigmented patches regressed as the patient grew older, along with the development of multiple café-au-lait macules, is described. The likely pathogenic, heterozygous KIT c.1991-2A>G variant was detected as the potential cause of this unusual piebaldism phenotype. This case provides new knowledge on genotype-phenotype correlation of KIT mutations for piebaldism etiology and presentation.
Collapse
Affiliation(s)
- Fatimah Mohammad Budair
- Department of Dermatology, King Fahd University Hospital, Al Khobar, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Gurao A, Vasisth R, Singh R, Dige MS, Vohra V, Mukesh M, Kumar S, Kataria RS. Identification of differential methylome signatures of white pigmented skin patches in Nili Ravi buffalo of India. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:408-417. [PMID: 36239068 DOI: 10.1002/em.22511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The DNA methylation events mark a major epigenetic change in the genome, reflecting non-genetic disease developments and varied phenotypes. The water buffalo is a dairy production animal with wide agro-climatic distribution in India. Breed-wise the coat color of water buffalo varies from ash-gray to jet black. A typical pigmentation pattern is found in one of the breeds of North India, Nili Ravi, with variedly distributed white patches. The DNA methylation pattern could potentially reveal the epigenetic factors responsible for the pigmentation patterns. To address this question, the DNA isolated from the skin tissues of Nili Ravi with varied white pigmentation and black Murrah buffaloes was subjected to reduced representation bisulfite sequencing. DNA methylation analysis revealed, 68.44%, 63.39%, and 47.94% of the promoter regions were hypermethylated in Nili Ravi over-white versus Murrah, Nili Ravi under-white versus Murrah, and Nili Ravi under-white versus Nili Ravi over-white, respectively. Major genes identified to be differentially methylated among over-white and under-white skin tissues in Nili Ravi included TBX2, SNAI2, HERC2, and CITED1. Overall the results have indicated differential methylation patterns to be potentially involved in hyper or hypopigmentation in Nili Ravi and Murrah buffaloes.
Collapse
Affiliation(s)
- Ankita Gurao
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Rashi Vasisth
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Ravinder Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Mahesh S Dige
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Vikas Vohra
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sanjay Kumar
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Ranjit S Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
4
|
Wang C, Zhang Y, Hu X, Wang L, Xu Z, Xing H. Novel pathogenic variants in KIT gene in three Chinese piebaldism patients. Front Med (Lausanne) 2022; 9:1040747. [DOI: 10.3389/fmed.2022.1040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
BackgroundPiebaldism is a rare autosomal dominant disease, and roughly 75% patients had KIT gene mutations. Up to date, approximately 90 KIT mutations causing piebaldism were reported.MethodsTo identify KIT gene mutations in three pediatric piebaldism patients from different families and explore the genotype-phenotype correlation, peripheral blood DNA were collected from probands and their parents. Whole-exome sequencing was performed to detect potential disease-causing variants in the three probands. Putative variants were validated by Sanger sequencing.ResultsHeterozygous variants of c.2469_2484del (p.Tyr823*), c.1994G > C (p.Pro665Leu), and c.1982_1983insCAT (p.662_663insIle) in KIT gene were detected in three probands. These variants were all novel and classified as pathogenic/likely pathogenic variants according to the interpretation guidelines of American College of Medical Genetics and Genomics and the Association for Molecular Pathology. The probands carrying variants located in tyrosine kinase domain exhibited a more severe phenotype.ConclusionThe piebaldism in three families was caused by novel heterozygous KIT variants. The severity of phenotypes is related with the types and locations of different mutations. Our results further provided evidence for genetic counseling for the three families.
Collapse
|
5
|
Genetic insights, disease mechanisms, and biological therapeutics for Waardenburg syndrome. Gene Ther 2022; 29:479-497. [PMID: 33633356 DOI: 10.1038/s41434-021-00240-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss (HL), which accounts for approximately 2-5% of all patients with congenital hearing loss. WS is classified into four subtypes depending on the clinical phenotypes. Currently, pathogenic mutations of PAX3, MITF, SOX10, EDN3, EDNRB or SNAI2 are associated with different subtypes of WS. Although supportive techniques like hearing aids, cochlear implants, or other assistive listening devices can alleviate the HL symptom, there is no cure for WS to date. Recently major progress has been achieved in preclinical studies of genetic HL in animal models, including gene delivery and stem cell replacement therapies. This review focuses on the current understandings of pathogenic mechanisms and potential biological therapeutic approaches for HL in WS, providing strategies and directions for implementing WS biological therapies, as well as possible problems to be faced, in the future.
Collapse
|
6
|
Xia Z, Bi X, Yang S, Yang X, Song Z, Wei J, Xu P, Rink L, Min J, Wang F. Metal transporter Slc30a1 controls pharyngeal neural crest differentiation via the zinc-Snai2-Jag1 cascade. MedComm (Beijing) 2021; 2:778-797. [PMID: 34977877 PMCID: PMC8706747 DOI: 10.1002/mco2.91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The pharyngeal arch (PA) is a neural crest (NC)-derived organ that is transiently developed during embryogenesis and is required for the subsequent development of various tissues. However, the role of zinc during PA differentiation from NC progenitor cells is unknown. Here, we found that the metal transporters Slc30a1a and Slc30a1b mediate zinc homeostasis during PA differentiation. Slc30a1-deficient zebrafish develop zinc accumulation in NC cells, with increased expression of stemness markers and PA dorsal genes, and SMART-seq analyses revealed that the genes snai2 and jag1b may serve as downstream targets. Furthermore, functional studies showed that knocking down either snai2 or jag1b rescues PA development in Slc30a1-deficient zebrafish. Notably, we identified the double zinc-finger domain in the transcription factor Snai2 as a zinc-responsive element that regulates jag1b expression. Our findings indicate that the Slc30a1/zinc-snai2-jag1b axis is an essential regulatory network controlling PA differentiation, shedding new light on the function of zinc homeostasis in maintaining NC cell stemness and multipotency in vertebrates.
Collapse
Affiliation(s)
- Zhidan Xia
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Xinying Bi
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Sisi Yang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Xiu Yang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Zijun Song
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Jiayu Wei
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Pengfei Xu
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Lothar Rink
- Faculty of MedicineInstitute of ImmunologyRWTH Aachen UniversityAachenGermany
| | - Junxia Min
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Fudi Wang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
7
|
Chen YJ, Diao P, Wan RY, Li L. Piebaldism resulting from a novel deletion mutation of KIT gene in a five-generation Chinese family. Clin Exp Dermatol 2021; 47:232-234. [PMID: 34374464 DOI: 10.1111/ced.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Y J Chen
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - P Diao
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - R Y Wan
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - L Li
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Slug regulates the Dll4-Notch-VEGFR2 axis to control endothelial cell activation and angiogenesis. Nat Commun 2020; 11:5400. [PMID: 33106502 PMCID: PMC7588439 DOI: 10.1038/s41467-020-18633-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/01/2020] [Indexed: 01/10/2023] Open
Abstract
Slug (SNAI2), a member of the well-conserved Snail family of transcription factors, has multiple developmental roles, including in epithelial-to-mesenchymal transition (EMT). Here, we show that Slug is critical for the pathological angiogenesis needed to sustain tumor growth, and transiently necessary for normal developmental angiogenesis. We find that Slug upregulation in angiogenic endothelial cells (EC) regulates an EMT-like suite of target genes, and suppresses Dll4-Notch signaling thereby promoting VEGFR2 expression. Both EC-specific Slug re-expression and reduced Notch signaling, either by γ-secretase inhibition or loss of Dll4, rescue retinal angiogenesis in SlugKO mice. Conversely, inhibition of VEGF signaling prevents excessive angiogenic sprouting of Slug overexpressing EC. Finally, endothelial Slug (but not Snail) is activated by the pro-angiogenic factor SDF1α via its canonical receptor CXCR4 and the MAP kinase ERK5. Altogether, our data support a critical role for Slug in determining the angiogenic response during development and disease. Slug supports heart development and tumor metastasis, but its role in blood vessel formation is less clear. Here the authors show that endothelial cell-expressed Slug regulates both physiologic and pathological angiogenesis, at least in part through the modulation of Notch signalling.
Collapse
|
9
|
Mirhadi S, Spritz RA, Moss C. Does SNAI2 mutation cause human piebaldism and Waardenburg syndrome? Am J Med Genet A 2020; 182:3074-3075. [PMID: 32975012 DOI: 10.1002/ajmg.a.61887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Sara Mirhadi
- Department of Paediatric Dermatology, Birmingham Children's Hospital, Birmingham, UK
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Celia Moss
- Department of Paediatric Dermatology, Birmingham Children's Hospital, Birmingham, UK.,University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, Sotlar K, Sperr WR, Escribano L, George TI, Kluin-Nelemans HC, Ustun C, Triggiani M, Brockow K, Gotlib J, Orfao A, Kovanen PT, Hadzijusufovic E, Sadovnik I, Horny HP, Arock M, Schwartz LB, Austen KF, Metcalfe DD, Galli SJ. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Am J Cancer Res 2020; 10:10743-10768. [PMID: 32929378 PMCID: PMC7482799 DOI: 10.7150/thno.46719] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
The origin and functions of mast cells (MCs) have been debated since their description by Paul Ehrlich in 1879. MCs have long been considered 'reactive bystanders' and 'amplifiers' in inflammatory processes, allergic reactions, and host responses to infectious diseases. However, knowledge about the origin, phenotypes and functions of MCs has increased substantially over the past 50 years. MCs are now known to be derived from multipotent hematopoietic progenitors, which, through a process of differentiation and maturation, form a unique hematopoietic lineage residing in multiple organs. In particular, MCs are distinguishable from basophils and other hematopoietic cells by their unique phenotype, origin(s), and spectrum of functions, both in innate and adaptive immune responses and in other settings. The concept of a unique MC lineage is further supported by the development of a distinct group of neoplasms, collectively referred to as mastocytosis, in which MC precursors expand as clonal cells. The clinical consequences of the expansion and/or activation of MCs are best established in mastocytosis and in allergic inflammation. However, MCs have also been implicated as important participants in a number of additional pathologic conditions and physiological processes. In this article, we review concepts regarding MC development, factors controlling MC expansion and activation, and some of the fundamental roles MCs may play in both health and disease. We also discuss new concepts for suppressing MC expansion and/or activation using molecularly-targeted drugs.
Collapse
|
11
|
Tang Y, Durand S, Dalle S, Caramel J. EMT-Inducing Transcription Factors, Drivers of Melanoma Phenotype Switching, and Resistance to Treatment. Cancers (Basel) 2020; 12:E2154. [PMID: 32759677 PMCID: PMC7465730 DOI: 10.3390/cancers12082154] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 01/06/2023] Open
Abstract
Transcription factors, extensively described for their role in epithelial-mesenchymal transition (EMT-TFs) in epithelial cells, also display essential functions in the melanocyte lineage. Recent evidence has shown specific expression patterns and functions of these EMT-TFs in neural crest-derived melanoma compared to carcinoma. Herein, we present an update of the specific roles of EMT-TFs in melanocyte differentiation and melanoma progression. As major regulators of phenotype switching between differentiated/proliferative and neural crest stem cell-like/invasive states, these factors appear as major drivers of intra-tumor heterogeneity and resistance to treatment in melanoma, which opens new avenues in terms of therapeutic targeting.
Collapse
Affiliation(s)
- Yaqi Tang
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| | - Simon Durand
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| | - Stéphane Dalle
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
- Dermatology Unit, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, 69495 Pierre Bénite, France
| | - Julie Caramel
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| |
Collapse
|
12
|
Zhu L, Yang C, Zhong W, Huang YQ, Zhang Q, Xu WC, Chen YF. KIT-related piebaldism in a Chinese girl. Am J Med Genet A 2020; 182:1321-1328. [PMID: 32220041 DOI: 10.1002/ajmg.a.61576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/16/2020] [Accepted: 03/13/2020] [Indexed: 11/11/2022]
Abstract
Piebaldism is a rare, autosomal dominant and congenital pigmentary disorder characterized by stable depigmentation of the skin and white forelock. Mutations in KIT or SNAI2 genes result in piebaldism. Most individuals with piebaldism have a family history of the disorder. Herein, we report a 5-month-old Chinese girl with severe piebaldism but no family history thereof. She has white forelock and large patches of depigmentation in the jaw, central anterior trunk, perineum and extremities. We performed whole-exome and Sanger sequencing and identified a de novo KIT mutation (NM_000222.2: c.2657G>A, p.Gly886Val) in exon 18 of KIT in the proband. Currently, this mutation is located in the most extreme C-terminal of the tyrosine kinase domain 2 of the KIT gene amongst all reported mutations and causes a severe clinical phenotype. We further reviewed literature on piebaldism and summarized 79 KIT gene mutations that lead to this disease. Our study may expand knowledge on the genotype-phenotype correlation in piebaldism and serve as a reference for genetic counseling and prenatal diagnosis of affected families.
Collapse
Affiliation(s)
- Lei Zhu
- Guangdong Medical College, College of Dermatology, Anhui Medical University, Guangzhou, China.,Guangdong Provincial Dermatology Hospital, Guangzhou, China
| | - Chao Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Wei Zhong
- Guangdong Medical College, College of Dermatology, Anhui Medical University, Guangzhou, China.,Guangdong Provincial Dermatology Hospital, Guangzhou, China
| | - Yu-Qi Huang
- Guangdong Provincial Dermatology Hospital, Guangzhou, China
| | - Qi Zhang
- Guangdong Provincial Dermatology Hospital, Guangzhou, China
| | - Wen-Cong Xu
- Guangdong Medical College, College of Dermatology, Anhui Medical University, Guangzhou, China.,Guangdong Provincial Dermatology Hospital, Guangzhou, China
| | - Yong-Feng Chen
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Piebaldism: An Iranian case report carrying minor allele at rs999020 and rs1008658 SNPs of KIT gene. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zhang L, Huang Y, Wang M, Guo Y, Liang J, Yang X, Qi W, Wu Y, Si J, Zhu S, Li Z, Li R, Shi C, Wang S, Zhang Q, Tang Z, Wang L, Li K, Fei JF, Lan G. Development and Genome Sequencing of a Laboratory-Inbred Miniature Pig Facilitates Study of Human Diabetic Disease. iScience 2019; 19:162-176. [PMID: 31376679 PMCID: PMC6677790 DOI: 10.1016/j.isci.2019.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 07/13/2019] [Indexed: 01/10/2023] Open
Abstract
Pig has been proved to be a valuable large animal model used for research on diabetic disease. However, their translational value is limited given their distinct anatomy and physiology. For the last 30 years, we have been developing a laboratory Asian miniature pig inbred line (Bama miniature pig [BM]) from the primitive Bama xiang pig via long-term selective inbreeding. Here, we assembled a BM reference genome at full chromosome-scale resolution with a total length of 2.49 Gb. Comparative and evolutionary genomic analyses identified numerous variations between the BM and commercial pig (Duroc), particularly those in the genetic loci associated with the features advantageous to diabetes studies. Resequencing analyses revealed many differentiated gene loci associated with inbreeding and other selective forces. These together with transcriptome analyses of diabetic pig models provide a comprehensive genetic basis for resistance to diabetogenic environment, especially related to energy metabolism.
Collapse
Affiliation(s)
- Li Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuemeng Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Meng Wang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Yafen Guo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jing Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenjing Qi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yanjun Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinglei Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Siran Zhu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhe Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Chao Shi
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qunjie Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Zhonglin Tang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ji-Feng Fei
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
15
|
Akarsu S, İlknur T, Avcı C, Fetil E. Piebaldism Associated with Café-au-lait Macules and Intertriginous Freckling: A Case Report and Review of the Literature. Ann Dermatol 2019; 31:567-570. [PMID: 33911651 PMCID: PMC7992560 DOI: 10.5021/ad.2019.31.5.567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/16/2018] [Accepted: 09/18/2018] [Indexed: 11/10/2022] Open
Abstract
We present 9-year-old fraternal twins from a family with piebaldism, having congenital depigmented macules and meeting the diagnostic criteria for neurofibromatosis type 1 (NF1) due to the multiple café-au-lait macules (CALMs) and intertriginous freckling at the same time. It's still a debatable issue that CALMs and intertriginous freckling may be seen in the clinical spectrum of piebaldism or these patients should be regarded as coexistence of piebaldism and NF1. However, based on recent literature and our patients' findings, we suggest that this rare phenotypic variant of piebaldism may not need the careful clinical follow-up and molecular testing for NF1. Besides, it may be suitable that these individuals with piebaldism showing NF1-like clinical phenotypes should be further tested for KIT and SPRED1 gene mutations.
Collapse
Affiliation(s)
- Sevgi Akarsu
- Department of Dermatology, Dokuz Eylul University, Faculty of Medicine, İzmır, Turkey
| | - Turna İlknur
- Department of Dermatology, Dokuz Eylul University, Faculty of Medicine, İzmır, Turkey
| | - Ceylan Avcı
- Department of Dermatology, Bilecik State Hospital, Bilecik, Turkey
| | - Emel Fetil
- Department of Dermatology, Dokuz Eylul University, Faculty of Medicine, İzmır, Turkey
| |
Collapse
|
16
|
Fufa TD, Baxter LL, Wedel JC, Gildea DE, Loftus SK, Pavan WJ. MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells. Epigenetics Chromatin 2019; 12:50. [PMID: 31399133 PMCID: PMC6688322 DOI: 10.1186/s13072-019-0297-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
Background The MAPK/ERK signaling pathway is an essential regulator of numerous cell processes that are crucial for normal development as well as cancer progression. While much is known regarding MAPK/ERK signal conveyance from the cell membrane to the nucleus, the transcriptional and epigenetic mechanisms that govern gene expression downstream of MAPK signaling are not fully elucidated. Results This study employed an integrated epigenome analysis approach to interrogate the effects of MAPK/ERK pathway inhibition on the global transcriptome, the active chromatin landscape, and protein–DNA interactions in 501mel melanoma cells. Treatment of these cells with the small-molecule MEK inhibitor AZD6244 induces hyperpigmentation, widespread gene expression changes including alteration of genes linked to pigmentation, and extensive epigenomic reprogramming of transcriptionally distinct regulatory regions associated with the active chromatin mark H3K27ac. Regulatory regions with differentially acetylated H3K27ac regions following AZD6244 treatment are enriched in transcription factor binding motifs of ETV/ETS and ATF family members as well as the lineage-determining factors MITF and SOX10. H3K27ac-dense enhancer clusters known as super-enhancers show similar transcription factor motif enrichment, and furthermore, these super-enhancers are associated with genes encoding MITF, SOX10, and ETV/ETS proteins. Along with genome-wide resetting of the active enhancer landscape, MEK inhibition also results in widespread SOX10 recruitment throughout the genome, including increased SOX10 binding density at H3K27ac-marked enhancers. Importantly, these MEK inhibitor-responsive enhancers marked by H3K27ac and occupied by SOX10 are located near melanocyte lineage-specific and pigmentation genes and overlap numerous human SNPs associated with pigmentation and melanoma phenotypes, highlighting the variants located within these regions for prioritization in future studies. Conclusions These results reveal the epigenetic reprogramming underlying the re-activation of melanocyte pigmentation and developmental transcriptional programs in 501mel cells in response to MEK inhibition and suggest extensive involvement of a MEK-SOX10 axis in the regulation of these processes. The dynamic chromatin changes identified here provide a rich genomic resource for further analyses of the molecular mechanisms governing the MAPK pathway in pigmentation- and melanocyte-associated diseases. Electronic supplementary material The online version of this article (10.1186/s13072-019-0297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Temesgen D Fufa
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia C Wedel
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Derek E Gildea
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Brown AE, Qiu CC, Drozd B, Sklover LR, Vickers CM, Hsu S. The color of skin: white diseases of the skin, nails, and mucosa. Clin Dermatol 2019; 37:561-579. [PMID: 31896410 DOI: 10.1016/j.clindermatol.2019.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
White diseases are a heterogenous group characterized by hypopigmentation or depigmentation. Skin and eye color are determined by the number and size of melanosomes present. Melanin is produced by melanosomes in the melanocytes present within the epidermis of the skin, uvea, and retinal pigmented epithelium (RPE). Conditions altering the number of melanocytes or concentration of melanin result in a lack of pigmentation, appearing as "white diseases" ranging from the well-known albinism and vitiligo to more esoteric white hand syndrome and Degos disease.
Collapse
Affiliation(s)
- Ashley E Brown
- McGovern Medical School, University of Texas Health Science Center at Houston,Houston, Texas, USA.
| | - Connie C Qiu
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Brandy Drozd
- McGovern Medical School, University of Texas Health Science Center at Houston,Houston, Texas, USA
| | - Lindsay R Sklover
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Conor M Vickers
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Sylvia Hsu
- Department of Dermatology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Vandamme N, Berx G. From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cell Mol Life Sci 2019; 76:1919-1934. [PMID: 30830237 PMCID: PMC11105195 DOI: 10.1007/s00018-019-03049-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 01/07/2023]
Abstract
Here, we review melanocyte development and how the embryonic melanoblast, although specified to become a melanocyte, is prone to cellular plasticity and is not fully committed to the melanocyte lineage. Even fully differentiated and pigment-producing melanocytes do not always have a stable phenotype. The gradual lineage restriction of neural crest cells toward the melanocyte lineage is determined by both cell-intrinsic and extracellular signals in which differentiation and pathfinding ability reciprocally influence each other. These signals are leveraged by subtle differences in timing and axial positioning. The most extensively studied migration route is the dorsolateral path between the dermomyotome and the prospective epidermis, restricted to melanoblasts. In addition, the embryonic origin of the skin dermis through which neural crest derivatives migrate may also affect the segregation between melanogenic and neurogenic cells in embryos. It is widely accepted that, irrespective of the model organism studied, the immediate precursor of both melanoblast and neurogenic populations is a glial-melanogenic bipotent progenitor. Upon exposure to different conditions, melanoblasts may differentiate into other neural crest-derived lineages such as neuronal cells and vice versa. Key factors that regulate melanoblast migration and patterning will regulate melanocyte homeostasis during different stages of hair cycling in postnatal hair follicles.
Collapse
Affiliation(s)
- Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- DAMBI, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
19
|
Abstract
Melanocyte development is orchestrated by a complex interconnecting regulatory network of genes and synergistic interactions. Piebaldism and Waardenburg syndrome are neurocristopathies that arise from mutations in genes involved in this complex network. Our understanding of melanocyte development, Piebaldism, and Waardenburg syndrome has improved dramatically over the past decade. The diagnosis and classification of Waardenburg syndrome, first proposed in 1992 and based on phenotype, have expanded over the past three decades to include genotype. This review focuses on the current understanding of human melanocyte development and the evaluation and management of Piebaldism and Waardenburg syndrome. Management is often challenging and requires a multidisciplinary approach.
Collapse
|
20
|
Vakili‐Ghartavol R, Mombeiny R, Salmaninejad A, Sorkhabadi SMR, Faridi‐Majidi R, Jaafari MR, Mirzaei H. Tumor‐associated macrophages and epithelial–mesenchymal transition in cancer: Nanotechnology comes into view. J Cell Physiol 2018; 233:9223-9236. [DOI: 10.1002/jcp.27027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Roghayyeh Vakili‐Ghartavol
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Reza Mombeiny
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science Tabriz Iran
- Department of Medical Genetics Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mahdi Rezayat Sorkhabadi
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences Tehran Iran
- Department of Toxicology–Pharmacology Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS) Tehran Iran
| | - Reza Faridi‐Majidi
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Hamed Mirzaei
- Department of Biomaterials Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
21
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
22
|
Nagaputra JC, Koh MJA, Brett M, Lim ECP, Lim HW, Tan EC. Piebaldism with multiple café-au-lait-like hyperpigmented macules and inguinal freckling caused by a novel KIT mutation. JAAD Case Rep 2018; 4:318-321. [PMID: 29693058 PMCID: PMC5911795 DOI: 10.1016/j.jdcr.2017.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Mark J A Koh
- Dermatology Service, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore
| | - Maggie Brett
- Research Laboratory, KK Women's & Children's Hospital, Singapore
| | - Eileen C P Lim
- Research Laboratory, KK Women's & Children's Hospital, Singapore
| | - Hwee-Woon Lim
- Research Laboratory, KK Women's & Children's Hospital, Singapore
| | - Ene-Choo Tan
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore.,Research Laboratory, KK Women's & Children's Hospital, Singapore
| |
Collapse
|
23
|
SLUG transcription factor: a pro-survival and prognostic factor in gastrointestinal stromal tumour. Br J Cancer 2017; 116:1195-1202. [PMID: 28334729 PMCID: PMC5418455 DOI: 10.1038/bjc.2017.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The SLUG transcription factor has been linked with the KIT signalling pathway that is important for gastrointestinal stromal tumour (GIST) tumourigenesis. Its clinical significance in GIST is unknown. METHODS Influence of SLUG expression on cell proliferation and viability were investigated in GIST48 and GIST882 cell lines. The association between tumour SLUG expression in immunohistochemistry and recurrence-free survival (RFS) was studied in two clinical GIST series, one with 187 patients treated with surgery alone, and another one with 313 patients treated with surgery and adjuvant imatinib. RESULTS SLUG downregulation inhibited cell proliferation, induced cell death in both cell lines, and sensitised GIST882 cells to lower imatinib concentrations. SLUG was expressed in 125 (25.0%) of the 500 clinical GISTs evaluated, and expression was associated with several factors linked with unfavourable prognosis. SLUG expression was associated with unfavourable RFS both when patients were treated with surgery alone (HR=3.40, 95% CI=1.67-6.89, P=0.001) and when treated with surgery plus adjuvant imatinib (HR=1.83, 95% CI=1.29-2.60, P=0.001). CONCLUSIONS GIST patients with high tumour SLUG expression have unfavourable RFS. SLUG may mediate pro-survival signalling in GISTs.
Collapse
|
24
|
Seberg HE, Van Otterloo E, Loftus SK, Liu H, Bonde G, Sompallae R, Gildea DE, Santana JF, Manak JR, Pavan WJ, Williams T, Cornell RA. TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genet 2017; 13:e1006636. [PMID: 28249010 PMCID: PMC5352137 DOI: 10.1371/journal.pgen.1006636] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/15/2017] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding transcription factor TFAP2A result in pigmentation anomalies in model organisms and premature hair graying in humans. However, the pleiotropic functions of TFAP2A and its redundantly-acting paralogs have made the precise contribution of TFAP2-type activity to melanocyte differentiation unclear. Defining this contribution may help to explain why TFAP2A expression is reduced in advanced-stage melanoma compared to benign nevi. To identify genes with TFAP2A-dependent expression in melanocytes, we profile zebrafish tissue and mouse melanocytes deficient in Tfap2a, and find that expression of a small subset of genes underlying pigmentation phenotypes is TFAP2A-dependent, including Dct, Mc1r, Mlph, and Pmel. We then conduct TFAP2A ChIP-seq in mouse and human melanocytes and find that a much larger subset of pigmentation genes is associated with active regulatory elements bound by TFAP2A. These elements are also frequently bound by MITF, which is considered the "master regulator" of melanocyte development. For example, the promoter of TRPM1 is bound by both TFAP2A and MITF, and we show that the activity of a minimal TRPM1 promoter is lost upon deletion of the TFAP2A binding sites. However, the expression of Trpm1 is not TFAP2A-dependent, implying that additional TFAP2 paralogs function redundantly to drive melanocyte differentiation, which is consistent with previous results from zebrafish. Paralogs Tfap2a and Tfap2b are both expressed in mouse melanocytes, and we show that mouse embryos with Wnt1-Cre-mediated deletion of Tfap2a and Tfap2b in the neural crest almost completely lack melanocytes but retain neural crest-derived sensory ganglia. These results suggest that TFAP2 paralogs, like MITF, are also necessary for induction of the melanocyte lineage. Finally, we observe a genetic interaction between tfap2a and mitfa in zebrafish, but find that artificially elevating expression of tfap2a does not increase levels of melanin in mitfa hypomorphic or loss-of-function mutants. Collectively, these results show that TFAP2 paralogs, operating alongside lineage-specific transcription factors such as MITF, directly regulate effectors of terminal differentiation in melanocytes. In addition, they suggest that TFAP2A activity, like MITF activity, has the potential to modulate the phenotype of melanoma cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Cell Differentiation/genetics
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental
- Humans
- Melanocytes/metabolism
- Mice, Knockout
- Microphthalmia-Associated Transcription Factor/genetics
- Microphthalmia-Associated Transcription Factor/metabolism
- Microscopy, Confocal
- Mutation
- Pigmentation/genetics
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Transcription Factor AP-2/genetics
- Transcription Factor AP-2/metabolism
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Hannah E. Seberg
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric Van Otterloo
- SDM-Craniofacial Biology, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stacie K. Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Huan Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Greg Bonde
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramakrishna Sompallae
- Bioinformatics Division, Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Derek E. Gildea
- Bioinformatics and Scientific Programming Core, Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Juan F. Santana
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - J. Robert Manak
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Trevor Williams
- SDM-Craniofacial Biology, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Robert A. Cornell
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
25
|
Eroh GD, Clayton FC, Florell SR, Cassidy PB, Chirife A, Marón CF, Valenzuela LO, Campbell MS, Seger J, Rowntree VJ, Leachman SA. Cellular and ultrastructural characterization of the grey-morph phenotype in southern right whales (Eubalaena australis). PLoS One 2017; 12:e0171449. [PMID: 28170433 PMCID: PMC5295704 DOI: 10.1371/journal.pone.0171449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/20/2017] [Indexed: 11/18/2022] Open
Abstract
Southern right whales (SRWs, Eubalena australis) are polymorphic for an X-linked pigmentation pattern known as grey morphism. Most SRWs have completely black skin with white patches on their bellies and occasionally on their backs; these patches remain white as the whale ages. Grey morphs (previously referred to as partial albinos) appear mostly white at birth, with a splattering of rounded black marks; but as the whales age, the white skin gradually changes to a brownish grey color. The cellular and developmental bases of grey morphism are not understood. Here we describe cellular and ultrastructural features of grey-morph skin in relation to that of normal, wild-type skin. Melanocytes were identified histologically and counted, and melanosomes were measured using transmission electron microscopy. Grey-morph skin had fewer melanocytes when compared to wild-type skin, suggesting reduced melanocyte survival, migration, or proliferation in these whales. Grey-morph melanocytes had smaller melanosomes relative to wild-type skin, normal transport of melanosomes to surrounding keratinocytes, and normal localization of melanin granules above the keratinocyte nuclei. These findings indicate that SRW grey-morph pigmentation patterns are caused by reduced numbers of melanocytes in the skin, as well as by reduced amounts of melanin production and/or reduced sizes of mature melanosomes. Grey morphism is distinct from piebaldism and albinism found in other species, which are genetic pigmentation conditions resulting from the local absence of melanocytes, or the inability to synthesize melanin, respectively.
Collapse
Affiliation(s)
- Guy D. Eroh
- Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
- University of Georgia, Athens, Georgia, United States of America
| | - Fred C. Clayton
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Scott R. Florell
- Department of Dermatology, University of Utah, Salt Lake City, Utah, United States of America
| | - Pamela B. Cassidy
- Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Andrea Chirife
- Programa de Monitoreo Sanitario Ballena Franca Austral, Puerto Madryn, Chubut, Argentina
| | - Carina F. Marón
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Instituto de Conservación de Ballenas, Buenos Aires, Argentina
| | - Luciano O. Valenzuela
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Michael S. Campbell
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jon Seger
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Victoria J. Rowntree
- Programa de Monitoreo Sanitario Ballena Franca Austral, Puerto Madryn, Chubut, Argentina
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Instituto de Conservación de Ballenas, Buenos Aires, Argentina
- Ocean Alliance/Whale Conservation Institute, Gloucester, Massachusetts, United States of America
| | - Sancy A. Leachman
- Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zhao XY, Li L, Wang XB, Fu RJ, Lv YP, Jin W, Meng C, Chen GQ, Huang L, Zhao KW. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2) Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells. PLoS One 2016; 11:e0164752. [PMID: 27760172 PMCID: PMC5070735 DOI: 10.1371/journal.pone.0164752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/02/2016] [Indexed: 01/22/2023] Open
Abstract
China accounts for almost half of the total number of liver cancer cases and deaths worldwide, and hepatocellular carcinoma (HCC) is the most primary liver cancer. Snail family transcriptional repressor 2 (SNAI2) is known as an epithelial to mesenchymal transition-inducing transcription factor that drives neoplastic epithelial cells into mesenchymal phenotype. However, the roles of endogenous SNAI2 remain controversial in different types of malignant tumors. Herein, we surprisingly identify that anchorage-independent growth, including the formation of tumor sphere and soft agar colony, is significantly increased when SNAI2 expression is inhibited by shRNAs in HCC cells. Suppression of SNAI2 suffices to up-regulate several cancer stem genes. Although unrelated to the metastatic ability, SNAI2 inhibition does increase the efflux of Hoechst 33342 and enhance multidrug resistance in vitro and in vivo. In agreement with this data, we demonstrate for the first time that decreasing SNAI2 level can transcriptionally upregulate several ATP binding cassette (ABC) transporter genes such as ABCB1. Moreover, ABC transporters' inhibitor verapamil can rescue the multidrug resistance induced by SNAI2 inhibition. Our results implicate that SNAI2 behaves as a tumor suppressor by inhibiting multidrug resistance via suppressing ABC transporter genes in HCC cells.
Collapse
Affiliation(s)
- Xin-Yu Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Lei Li
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiao-Bo Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Rong-Jie Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai, China
| | - Ya-Ping Lv
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Wei Jin
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Chao Meng
- Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Lei Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Ke-Wen Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
27
|
Horiguchi K, Fujiwara K, Tsukada T, Yako H, Tateno K, Hasegawa R, Takigami S, Ohsako S, Yashiro T, Kato T, Kato Y. Expression of Slug in S100β-protein-positive cells of postnatal developing rat anterior pituitary gland. Cell Tissue Res 2015; 363:513-24. [PMID: 26246400 DOI: 10.1007/s00441-015-2256-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
Abstract
Among heterogeneous S100β-protein-positive (S100β-positive) cells, star-like cells with extended cytoplasmic processes, the so-called folliculo-stellate cells, envelop hormone-producing cells or interconnect homophilically in the anterior pituitary. S100β-positive cells are known, from immunohistochemistry, to emerge from postnatal day (P) 10 and to proliferate and migrate in the parenchyma of the anterior pituitary with growth. Recent establishment of S100β-GFP transgenic rats expressing specifically green fluorescent protein (GFP) under the control of the S100β-promoter has allowed us to observe living S100β-positive cells. In the present study, we first confirmed that living S100β-positive cells in tissue cultures of S100β-GFP rat pituitary at P5 were present prior to P10 by means of confocal laser microscopy and that they proliferated and extended their cytoplasmic processes. Second, we examined the expression of the Snail-family zinc-finger transcription factors, Snail and Slug, to investigate the mechanism behind the morphological changes and the proliferation of S100β-positive cells. Interestingly, we detected Slug expression in S100β-positive cells and its increase together with development in the anterior pituitary. To analyze downstream of SLUG in S100β-positive cells, we utilized specific small interfering RNA for Slug mRNAs and observed that the expression of matrix metalloprotease (Mmp) 9, Mmp14 and chemokine Cxcl12 was down-regulated and that morphological changes and proliferation were decreased. Thus, our findings suggest that S100β-positive cells express Slug and that its expression is important for subsequent migration and proliferation.
Collapse
Affiliation(s)
- Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 476 Miyashita-cho, Hachioji, Tokyo, 192-8508, Japan. .,Institute of Reproduction and Endocrinology, Meiji University, Kanagawa, Japan.
| | - Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Takehiro Tsukada
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hideji Yako
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Kozue Tateno
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 476 Miyashita-cho, Hachioji, Tokyo, 192-8508, Japan
| | - Rumi Hasegawa
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 476 Miyashita-cho, Hachioji, Tokyo, 192-8508, Japan
| | - Shu Takigami
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 476 Miyashita-cho, Hachioji, Tokyo, 192-8508, Japan
| | - Shunji Ohsako
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 476 Miyashita-cho, Hachioji, Tokyo, 192-8508, Japan
| | - Takashi Yashiro
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Takako Kato
- Institute of Reproduction and Endocrinology, Meiji University, Kanagawa, Japan
| | - Yukio Kato
- Department of Life Science, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan. .,Institute of Reproduction and Endocrinology, Meiji University, Kanagawa, Japan. .,Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan.
| |
Collapse
|
28
|
Jia WX, Xiao XM, Wu JB, Ma YP, Ge YP, Li Q, Mao QX, Li CR. A novel missense KIT mutation causing piebaldism in one Chinese family associated with café-au-lait macules and intertriginous freckling. Ther Clin Risk Manag 2015; 11:635-8. [PMID: 25960657 PMCID: PMC4410829 DOI: 10.2147/tcrm.s75544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Piebaldism is a rare autosomal dominant genodermatosis, manifesting as congenital and stable depigmentation of the skin and white forelock. It has been found to be associated with mutations in the KIT or SLUG genes. We report a Chinese piebaldism family including a 28-year-old woman and her 3-year-old son with characteristics of white patches and forelock associated with numerous brown macules and patches. Genomic DNA samples of the proband and her son were extracted from their peripheral blood. One hundred unrelated healthy individuals were used as controls. All coding regions of KIT, SLUG, and NF1 genes were amplified by polymerase chain reaction using exon flanking intronic primers and Sanger sequencings were performed. DNA sequencing revealed heterozygous missense c.2431T>G mutation in exon 17 of the KIT gene in the proband and the affected son. No potentially pathogenic variant was identified in SLUG or NF1 genes. The nucleotide substitution was not found in 100 unrelated control individuals. This study reveals a novel KIT mutation in piebaldism, and it further supports that café-au-lait macules and intertriginous freckling of piebaldism are parts of pigmented anomaly in piebaldism, which does not necessarily represent coexistence of neurofibromatosis type 1 (NF1).
Collapse
Affiliation(s)
- Wei-Xue Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China ; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Xue-Min Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China ; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Jian-Bing Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China ; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Yi-Ping Ma
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China ; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Yi-Ping Ge
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China ; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Qi Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China ; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Qiu-Xia Mao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China ; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Cheng-Rang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China ; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Verma A, Rajput S, De S, Kumar R, Chakravarty AK, Datta TK. Genome-wide profiling of sperm DNA methylation in relation to buffalo (Bubalus bubalis) bull fertility. Theriogenology 2014; 82:750-9.e1. [DOI: 10.1016/j.theriogenology.2014.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/31/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
|
30
|
Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16:488-94. [PMID: 24875735 DOI: 10.1038/ncb2976] [Citation(s) in RCA: 786] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The plasticity of cancer cells underlies their capacity to adapt to the selective pressures they encounter during tumour development. Aberrant reactivation of epithelial-mesenchymal transition (EMT), an essential embryonic process, can promote cancer cell plasticity and fuel both tumour initiation and metastatic spread. Here we discuss the roles of EMT-inducing transcription factors in creating a pro-tumorigenic setting characterized by an intrinsic ability to withstand oncogenic insults through the mitigation of p53-dependent oncosuppressive functions and the gain of stemness-related properties.
Collapse
Affiliation(s)
- Alain Puisieux
- Inserm UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Université Lyon 1, ISPB, F-69000 Lyon, France; and Centre Léon Bérard, F-69008 Lyon, France
| | - Thomas Brabletz
- Department of General and Visceral Surgery, Comprehensive Cancer Center and BIOSS Centre for Biological Signalling Studies, University of Freiburg Medical Center, Freiburg, Germany, and the German Cancer Consortium (DKTK), Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julie Caramel
- Inserm UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Université Lyon 1, ISPB, F-69000 Lyon, France; and Centre Léon Bérard, F-69008 Lyon, France
| |
Collapse
|
31
|
Denecker G, Vandamme N, Akay O, Koludrovic D, Taminau J, Lemeire K, Gheldof A, De Craene B, Van Gele M, Brochez L, Udupi GM, Rafferty M, Balint B, Gallagher WM, Ghanem G, Huylebroeck D, Haigh J, van den Oord J, Larue L, Davidson I, Marine JC, Berx G. Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ 2014; 21:1250-61. [PMID: 24769727 DOI: 10.1038/cdd.2014.44] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022] Open
Abstract
Deregulation of signaling pathways that control differentiation, expansion and migration of neural crest-derived melanoblasts during normal development contributes also to melanoma progression and metastasis. Although several epithelial-to-mesenchymal (EMT) transcription factors, such as zinc finger E-box binding protein 1 (ZEB1) and ZEB2, have been implicated in neural crest cell biology, little is known about their role in melanocyte homeostasis and melanoma. Here we show that mice lacking Zeb2 in the melanocyte lineage exhibit a melanoblast migration defect and, unexpectedly, a severe melanocyte differentiation defect. Loss of Zeb2 in the melanocyte lineage results in a downregulation of the Microphthalmia-associated transcription factor (Mitf) and melanocyte differentiation markers concomitant with an upregulation of Zeb1. We identify a transcriptional signaling network in which the EMT transcription factor ZEB2 regulates MITF levels to control melanocyte differentiation. Moreover, our data are also relevant for human melanomagenesis as loss of ZEB2 expression is associated with reduced patient survival.
Collapse
Affiliation(s)
- G Denecker
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - N Vandamme
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - O Akay
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - D Koludrovic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | - J Taminau
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - K Lemeire
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - A Gheldof
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - B De Craene
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - M Van Gele
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - L Brochez
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - G M Udupi
- 1] UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland [2] OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - M Rafferty
- OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Balint
- OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - W M Gallagher
- 1] UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland [2] OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - G Ghanem
- Institute Jules Bordet, Brussels, Belgium
| | - D Huylebroeck
- 1] Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium [2] Department of Cell Biology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - J Haigh
- 1] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium [2] Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | - J van den Oord
- Department of Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - L Larue
- Curie Institute, Developmental Genetics of Melanocytes, Centre National de la Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de la Recherche Médicale (INSERM) U1021, Orsay, France
| | - I Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | - J-C Marine
- 1] Center for the Biology of Disease, Laboratory for Molecular Cancer Biology, VIB, Leuven, Belgium [2] Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - G Berx
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
32
|
Yang YJ, Zhao R, He XY, Li LP, Chen W, Wang KW, Zhao L, Tu M, Tang JS, Xie ZG, Zhu YM. SNAI2mutation causes human piebaldism. Am J Med Genet A 2014; 164A:855-7. [PMID: 24443330 DOI: 10.1002/ajmg.a.36332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/06/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Yong-jia Yang
- The Lab. of Genetics and Metabolism; Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, The Paediatric Academy of University of South China; Changsha China
| | - Rui Zhao
- The Lab. of Genetics and Metabolism; Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, The Paediatric Academy of University of South China; Changsha China
| | - Xin-yu He
- The Lab. of Genetics and Metabolism; Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, The Paediatric Academy of University of South China; Changsha China
| | - Li-ping Li
- The Lab. of Basic Medicine; Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, The Paediatric Academy of University of South China; Changsha China
| | - Weijian Chen
- The Lab. of Basic Medicine; Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, The Paediatric Academy of University of South China; Changsha China
| | - Ke-wei Wang
- The Department of Science and Technology; Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, The Paediatric Academy of University of South China; Changsha China
| | - Liu Zhao
- The Lab. of Genetics and Metabolism; Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, The Paediatric Academy of University of South China; Changsha China
| | - Ming Tu
- The Lab. of Genetics and Metabolism; Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, The Paediatric Academy of University of South China; Changsha China
| | - Jin-song Tang
- Institute of Mental Health; Second Xiangya Hospital, Central South University; Changsha China
| | - Zhi-guo Xie
- Institute of Endocrinology Mental Health; Second Xiangya Hospital, Central South University; Changsha China
| | - Yi-min Zhu
- The Lab. of Genetics and Metabolism; Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, The Paediatric Academy of University of South China; Changsha China
- Department of Emergency; Hunan Children's Hospital, The Paediatric Academy of University of South China; Changsha China
| |
Collapse
|
33
|
Osoegawa K, Iovannisci DM, Lin B, Parodi C, Schultz K, Shaw GM, Lammer EJ. Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects. Am J Med Genet A 2013; 164A:397-406. [PMID: 24127225 DOI: 10.1002/ajmg.a.36291] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022]
Abstract
Congenital heart defects (CHDs) are common malformations, affecting four to eight per 1,000 total births. Conotruncal defects are an important pathogenetic subset of CHDs, comprising nearly 20% of the total. Although both environmental and genetic factors are known to contribute to the occurrence of conotruncal defects, the causes remain unknown for most. To identify novel candidate genes/loci, we used array comparative genomic hybridization to detect chromosomal microdeletions/duplications. From a population base of 974,579 total births born during 1999-2004, we screened 389 California infants born with tetralogy of Fallot or d-transposition of the great arteries. We found that 1.7% (5/288) of males with a conotruncal defect had sex chromosome aneuploidy, a sevenfold increased frequency (relative risk = 7.0; 95% confidence interval 2.9-16.9). We identified eight chromosomal microdeletions/duplications for conotruncal defects. From these duplications and deletions, we found five high priority candidate genes (GATA4, CRKL, BMPR1A, SNAI2, and ZFHX4). This is the initial report that sex chromosome aneuploidy is associated with conotruncal defects among boys. These chromosomal microduplications/deletions provide evidence that GATA4, SNAI2, and CRKL are highly dosage sensitive genes involved in outflow tract development. Genome wide screening for copy number variation can be productive for identifying novel genes/loci contributing to non-syndromic common malformations.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Center for Genetics, Children's Hospital Oakland Research Institute, Children's Hospital Research Center Oakland, Oakland, California
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim JE, Leung E, Baguley BC, Finlay GJ. Heterogeneity of expression of epithelial-mesenchymal transition markers in melanocytes and melanoma cell lines. Front Genet 2013; 4:97. [PMID: 23755070 PMCID: PMC3668138 DOI: 10.3389/fgene.2013.00097] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/14/2013] [Indexed: 11/13/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) describes a reversible switch from an epithelial-like to a mesenchymal-like phenotype. It is essential for the development of the normal epithelium and also contributes to the invasive properties of carcinomas. At the molecular level, the EMT transition is characterized by a series of coordinated changes including downregulation of the junctional protein E-cadherin (CDH1), up-regulation of transcriptional repressors of E-cadherin such as Snail (SNAI1) and Slug (SNAI2), and up-regulation of N-cadherin. We wished to determine whether cultured normal melanocytes and melanoma cell lines, which are derived from the neural crest, showed signs of a similarly coordinated phenotypic switch. We investigated normal melanocytes and 25 cell lines derived from New Zealand patients with metastatic melanoma. Most lines had been previously genotyped for common mutations such as BRAF, NRAS, PIK3CA (phosphatidylinositol-3-kinase), TP53 (p53), and CDKN2A (p16). Expression of E-cadherin, N-cadherin, microphthalmia-associated transcription factor (MITF), Snail, Slug, Axl, p53, and Hdm2 was compared by western blotting. Normal melanocytes expressed each of these proteins except for Snail, while normal melanocytes and almost every melanoma line expressed Slug. Expression of individual markers among different melanoma lines varied from high to low or undetectable. Quantitation of western blots showed that expression of MITF-M, the melanocyte-specific isoform of MITF, was positively related to that of E-cadherin but inversely related to that of N-cadherin and Axl. There was also no apparent relationship between expression of any particular marker and the presence of BRAF, NRAS, PIK3CA, TP53, or CDKN2A mutations. The results suggest that melanomas do not show the classical epithelial and mesenchymal phenotypes but rather display either high E-cadherin/high MITF-M expression on one hand, or high N-cadherin/high Axl expression on the other. These may correspond to differentiated and invasive phenotypes in vivo.
Collapse
Affiliation(s)
- Ji Eun Kim
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland Auckland, New Zealand
| | | | | | | |
Collapse
|
35
|
Chiu YE, Dugan S, Basel D, Siegel DH. Association of Piebaldism, multiple café-au-lait macules, and intertriginous freckling: clinical evidence of a common pathway between KIT and sprouty-related, ena/vasodilator-stimulated phosphoprotein homology-1 domain containing protein 1 (SPRED1). Pediatr Dermatol 2013; 30:379-82. [PMID: 23016555 PMCID: PMC3967413 DOI: 10.1111/j.1525-1470.2012.01858.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Piebaldism is a rare genodermatosis caused by KIT mutations. We report the case of a 5-year-old boy who had the white forelock and leukoderma of piebaldism, but the presence of many café-au-lait macules and axillary and inguinal freckling complicated the diagnosis. Patients with similar cutaneous findings have been previously reported, and their disorder has been attributed to an overlap of piebaldism and neurofibromatosis type 1. Legius syndrome is a recently described syndrome caused by Sprouty-related, Ena/vasodilator-stimulated phosphoprotein homology-1 domain containing protein 1 (SPRED1) mutations that also has multiple café-au-lait macules and intertriginous freckling. Based on our current understanding of KIT and SPRED1 protein interactions, we propose that café-au-lait macules and freckling may be seen in some patients with piebaldism and does not necessarily represent coexistence of neurofibromatosis type 1.
Collapse
Affiliation(s)
- Yvonne E Chiu
- Division of Pediatric Dermatology, Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Epithelial to mesenchymal transition (EMT) is essential for driving plasticity during development, but is an unintentional behaviour of cells during cancer progression. The EMT-associated reprogramming of cells not only suggests that fundamental changes may occur to several regulatory networks but also that an intimate interplay exists between them. Disturbance of a controlled epithelial balance is triggered by altering several layers of regulation, including the transcriptional and translational machinery, expression of non-coding RNAs, alternative splicing and protein stability.
Collapse
Affiliation(s)
- Bram De Craene
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | | |
Collapse
|
37
|
Liu F, Cao J, Lv J, Dong L, Pier E, Xu GX, Wang RA, Xu Z, Goding C, Cui R. TBX2 expression is regulated by PAX3 in the melanocyte lineage. Pigment Cell Melanoma Res 2013; 26:67-77. [PMID: 23020925 PMCID: PMC3527652 DOI: 10.1111/pcmr.12029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/25/2012] [Indexed: 11/28/2022]
Abstract
The paired box homeotic gene 3 (PAX3) is a crucial regulator for the maintenance of melanocytic progenitor cells and has a poorly defined role in melanoma. To understand how PAX3 affects melanocyte and melanoma proliferation, we identified potential PAX3 downstream targets through gene expression profiling. Here, we identify T-box 2 (TBX2), a key developmental regulator of cell identity and an antisenescence factor in melanoma, as a directly regulated PAX3 target. We also found that TBX2 is involved in the survival of melanoma cells and is overexpressed in some melanoma specimens. The identification of TBX2 as a target for PAX3 provides a key insight into how PAX3 may contribute to melanoma evolution and may provide opportunities for prosenescence therapeutic intervention aimed at disrupting the ability of PAX3 to regulate TBX2.
Collapse
Affiliation(s)
- Fang Liu
- Department of Dermatology, Boston University School of Medicine 609 Albany St, Boston, MA 02118
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China,100020
| | - Juxiang Cao
- Department of Dermatology, Boston University School of Medicine 609 Albany St, Boston, MA 02118
| | - Jinghu Lv
- Rizhao General Hospital, Rizhao, Shandong Province, China
| | - Liang Dong
- Department of Dermatology, Boston University School of Medicine 609 Albany St, Boston, MA 02118
| | - Eric Pier
- Department of Dermatology, Boston University School of Medicine 609 Albany St, Boston, MA 02118
| | - George X. Xu
- Department of Pathology and Lab Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rui-an Wang
- Department of Pathology, Fourth Military Medical University, Xian, Shanxi, China
| | - Zhixiang Xu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham School of Medicine, 17 Ave S, Birmingham, Al 35233
| | - Colin Goding
- Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Rutao Cui
- Department of Dermatology, Boston University School of Medicine 609 Albany St, Boston, MA 02118
| |
Collapse
|
38
|
The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One 2012; 7:e40378. [PMID: 22911700 PMCID: PMC3401237 DOI: 10.1371/journal.pone.0040378] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/04/2012] [Indexed: 12/25/2022] Open
Abstract
During progression of melanoma, malignant melanocytes can be reprogrammed into mesenchymal-like cells through a process similar to epithelial-mesenchymal transition (EMT), which is associated with downregulation of the junctional protein E-cadherin and acquisition of a migratory phenotype. Recent evidence supports a role for SLUG, a transcriptional repressor of E-cadherin, as a melanocyte lineage transcription factor that predisposes to melanoma metastasis. However, the signals responsible for SLUG expression in melanoma are unclear and its role in the invasive phenotype is not fully elucidated. Here, we report that SLUG expression and activation is driven by SPARC (also known as osteonectin), a secreted extracellular matrix-associated factor that promotes EMT-like changes. Ectopic expression or knockdown of SPARC resulted in increased or reduced expression of SLUG, respectively. SLUG increase occurred concomitantly with SPARC-mediated downregulation of E-cadherin and P-cadherin, and induction of mesenchymal traits in human melanocytes and melanoma cells. Pharmacological blockade of PI3 kinase/AKT signaling impeded SPARC-induced SLUG levels and cell migration, whereas adenoviral introduction of constitutively active AKT allowed rescue of SLUG and migratory capabilities of SPARC knockdown cells. We also observed that pharmacological inhibition of oncogenic BRAFV600E using PLX4720 did not influence SLUG expression in melanoma cells harboring BRAFV600E. Furthermore, SLUG is a bona fide transcriptional repressor of E-cadherin as well as a regulator of P-cadherin in melanoma cells and its knockdown attenuated invasive behavior and blocked SPARC-enhanced cell migration. Notably, inhibition of cell migration in SPARC-depleted cells was rescued by expression of a SLUG transgene. In freshly isolated metastatic melanoma cells, a positive association between SPARC and SLUG mRNA levels was also found. These findings reveal that autocrine SPARC maintains heightened SLUG expression in melanoma cells and indicate that SPARC may promote EMT-associated tumor invasion by supporting AKT-dependent upregulation of SLUG.
Collapse
|
39
|
Shirley SH, Greene VR, Duncan LM, Torres Cabala CA, Grimm EA, Kusewitt DF. Slug expression during melanoma progression. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2479-89. [PMID: 22503751 DOI: 10.1016/j.ajpath.2012.02.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 01/05/2023]
Abstract
Slug (Snai2), a member of the Snail family of zinc finger transcription factors, plays a role in the epithelial-to-mesenchymal transformation (EMT) that occurs during melanocyte emigration from the neural crest. A role for Slug in the EMT-like loss of cell adhesion and increased cell motility exhibited during melanoma progression has also been proposed. Our immunohistochemical studies of melanoma arrays, however, revealed that Slug expression was actually higher in nevi than in primary or metastatic melanomas. Moreover, Slug expression in melanomas was not associated with decreased expression of E-cadherin, the canonical Slug target in EMT. Comparisons of endogenous Slug and E-cadherin expression in cultured normal human melanocytes and melanoma cell lines supported our immunohistochemical findings. Expression of exogenous Slug in melanocytes and melanoma cells in vitro, however, suppressed E-cadherin expression, enhanced N-cadherin expression, and stimulated cell migration and invasion. Interestingly, both in tumors and cultured cell lines, there was a clear relationship between expression of Slug and MITF, a transcription factor known to regulate Slug expression during development. Taken together, our findings suggest that Slug expression during melanomagenesis is highest early in the process and that persistent Slug expression is not required for melanoma progression. The precise role of Slug in melanomagenesis remains to be elucidated and may be related to its interactions with other drivers of EMT, such as Snail.
Collapse
Affiliation(s)
- Stephanie H Shirley
- Department of Molecular Carcinogenesis, Science Park, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
40
|
Stevens CA, Chiang PW, Messiaen LM. Café-au-lait macules and intertriginous freckling in piebaldism: Clinical overlap with neurofibromatosis type 1 and Legius syndrome. Am J Med Genet A 2012; 158A:1195-9. [DOI: 10.1002/ajmg.a.35297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/07/2012] [Indexed: 01/20/2023]
|
41
|
Aoki H, Hara A, Motohashi T, Kunisada T. Protective effect of Kit signaling for melanocyte stem cells against radiation-induced genotoxic stress. J Invest Dermatol 2011; 131:1906-15. [PMID: 21633369 DOI: 10.1038/jid.2011.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Radiation-induced hair graying is caused by irreversible defects in the self-renewal and/or development of follicular melanocyte stem cells in the hair follicles. Kit signaling is an essential growth and differentiation signaling pathway for various cell lineages including melanocytes, and its radioprotective effects have been shown in hematopoietic cells. However, it is uncertain whether Kit signaling exerts a radioprotective effect for melanocytes. In this study, we found that various loss-of-function mutations of Kit facilitate radiation-induced hair graying. In contrast, transgenic mice expressing the ligand for Kit (Kitl) in the epidermis have significantly reduced levels of radiation-induced hair graying. The X-ray doses used did not show a systemic lethal effect, indicating that the in vivo radiosensitivity of Kit mutants is mainly caused by the damaged melanocyte stem cell population. X-ray-damaged melanocyte stem cells seemed to take the fate of ectopically pigmented melanocytes in the bulge regions of hair follicles in vivo. Endothelin 3, another growth and differentiation factor for melanocytes, showed a lesser radioprotective effect compared with Kitl. These results indicate the prevention of radiation-induced hair graying by Kit signaling.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | |
Collapse
|
42
|
Mutations in the c-Kit gene disrupt mitogen-activated protein kinase signaling during tumor development in adenoid cystic carcinoma of the salivary glands. Neoplasia 2011; 12:708-17. [PMID: 20824047 DOI: 10.1593/neo.10356] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
Abstract
The Ras/mitogen-activated protein kinase (MAPK) pathway is considered to be a positive regulator of tumor initiation, progression, and maintenance. This study reports an opposite finding: we have found strong evidence that the MAPK pathway is inhibited in a subset of adenoid cystic carcinomas (ACCs) of the salivary glands. ACC tumors consistently overexpress the receptor tyrosine kinase (RTK) c-Kit, which has been considered a therapeutic target. We performed mutational analysis of the c-Kit gene (KIT in 17 cases of ACC and found that 2 cases of ACC had distinct missense mutations in KIT at both the genomic DNA and messenger RNA levels. These mutations caused G664R and R796G amino acid substitutions in the kinase domains. Surprisingly, the mutations were functionally inactive in cultured cells. We observed a significant reduction of MAPK (ERK1/2) activity in tumor cells, as assessed by immunohistochemistry. We performed further mutational analysis of the downstream effectors in the c-Kit pathway in the genes HRAS, KRAS, NRAS, BRAF, PIK3CA, and PTEN. This analysis revealed that two ACC tumors without KIT mutations had missense mutations in either KRAS or BRAF, causing S17N K-Ras and V590I B-Raf mutants, respectively. Our functional analysis showed that proteins with these mutations were also inactive in cultured cells. This is the first time that MAPK activity from the RTK signaling has been shown to be inhibited by gene mutations during tumor development. Because ACC seems to proliferate despite inactivation of the c-Kit signaling pathway, we suggest that selective inhibition of c-Kit is probably not a suitable treatment strategy for ACC.
Collapse
|
43
|
Chong KL, Common JE, Lane EB, Goh BK. A novel mutation in the kinase domain of KIT in an Indian family with a mild piebaldism phenotype. J Dermatol Sci 2010; 59:206-9. [DOI: 10.1016/j.jdermsci.2010.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/08/2010] [Accepted: 06/25/2010] [Indexed: 11/25/2022]
|
44
|
Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat 2010; 31:391-406. [DOI: 10.1002/humu.21211] [Citation(s) in RCA: 401] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Dessinioti C, Stratigos AJ, Rigopoulos D, Katsambas AD. A review of genetic disorders of hypopigmentation: lessons learned from the biology of melanocytes. Exp Dermatol 2009; 18:741-9. [PMID: 19555431 DOI: 10.1111/j.1600-0625.2009.00896.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inherited diseases of pigmentation were among the first traits studied in humans because of their easy recognition. The discovery of genes that regulate melanocytic development and function and the identification of disease-causative mutations have greatly improved our understanding of the molecular basis of pigmentary genodermatoses and their underlying pathogenetic mechanisms. Pigmentation mutants can account for hypo-/amelanosis, with or without altered melanocyte number, resulting in different phenotypes, such as Waardenburg syndrome, piebaldism, Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, oculocutaneous albinism and Griscelli syndrome. In this review, we summarize the basic concepts of melanocyte biology and discuss how molecular defects in melanocyte development and function can result in the development of hypopigmentary hereditary skin diseases.
Collapse
Affiliation(s)
- Clio Dessinioti
- Department of Dermatology, A. Sygros Hospital, University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
46
|
Sviderskaya EV, Easty DJ, Lawrence MA, Sánchez DP, Negulyaev YA, Patel RH, Anand P, Korchev YE, Bennett DC. Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells. FASEB J 2009; 23:3179-92. [PMID: 19447881 PMCID: PMC2735356 DOI: 10.1096/fj.08-123596] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stem cells, that is, cells that can both reproduce themselves and differentiate into functional cell types, attract much interest as potential aids to healing and disease therapy. Embryonic neural crest is pluripotent and generates the peripheral nervous system, melanocytes, and some connective tissues. Neural-crest-related stem cells have been reported previously in postnatal skin: committed melanocytic stem cells in the hair follicle, and pluripotent cell types from the hair follicle and papilla that can produce various sets of lineages. Here we describe novel pluripotent neural crest-like stem cells from neonatal mouse epidermis, with different potencies, isolated as 3 independent immortal lines. Using alternative regulatory factors, they could be converted to large numbers of either Schwann precursor cells, pigmented melanocytes, chondrocytes, or functional sensory neurons showing voltage-gated sodium channels. Some of the neurons displayed abundant active TRPV1 and TRPA1 receptors. Such functional neurons have previously been obtained in culture only with difficulty, by explantation. The system was also used to generate comparative gene expression data for the stem cells, melanocytes, and melanoblasts that sufficiently explain the lack of pigment in melanoblasts and provide a rationale for some genes expressed apparently ectopically in melanomas, such as ephrin receptors.—Sviderskaya, E. V., Easty, D. J., Lawrence, M. A., Sánchez, D. P., Negulyaev, Y. A., Patel, R. H., Anand, P., Korchev, Y. E., Bennett, D. C. Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells.
Collapse
Affiliation(s)
- Elena V Sviderskaya
- Centre for Molecular and Metabolic Signalling, Division of Basic Medical Sciences, St. George's, University of London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hou L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res 2008; 18:1163-76. [PMID: 19002157 DOI: 10.1038/cr.2008.303] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human neurocristopathies include a number of syndromes, tumors, and dysmorphologies of neural crest (NC) stem cell derivatives. In recent years, many white spotting genes have been associated with hypopigmentary disorders and deafness in neurocristopathies resulting from NC stem cell-derived melanocyte deficiency during development. These include PAX3, SOX10, MITF, SNAI2, EDNRB, EDN3, KIT, and KITL. Recent studies have revealed surprising new insights into a central role of MITF in the complex network of interacting genes in melanocyte development. In this perspective, we provide an overview of some of the current findings and explore complex functional roles of these genes during NC stem cell-derived melanocyte development.
Collapse
Affiliation(s)
- Ling Hou
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of China Ministry of Health, Eye Hospital, Wenzhou Medical College, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China.
| | | |
Collapse
|
48
|
Kluger N, Guillot B, Bessis D. [An unusual "vitiligo"]. Rev Med Interne 2008; 30:796-7. [PMID: 18963272 DOI: 10.1016/j.revmed.2008.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/20/2008] [Indexed: 10/21/2022]
Affiliation(s)
- N Kluger
- Service de dermatologie, université Montpellier-I, hôpital Saint-Eloi, CHU de Montpellier, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France.
| | | | | |
Collapse
|
49
|
Cobaleda C, Pérez-Caro M, Vicente-Dueñas C, Sánchez-García I. Function of the Zinc-Finger Transcription FactorSNAI2in Cancer and Development. Annu Rev Genet 2007; 41:41-61. [PMID: 17550342 DOI: 10.1146/annurev.genet.41.110306.130146] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elucidation of the molecular mechanisms that underlie disease development is still a tremendous challenge for basic science, and a prerequisite to the development of new and disease-specific targeted therapies. This review focuses on the function of SNAI2, a member of the Snail family of zinc-finger transcription factors, and discusses its possible role in disease development. SNAI2 has been implicated in diseases of melanocyte development and cancer in humans. Many malignancies arise from a rare population of cells that alone have the ability to self-renew and sustain the tumor (i.e., cancer stem cells). SNAI2 controls key aspects of stem cell function in mouse and human, suggesting that similar mechanisms control normal development and cancer stem cell properties. These insights are expected to contribute significantly to the genetics of cancer and to the development of both cancer therapy and new methods for assessing treatment efficacy.
Collapse
Affiliation(s)
- César Cobaleda
- Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
50
|
Pérez-Mancera PA, Bermejo-Rodríguez C, González-Herrero I, Herranz M, Flores T, Jiménez R, Sánchez-García I. Adipose tissue mass is modulated by SLUG (SNAI2). Hum Mol Genet 2007; 16:2972-86. [PMID: 17905753 DOI: 10.1093/hmg/ddm278] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The zinc-finger transcription factor SLUG (SNAI2) triggers epithelial-mesenchymal transitions (EMTs) and plays an important role in the developmental processes. Here, we show that SLUG is expressed in white adipose tissue (WAT) in humans and its expression is tightly controlled during adipocyte differentiation. Slug-deficient mice exhibit a marked deficiency in WAT size, and Slug-overexpressing mice (Combi-Slug) exhibit an increase in the WAT size. Consistent with in vivo data, Slug-deficient mouse embryonic fibroblasts (MEFs) showed a dramatically reduced capacity for adipogenesis in vitro and there was extensive lipid accumulation in Combi-Slug MEFs. The analysis of adipogenic gene expression both in vivo and in vitro showed that peroxisome proliferator-activated factor gamma2 (PPARgamma2) expression was altered. Complementation studies rescued this phenotype, indicating that WAT alterations induced by Slug are reversible. Our results further show a differential histone deacetylase recruitment to the PPARgamma2 promoter in a tissue- and Slug-dependent manner. Our results connect, for the first time, adipogenesis with the requirement of a critical level of an EMT regulator in mammals. This work may lead to the development of targeted drugs for the treatment of patients with obesity and/or lipodystrophy.
Collapse
Affiliation(s)
- Pedro Antonio Pérez-Mancera
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biologia Molecular y Celular del Cancer, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|