1
|
Zhang Q, Yu M, Yang L, Sun D. MiR-875-5p suppresses Gli1 to alter the hedgehog signaling pathway, which in turn has hepatocellular cancer-related tumor suppressing properties. Heliyon 2024; 10:e37771. [PMID: 39381215 PMCID: PMC11459020 DOI: 10.1016/j.heliyon.2024.e37771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Background One of the most prevalent cancers worldwide is HCC, which has put patient health at risk. Increasing evidence indicated that messenger RNAs (mRNAs) played significant roles in modulating tumorigenesis. It has been established that Gli1 acts as an oncogene in a number of malignancies. However, more research was necessary to understand the Gli1 regulation mechanism in HCC. Methods Microarray technology was used to evaluate the expression of mRNAs. RT-qPCR was utilized to evaluate Gli1 and miR-875-5p expression. To investigate the role of Gli1, tests using CCK-8, EdU, transwell, immunofluorescence, and Western blot analysis was performed. RIP, RNA pull down, and luciferase reporter assays were employed to verify the interaction between Gli1 and miR-875-5p. Results In tissues and cells of HCC, Gli1 expression appeared to be upregulated, especially in metastatic samples and advanced stages of the disease. A worse outcome was predicted by elevated Gli1 expression. Additionally, in HCC, Gli1 inhibition impeded the growth, migration, and development of the EMT. Since miR-875-5p was shown to have a molecular target in Gli1, miR-875-5p mediated the negative regulation of Gli1. In HCC tissues, its expression pattern was less prominent. In HCC tissues, there was an inverse relationship between Gli1 expression and miR-875-5p expression. Overexpressing Gli1 helped to partially counteract the suppression of HCC migration, proliferation, and EMT formation by miR-875-5p overexpression. Conclusions MiR-875-5p in HCC suppresses tumors by downregulating Gli1, which supplies a novel treatment for HCC patients.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pathology, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| | - Miao Yu
- Department of Clinical Laboratory, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| | - Leilei Yang
- Department of Hepatobiliary Surgery, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| | - Defeng Sun
- Department of Hepatobiliary Surgery, Central Hospital Affiliated to Jiangnan University, Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu Province, China
| |
Collapse
|
2
|
Bhaskar A, Astrof S. Identification of novel genes regulating the development of the palate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579685. [PMID: 38405938 PMCID: PMC10888939 DOI: 10.1101/2024.02.09.579685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The International Mouse Phenotyping Consortium (IMPC) has generated thousands of knockout mouse lines, many of which exhibit embryonic or perinatal lethality. Using micro-computed tomography (micro-CT), the IMPC has created and publicly released 3D image datasets of embryos from these lethal and subviable lines. In this study, we leveraged this dataset to screen homozygous null mutants for anomalies in secondary palate development. We analyzed optical sections from 2,987 embryos at embryonic days E15.5 and E18.5, representing 484 homozygous mutant lines. Our analysis identified 45 novel genes implicated in palatogenesis. Gene set enrichment analysis highlighted biological processes and pathways relevant to palate development and uncovered 18 genes jointly regulating the development of the eye and the palate. These findings present a valuable resource for further research, offer novel insights into the molecular mechanisms underlying palatogenesis, and provide important context for understanding the etiology of rare human congenital disorders involving simultaneous malformations of the palate and other organs, including the eyes, ears, kidneys, and lungs.
Collapse
Affiliation(s)
- Ashwin Bhaskar
- Rutgers University, School of Arts and Sciences Honors Program, New Brunswick, NJ, 08901, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave, Newark, NJ, 07103, USA
| |
Collapse
|
3
|
Chereddy SCRR, Makino T. Conserved Genes in Highly Regenerative Metazoans Are Associated with Planarian Regeneration. Genome Biol Evol 2024; 16:evae082. [PMID: 38652806 PMCID: PMC11077316 DOI: 10.1093/gbe/evae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Metazoan species depict a wide spectrum of regeneration ability which calls into question the evolutionary origins of the underlying processes. Since species with high regeneration ability are widely distributed throughout metazoans, there is a possibility that the metazoan ancestor had an underlying common molecular mechanism. Early metazoans like sponges possess high regenerative ability, but, due to the large differences they have with Cnidaria and Bilateria regarding symmetry and neuronal systems, it can be inferred that this regenerative ability is different. We hypothesized that the last common ancestor of Cnidaria and Bilateria possessed remarkable regenerative ability which was lost during evolution. We separated Cnidaria and Bilateria into three classes possessing whole-body regenerating, high regenerative ability, and low regenerative ability. Using a multiway BLAST and gene phylogeny approach, we identified genes conserved in whole-body regenerating species and lost in low regenerative ability species and labeled them Cnidaria and Bilaterian regeneration genes. Through transcription factor analysis, we identified that Cnidaria and Bilaterian regeneration genes were associated with an overabundance of homeodomain regulatory elements. RNA interference of Cnidaria and Bilaterian regeneration genes resulted in loss of regeneration phenotype for HRJDa, HRJDb, DUF21, DISP3, and ARMR genes. We observed that DUF21 knockdown was highly lethal in the early stages of regeneration indicating a potential role in wound response. Also, HRJDa, HRJDb, DISP3, and ARMR knockdown showed loss of regeneration phenotype after second amputation. The results strongly correlate with their respective RNA-seq profiles. We propose that Cnidaria and Bilaterian regeneration genes play a major role in regeneration across highly regenerative Cnidaria and Bilateria.
Collapse
Affiliation(s)
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Heimke M, Richter F, Heinze T, Kunke M, Wedel T, Böttner M, Egberts JH, Lucius R, Cossais F. Localization Pattern of Dispatched Homolog 2 (DISP2) in the Central and Enteric Nervous System. J Mol Neurosci 2023; 73:539-548. [PMID: 37369878 PMCID: PMC10517031 DOI: 10.1007/s12031-023-02129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Dispatched homolog (DISP) proteins have been implicated in the regulation of hedgehog signaling during embryologic development. Although DISP2 has recently been associated with neuronal development and control of cognitive functions, its localization pattern in the mammalian central and peripheral nervous system has not yet been investigated. In this study, the Disp2 expression profile was assessed in human tissues from publicly available transcriptomic datasets. The DISP2 localization pattern was further characterized in the human and rat central nervous system (CNS), as well as within the colonic enteric nervous system (ENS) using dual-label immunohistochemistry. Colocalization of DISP2 with neuronal and glial markers was additionally analyzed in murine primary ENS culture. At transcriptomic level, DISP2 expression was predominant in neuronal cell types of the CNS and ENS. DISP2 immunoreactivity was mainly located within PGP9.5-positive neurons rather than in S100-positive glial cells throughout the nervous system. Investigation of human and rat brain tissues, colonic specimens, and murine ENS primary cultures revealed that DISP2 was located in neuronal cell somata, as well as along neuronal processes both in the human and murine CNS and ENS. Our results indicate that DISP2 is prominently localized within neuronal cells of the CNS and ENS and support putative functions of DISP2 in these tissues.
Collapse
Affiliation(s)
- Marvin Heimke
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Florian Richter
- Department of General, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Tillmann Heinze
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Madlen Kunke
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Martina Böttner
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | | | - Ralph Lucius
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - François Cossais
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany.
| |
Collapse
|
5
|
c-Jun phosphorylated by JNK is required for protecting Gli2 from proteasomal-ubiquitin degradation by PGE2-JNK signaling axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119418. [PMID: 36581088 DOI: 10.1016/j.bbamcr.2022.119418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
Hedgehog (Hh) signaling pathway includes canonical and non-canonical activation manners. In colorectal cancer, we have previously shown that PGE2-JNK could initiate non-canonical activation of the Hh signaling pathway. In this study, we showed that c-Jun, a classic substrate of JNK, increased Gli2 protein stability after phosphorylated by PGE2. Suppressing the function of c-Jun or JNK indicated that c-Jun prevents Gli2 from protease degradation caused by PGE2-JNK. Moreoer, we revealed that less ubiquitination of Gli2 was detected in colorectal cancer cells treated with PGE2 while suppression of c-Jun restored the ubiquitination of Gli2. In addition, we observed that suppression of c-Jun significantly decreased Gli2 expression no matter when Gli2 remained in phosphorylation or non-phosphorylation state. These phenomena were recapitulated, when the endpoint of Gli2 expression was replaced by Gli2 ubiquitination. Furthermore, we demonstrated that restricting c-Jun function ablated the PGE2-provoked Hh activity and proliferation of colorectal cancer cells. These results elucidated that the evasion of Gli2 with phosphorylation from proteasomal-ubiquitin degradation needed the cooperation of phosphorylated c-Jun by kinase JNK, which contributed to promoting Hh activation and the proliferation of colorectal cancer cells. This study provides a theoretical foundation to target PGE2 downstream for the prevention and treatment of colorectal cancer.
Collapse
|
6
|
Platova S, Poliushkevich L, Kulakova M, Nesterenko M, Starunov V, Novikova E. Gotta Go Slow: Two Evolutionarily Distinct Annelids Retain a Common Hedgehog Pathway Composition, Outlining Its Pan-Bilaterian Core. Int J Mol Sci 2022; 23:ijms232214312. [PMID: 36430788 PMCID: PMC9695228 DOI: 10.3390/ijms232214312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.
Collapse
Affiliation(s)
- Sofia Platova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | | | - Milana Kulakova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| | | | - Viktor Starunov
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Elena Novikova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| |
Collapse
|
7
|
Cai J, Chen X, You H, Li X, Ji M. Design, synthesis and activity evaluation of Hedgehog inhibitor Itraconazole derivatives in A549 cells. Bioorg Med Chem Lett 2022; 76:129011. [DOI: 10.1016/j.bmcl.2022.129011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
|
8
|
Rana T, Behl T, Sehgal A, Sachdeva M, Mehta V, Sharma N, Singh S, Bungau S. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem Res 2021; 46:1589-1602. [PMID: 33786718 DOI: 10.1007/s11064-021-03307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Distt. Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Malla RR, Kiran P. Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis 2020; 9:310-324. [PMID: 35224148 PMCID: PMC8843880 DOI: 10.1016/j.gendis.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment (TME) is heterogeneous and contains a multiple cell population with surrounded immune cells, which plays a major role in regulating metastasis. The multifunctional pathways, Hedgehog (Hh), Wnt, Notch, and NF-kB, cross-regulates metastasis in breast cancer. This review presents substantial evidence for cross-regulation of TME components and signaling pathways, which makes breast TME more heterogeneous and complex, promoting breast cancer progression and metastasis as a highly aggressive form. We discoursed the importance of stromal and immune cells as well as their crosstalk in bridging the metastasis. We also discussed the role of Hh and Notch pathways in the intervention between breast cancer cells and macrophages to support TME; Notch signaling in the bidirectional communication between cancer cells and components of TME; Wnt signal pathway in controlling the factors responsible for EMT and NF-κB pathway in the regulation of genes controlling the inflammatory response. We also present the role of exosomes and their miRNAs in the cross-regulation of TME cells as well as pathways in the reprogramming of breast TME to support metastasis. Finally, we examined and discussed the targeted small molecule inhibitors and natural compounds targeting developmental pathways and proposed small molecule natural compounds as potential therapeutics of TME based on the multitargeting ability. In conclusion, the understanding of the molecular basis of the cross-regulation of TME pathways and their inhibitors helps identify molecular targets for rational drug discovery to treat breast cancers.
Collapse
|
10
|
ERAP1 promotes Hedgehog-dependent tumorigenesis by controlling USP47-mediated degradation of βTrCP. Nat Commun 2019; 10:3304. [PMID: 31341163 PMCID: PMC6656771 DOI: 10.1038/s41467-019-11093-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for embryonic development and tissue homeostasis. Aberrant Hh signaling may occur in a wide range of human cancers, such as medulloblastoma, the most common brain malignancy in childhood. Here, we identify endoplasmic reticulum aminopeptidase 1 (ERAP1), a key regulator of innate and adaptive antitumor immune responses, as a previously unknown player in the Hh signaling pathway. We demonstrate that ERAP1 binds the deubiquitylase enzyme USP47, displaces the USP47-associated βTrCP, the substrate-receptor subunit of the SCFβTrCP ubiquitin ligase, and promotes βTrCP degradation. These events result in the modulation of Gli transcription factors, the final effectors of the Hh pathway, and the enhancement of Hh activity. Remarkably, genetic or pharmacological inhibition of ERAP1 suppresses Hh-dependent tumor growth in vitro and in vivo. Our findings unveil an unexpected role for ERAP1 in cancer and indicate ERAP1 as a promising therapeutic target for Hh-driven tumors. ERAP1 is an endoplasmic reticulum aminopeptidase that trims MHC Class-I peptides for antigen presentation. Here, the authors show that ERAP1 enhances Hedgehog signalling by sequestering USP47 from βTrCP and promoting tumorigenesis through βTrCP degradation and increased Gli protein stability.
Collapse
|
11
|
Siavrienė E, Mikštienė V, Radzevičius D, Maldžienė Ž, Rančelis T, Petraitytė G, Tamulytė G, Kavaliauskienė I, Šarkinas L, Utkus A, Kučinskas V, Preikšaitienė E. Novel GLI3 variant causes Greig cephalopolysyndactyly syndrome in three generations of a Lithuanian family. Mol Genet Genomic Med 2019; 7:e878. [PMID: 31325247 PMCID: PMC6732282 DOI: 10.1002/mgg3.878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Background Preaxial polydactyly type IV, also referred as polysyndactyly, has been described in a few syndromes. We present three generations of a family with preaxial polydactyly type IV and other clinical features of Greig cephalopolysyndactyly syndrome (GCPS). Methods and results Sequencing analysis of the GLI3 coding region identified a novel donor splice site variant NC_000007.14(NM_000168.6):c.473+3A>T in the proband and the same pathogenic variant was subsequently identified in other affected family members. Functional analysis based on Sanger sequencing of the proband's complementary DNA (cDNA) sample revealed that the splice site variant c.473+3A>T disrupts the original donor splice site, thus leading to exon 4 skipping. Based on further in silico analysis, this pathogenic splice site variant consequently results in a truncated protein NP_000159.3:p.(His123Argfs*57), which lacks almost all functionally important domains. Therefore, functional cDNA analysis confirmed that the haploinsufficiency of the GLI3 is the cause of GCPS in the affected family members. Conclusion Despite the evidence provided, pathogenic variants in the GLI3 do not always definitely correlate with syndromic or nonsyndromic clinical phenotypes associated with this gene. For this reason, further transcriptomic and proteomic evaluation could be suggested.
Collapse
Affiliation(s)
- Evelina Siavrienė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Violeta Mikštienė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Darius Radzevičius
- The Children's Hospital, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Živilė Maldžienė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Tautvydas Rančelis
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Gunda Petraitytė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | | | - Ingrida Kavaliauskienė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Laurynas Šarkinas
- The Children's Hospital, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T. Congenital eye anomalies: More mosaic than thought? Congenit Anom (Kyoto) 2019; 59:56-73. [PMID: 30039880 DOI: 10.1111/cga.12304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
13
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
14
|
Hall ET, Cleverdon ER, Ogden SK. Dispatching Sonic Hedgehog: Molecular Mechanisms Controlling Deployment. Trends Cell Biol 2019; 29:385-395. [PMID: 30852081 DOI: 10.1016/j.tcb.2019.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/26/2022]
Abstract
The Hedgehog (Hh) family of morphogens direct cell fate decisions during embryogenesis and signal to maintain tissue homeostasis after birth. Hh ligands harbor dual lipid modifications that anchor the proteins into producing cell membranes, effectively preventing ligand release. The transporter-like protein Dispatched (Disp) functions to release these membrane tethers and mobilize Hh ligands to travel toward distant cellular targets. The molecular mechanisms by which Disp achieves Hh deployment are not yet fully understood, but a number of recent publications provide insight into the complex process of Hh release. Herein we review this literature, integrate key discoveries, and discuss some of the open questions that will drive future studies aimed at understanding Disp-mediated Hh ligand deployment.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA
| | - Elizabeth R Cleverdon
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA.
| |
Collapse
|
15
|
Salaritabar A, Berindan-Neagoe I, Darvish B, Hadjiakhoondi F, Manayi A, Devi KP, Barreca D, Orhan IE, Süntar I, Farooqi AA, Gulei D, Nabavi SF, Sureda A, Daglia M, Dehpour AR, Nabavi SM, Shirooie S. Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacol Res 2019; 141:466-480. [DOI: 10.1016/j.phrs.2019.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/24/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
|
16
|
Eguether T, Hahne M. Mixed signals from the cell's antennae: primary cilia in cancer. EMBO Rep 2018; 19:embr.201846589. [PMID: 30348893 DOI: 10.15252/embr.201846589] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 02/03/2023] Open
Abstract
Primary cilia (PC) are antenna-like organelles that protrude from most mammalian cells. They are essential for the regulation of several signaling pathways such as Hedgehog and WNT It is therefore not surprising that a dysfunction of PC is frequently associated with pathologies. Originally, PC were found to be involved in a variety of diseases commonly referred to as ciliopathies including cystic kidney diseases. Evidence is accumulating that PC play also an important role in cancer formation and regulation, which is the focus of this review.
Collapse
Affiliation(s)
- Thibaut Eguether
- École Normale Supérieure, CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), Sorbonne Université, PSL Research University, Paris, France
| | - Michael Hahne
- IGMM, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
17
|
Diao Y, Rahman MFU, Vyatkin Y, Azatyan A, St Laurent G, Kapranov P, Zaphiropoulos PG. Identification of novel GLI1 target genes and regulatory circuits in human cancer cells. Mol Oncol 2018; 12:1718-1734. [PMID: 30098229 PMCID: PMC6166001 DOI: 10.1002/1878-0261.12366] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/03/2018] [Accepted: 07/26/2018] [Indexed: 01/12/2023] Open
Abstract
Hedgehog (HH) signaling is involved in many physiological processes, and pathway deregulation can result in a wide range of malignancies. Glioma‐associated oncogene 1 (GLI1) is a transcription factor and a terminal effector of the HH cascade. Despite its crucial role in tumorigenesis, our understanding of the GLI1 cellular targets is quite limited. In this study, we identified multiple new GLI1 target genes using a combination of different genomic surveys and then subjected them to in‐depth validation in human cancer cell lines. We were able to validate >90% of the new targets, which were enriched in functions involved in neurogenesis and regulation of transcription, in at least one type of follow‐up experiment. Strikingly, we found that RNA editing of GLI1 can modulate effects on the targets. Furthermore, one of the top targets, FOXS1, a gene encoding a transcription factor previously implicated in nervous system development, was shown to act in a negative feedback loop limiting the cellular effects of GLI1 in medulloblastoma and rhabdomyosarcoma cells. Moreover, FOXS1 is both highly expressed and positively correlated with GLI1 in medulloblastoma samples of the Sonic HH subgroup, further arguing for the existence of FOXS1/GLI1 interplay in human tumors. Consistently, high FOXS1 expression predicts longer relapse‐free survival in breast cancer. Overall, our findings open multiple new avenues in HH signaling pathway research and have potential for translational implications.
Collapse
Affiliation(s)
- Yumei Diao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Yuri Vyatkin
- St. Laurent Institute, Cambridge, MA, USA.,AcademGene LLC, Novosibirsk, Russia
| | - Ani Azatyan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | | | | |
Collapse
|
18
|
Miron RJ, Zhang Y. Autologous liquid platelet rich fibrin: A novel drug delivery system. Acta Biomater 2018; 75:35-51. [PMID: 29772345 DOI: 10.1016/j.actbio.2018.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
There is currently widespread interest within the biomaterial field to locally deliver biomolecules for bone and cartilage regeneration. Substantial work to date has focused on the potential role of these biomolecules during the healing process, and the carrier system utilized is a key factor in their effectiveness. Platelet rich fibrin (PRF) is a naturally derived fibrin scaffold that is easily obtained from peripheral blood following centrifugation. Slower centrifugation speeds have led to the commercialization of a liquid formulation (liquid-PRF) resulting in an upper plasma layer composed of liquid fibrinogen/thrombin prior to clot formation that remains in its liquid phase for approximately 15 min until injected into bodily tissues. Herein, we introduce the use of liquid PRF as an advanced local delivery system for small and large biomolecules. Potential target molecules including large (growth factors/cytokines and morphogenetic/angiogenic factors), as well as small (antibiotics, peptides, gene therapy and anti-osteoporotic) molecules are considered potential candidates for enhanced bone/cartilage tissue regeneration. Furthermore, liquid-PRF is introduced as a potential carrier system for various cell types and nano-sized particles that are capable of limiting/by-passing the immune system and minimizing potential foreign body reactions within host tissues following injection. STATEMENT OF SIGNIFICANCE There is currently widespread interest within the biomaterial field to locally deliver biomolecules for bone and cartilage regeneration. This review article focuses on the use of a liquid version of platelet rich fibrin (PRF) composed of liquid fibrinogen/thrombin as a drug delivery system. Herein, we introduce the use of liquid PRF as an advanced local delivery system for small and large biomolecules including growth factors, cytokines and morphogenetic/angiogenic factors, as well as antibiotics, peptides, gene therapy and anti-osteoporotic molecules as potential candidates for enhanced bone/cartilage tissue regeneration.
Collapse
|
19
|
Hammond NL, Brookes KJ, Dixon MJ. Ectopic Hedgehog Signaling Causes Cleft Palate and Defective Osteogenesis. J Dent Res 2018; 97:1485-1493. [PMID: 29975848 DOI: 10.1177/0022034518785336] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cleft palate is a common birth defect that frequently occurs in human congenital malformations caused by mutations in components of the Sonic Hedgehog (S HH) signaling cascade. Shh is expressed in dynamic, spatiotemporal domains within epithelial rugae and plays a key role in driving epithelial-mesenchymal interactions that are central to development of the secondary palate. However, the gene regulatory networks downstream of Hedgehog (Hh) signaling are incompletely characterized. Here, we show that ectopic Hh signaling in the palatal mesenchyme disrupts oral-nasal patterning of the neural crest cell-derived ectomesenchyme of the palatal shelves, leading to defective palatine bone formation and fully penetrant cleft palate. We show that a series of Fox transcription factors, including the novel direct target Foxl1, function downstream of Hh signaling in the secondary palate. Furthermore, we demonstrate that Wnt/bone morphogenetic protein (BMP) antagonists, in particular Sostdc1, are positively regulated by Hh signaling, concomitant with downregulation of key regulators of osteogenesis and BMP signaling effectors. Our data demonstrate that ectopic Hh-Smo signaling downregulates Wnt/BMP pathways, at least in part by upregulating Sostdc1, resulting in cleft palate and defective osteogenesis.
Collapse
Affiliation(s)
- N L Hammond
- 1 Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - K J Brookes
- 1 Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,2 Current address: Human Genetics, Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - M J Dixon
- 1 Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Abstract
Ever since its initial discovery in Drosophila, hedgehog signaling has been linked to foregut development, The mammalian genome expresses three Hedgehog paralogues, sonic hedgehog (Shh), Indian Hedgehog, and desert hedgehog. In the mucosa of the embryonic and adult foregut, Shh expression is the highest. It has now become clear that hedgehog signaling is of pivotal importance in gastric homeostasis. Aberrant activation of hedgehog signaling is associated with a range of pathological consequences including various cancers. Also in gastric cancer, clinical and preclinical data support a role of Hedgehog signaling in neoplastic transformation, and gastrointestinal cancer development, also through cancer stroma interaction. Technological advance are facilitating monitoring Hedgehog signaling broadening options for the more efficient screening of individuals predisposed to eventually developing gastric cancer and targeting Hedgehog signaling may provide opportunities for prophylactic therapy once atrophic gastritis develops. Nevertheless, convincing evidence that Hedgehog antagonists are of clinically useful in the context of gastric cancer is still conspicuously lacking. Here we analyze review the role of Hedgehog in gastric physiology and the potential usefulness of targeting Hedgehog signaling in gastric cancer.
Collapse
Affiliation(s)
- Adamu Ishaku Akyala
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University, Rotterdam, Rotterdam, The Netherlands.,Department of Microbiology, Faculty of Natural and Applied Sciences Nasarawa State University, Keffi, Nasarawa, Nigeria
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University, Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Durmaz CD, Evans G, Smith MJ, Ertop P, Akay BN, Tuncalı T. A Novel PTCH1 Frameshift Mutation Leading to Nevoid Basal Cell Carcinoma Syndrome. Cytogenet Genome Res 2018; 154:57-61. [PMID: 29544218 DOI: 10.1159/000487747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2018] [Indexed: 11/19/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a rare multisystemic autosomal dominant disorder typically presenting with cutaneous basal cell carcinomas, multiple keratocysts, and skeletal anomalies. NBCCS is caused by heterozygous mutations in the PTCH1 gene in chromosome 9q22, in the PTCH2 gene in 1p34, or the SUFU gene in 10q24.32. Here, we report on an 18-month-old boy presenting with medulloblastoma, frontal bossing, and multiple skeletal anomalies and his father who has basal cell carcinomas, palmar pits, macrocephaly, bifid ribs, calcification of falx cerebri, and a history of surgery for odontogenic keratocyst. These clinical findings were compatible with the diagnosis of NBCCS, and a novel mutation, c.1249delC; p.Gln417Lysfs*15, was found in PTCH1 causing a premature stop codon.
Collapse
Affiliation(s)
- Ceren D Durmaz
- Department of Medical Genetics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
22
|
Merk DJ, Ohli J, Merk ND, Thatikonda V, Morrissy S, Schoof M, Schmid SN, Harrison L, Filser S, Ahlfeld J, Erkek S, Raithatha K, Andreska T, Weißhaar M, Launspach M, Neumann JE, Shakarami M, Plenker D, Marra MA, Li Y, Mungall AJ, Moore RA, Ma Y, Jones SJM, Lutz B, Ertl-Wagner B, Rossi A, Wagener R, Siebert R, Jung A, Eberhart CG, Lach B, Sendtner M, Pfister SM, Taylor MD, Chavez L, Kool M, Schüller U. Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. Dev Cell 2018; 44:709-724.e6. [PMID: 29551561 DOI: 10.1016/j.devcel.2018.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mutations of CREBBP. By contrast, loss of Crebbp in GNPs during postnatal development synergizes with oncogenic activation of SHH signaling to drive MB growth, thereby explaining the enrichment of somatic CREBBP mutations in SHH MB of adult patients. Together, our data provide insights into time-sensitive consequences of CREBBP mutations and corresponding associations with human diseases.
Collapse
Affiliation(s)
- Daniel J Merk
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Neurobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Jasmin Ohli
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Natalie D Merk
- Munich Center for Integrated Protein Science at the Chemistry Department, Technical University, 85747 Munich, Germany
| | - Venu Thatikonda
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sorana Morrissy
- Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Neurosurgery, Hospital for Sick Children (HSC), Toronto, ON M5G 1L7, Canada; Program in Developmental and Stem Cell Biology, HSC, Toronto, ON M5G 1X8, Canada
| | - Melanie Schoof
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), Hamburg 20251, Germany
| | - Susanne N Schmid
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Department of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Severin Filser
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Julia Ahlfeld
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Serap Erkek
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Kaamini Raithatha
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Thomas Andreska
- Institute for Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Marc Weißhaar
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Michael Launspach
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Julia E Neumann
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mehdi Shakarami
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Dennis Plenker
- Department of Translational Genomics, University of Cologne, 50931 Cologne, Germany
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Yisu Li
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Birgit Ertl-Wagner
- Institute of Clinical Radiology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Andrea Rossi
- Department of Pediatric Neuroradiology, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Rabea Wagener
- Institute of Human Genetics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; Institute for Human Genetics, Ulm University and Ulm University Medical Center, 89081 Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; Institute for Human Genetics, Ulm University and Ulm University Medical Center, 89081 Ulm, Germany
| | - Andreas Jung
- Institute of Pathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Charles G Eberhart
- Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Boleslaw Lach
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Sendtner
- Institute for Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany; Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Neurosurgery, Hospital for Sick Children (HSC), Toronto, ON M5G 1L7, Canada; Program in Developmental and Stem Cell Biology, HSC, Toronto, ON M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lukas Chavez
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany; Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), Hamburg 20251, Germany; Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
23
|
Dessinioti C, Antoniou C, Stratigos AJ. From basal cell carcinoma morphogenesis to the alopecia induced by hedgehog inhibitors: connecting the dots. Br J Dermatol 2017. [PMID: 28626889 DOI: 10.1111/bjd.15738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The deciphering of the hedgehog (Hh) signalling pathway implicated in the tumorigenesis of basal cell carcinoma (BCC) led to the development of targeted drug therapies, the Hh pathway inhibitors (HPIs) vismodegib and sonidegib. In the skin, physiological Hh signalling is activated in growing hair follicles (HFs), where it is required for proliferation of the epithelium of HFs during morphogenesis and for their postnatal growth. The effects of HPI treatment leading to the regression of BCC and the development of alopecia underpin the central role of the Hh pathway in BCC formation, as well as hair cycling. Given the fact that BCC is a follicular-driven tumour, it is a fine tuning of events that regulate hair cycling that may drive towards the formation of benign follicular hamartomas or malignant BCC neoplasms. Wnt/β-catenin signalling interacts with the Hh signalling during HF morphogenesis, normal hair cycling and BCC development. The aim of this review is to present how key molecular events implicated in Hh pathway crosstalk in the HF are also involved in BCC pathogenesis and result in the alopecia developed by HPI treatment.
Collapse
Affiliation(s)
- C Dessinioti
- Dermato-Oncology Unit, First Department of Dermatology, University of Athens, Andreas Syggros Hospital, Athens, Greece
| | - C Antoniou
- Dermato-Oncology Unit, First Department of Dermatology, University of Athens, Andreas Syggros Hospital, Athens, Greece
| | - A J Stratigos
- Dermato-Oncology Unit, First Department of Dermatology, University of Athens, Andreas Syggros Hospital, Athens, Greece
| |
Collapse
|
24
|
Abstract
The Sonic Hedgehog (Shh) signaling pathway is active during embryonic development in metazoans, and provides instructional cues necessary for proper tissue patterning. The pathway signal transducing component, Smoothened (Smo), is a G protein-coupled receptor (GPCR) that has been demonstrated to signal through at least two effector routes. The first is a G protein–independent canonical route that signals to Gli transcriptional effectors to establish transcriptional programs specifying cell fate during early embryonic development. The second, commonly referred to as the noncanonical Smo signal, induces rapid, transcription-independent responses that are essential for establishing and maintaining distinct cell behaviors during development. Herein, we discuss contributions of this noncanonical route during embryonic development. We also highlight important open questions regarding noncanonical Smo signal route selection during development, and consider implications of noncanonical signal corruption in disease.
Collapse
|
25
|
Levy D, de Melo TC, Ruiz JL, Bydlowski SP. Oxysterols and mesenchymal stem cell biology. Chem Phys Lipids 2017; 207:223-230. [DOI: 10.1016/j.chemphyslip.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/08/2023]
|
26
|
Cox B, Roose H, Vennekens A, Vankelecom H. Pituitary stem cell regulation: who is pulling the strings? J Endocrinol 2017; 234:R135-R158. [PMID: 28615294 DOI: 10.1530/joe-17-0083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022]
Abstract
The pituitary gland plays a pivotal role in the endocrine system, steering fundamental processes of growth, metabolism, reproduction and coping with stress. The adult pituitary contains resident stem cells, which are highly quiescent in homeostatic conditions. However, the cells show marked signs of activation during processes of increased cell remodeling in the gland, including maturation at neonatal age, adaptation to physiological demands, regeneration upon injury and growth of local tumors. Although functions of pituitary stem cells are slowly but gradually uncovered, their regulation largely remains virgin territory. Since postnatal stem cells in general reiterate embryonic developmental pathways, attention is first being given to regulatory networks involved in pituitary embryogenesis. Here, we give an overview of the current knowledge on the NOTCH, WNT, epithelial-mesenchymal transition, SHH and Hippo pathways in the pituitary stem/progenitor cell compartment during various (activation) conditions from embryonic over neonatal to adult age. Most information comes from expression analyses of molecular components belonging to these networks, whereas functional extrapolation is still very limited. From this overview, it emerges that the 'big five' embryonic pathways are indeed reiterated in the stem cells of the 'lazy' homeostatic postnatal pituitary, further magnified en route to activation in more energetic, physiological and pathological remodeling conditions. Increasing the knowledge on the molecular players that pull the regulatory strings of the pituitary stem cells will not only provide further fundamental insight in postnatal pituitary homeostasis and activation, but also clues toward the development of regenerative ideas for improving treatment of pituitary deficiency and tumors.
Collapse
Affiliation(s)
- Benoit Cox
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Heleen Roose
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Annelies Vennekens
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
27
|
Ding J, Shao L, Yao Y, Tong X, Liu H, Yue S, Xie L, Cheng SY. DGKδ triggers endoplasmic reticulum release of IFT88-containing vesicles destined for the assembly of primary cilia. Sci Rep 2017; 7:5296. [PMID: 28706295 PMCID: PMC5509727 DOI: 10.1038/s41598-017-05680-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022] Open
Abstract
The morphogenic factor Sonic hedgehog (Shh) signals through the primary cilium, which relies on intraflagellar transport to maintain its structural integrity and function. However, the process by which protein and lipid cargos are delivered to the primary cilium from their sites of synthesis still remains poorly characterized. Here, we report that diacylglycerol kinase δ (DGKδ), a residential lipid kinase in the endoplasmic reticulum, triggers the release of IFT88-containing vesicles from the ER exit sites (ERES), thereby setting forth their movement to the primary cilium. Encoded by the gene whose mutations originally implicated the primary cilium as the venue of Shh signaling, IFT88 is known to be part of the complex B that drives the anterograde transport within cilia. We show that IFT88 interacts with DGKδ, and is associated with COPII-coated vesicles at the ERES. Using a combination of RNAi silencing and gene knockout strategies, we further show that DGKδ is required for supporting Shh signaling both in vitro and in vivo, demonstrating the physiological significance of this regulation.
Collapse
Affiliation(s)
- Jie Ding
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Lei Shao
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Yixing Yao
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Xin Tong
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Huaize Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Lu Xie
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
28
|
Gonzalez ACDO, Costa TF, Andrade ZDA, Medrado ARAP. Wound healing - A literature review. An Bras Dermatol 2017; 91:614-620. [PMID: 27828635 PMCID: PMC5087220 DOI: 10.1590/abd1806-4841.20164741] [Citation(s) in RCA: 742] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
Regeneration and tissue repair processes consist of a sequence of molecular and
cellular events which occur after the onset of a tissue lesion in order to
restore the damaged tissue. The exsudative, proliferative, and extracellular
matrix remodeling phases are sequential events that occur through the
integration of dynamic processes involving soluble mediators, blood cells, and
parenchymal cells. Exsudative phenomena that take place after injury contribute
to the development of tissue edema. The proliferative stage seeks to reduce the
area of tissue injury by contracting myofibroblasts and fibroplasia. At this
stage, angiogenesis and reepithelialization processes can still be observed.
Endothelial cells are able to differentiate into mesenchymal components, and
this difference appears to be finely orchestrated by a set of signaling proteins
that have been studied in the literature. This pathway is known as Hedgehog. The
purpose of this review is to describe the various cellular and molecular aspects
involved in the skin healing process.
Collapse
Affiliation(s)
| | - Tila Fortuna Costa
- Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA, Brazil
| | | | | |
Collapse
|
29
|
Hedgehog signalling pathway orchestrates angiogenesis in triple-negative breast cancers. Br J Cancer 2017; 116:1425-1435. [PMID: 28441382 PMCID: PMC5520095 DOI: 10.1038/bjc.2017.116] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/17/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several evidences suggest a marked angiogenic dependency in triple-negative breast cancer (TNBC) tumorigenesis and a potential sensitivity to anti-angiogenic agents. Herein, the putative role of Hedgehog (Hh) pathway in regulating TNBC-dependent angiogenesis was investigated. METHODS Expression and regulation of the Hh pathway transcription factor glioma-associated oncogene homolog1 protein (GLI1) were studied on the endothelial compartment and on TNBC-initiated angiogenesis. To evaluate the translational relevance of our findings, the combination of paclitaxel with the Smo inhibitor NVP-LDE225 was tested in TNBC xenografted mice. RESULTS Tissue microarray analysis on 200 TNBC patients showed GLI1 overexpression paired with vascular endothelial growth factor receptor 2 (VEGFR2) expression. In vitro, Hh pathway promotes TNBC progression in an autocrine manner, regulating the VEGF/VEGFR2 loop on cancer cell surface, and in a paracrine manner, orchestrating tumour vascularisation. These effects were counteracted by Smo pharmacological inhibition. In TNBC xenografted mice, scheduling NVP-LDE225 rather than bevacizumab provided a better sustained inhibition of TNBC cells proliferation and endothelial cells organisation. CONCLUSIONS This study identifies the Hh pathway as one of the main regulators of tumour angiogenesis in TNBC, thus suggesting Hh inhibition as a potential new anti-angiogenic therapeutic option to be clinically investigated in GLI1 overexpressing TNBC patients.
Collapse
|
30
|
Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M. Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev 2017; 74:76-97. [PMID: 28088536 DOI: 10.1016/j.neubiorev.2017.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India
| | - Sunil Tomar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Diksha Sharma
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India.
| |
Collapse
|
31
|
Roberts B, Casillas C, Alfaro AC, Jägers C, Roelink H. Patched1 and Patched2 inhibit Smoothened non-cell autonomously. eLife 2016; 5. [PMID: 27552050 PMCID: PMC5014547 DOI: 10.7554/elife.17634] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
Smoothened (Smo) inhibition by Patched (Ptch) is central to Hedgehog (Hh) signaling. Ptch, a proton driven antiporter, is required for Smo inhibition via an unknown mechanism. Hh ligand binding to Ptch reverses this inhibition and activated Smo initiates the Hh response. To determine whether Ptch inhibits Smo strictly in the same cell or also mediates non-cell-autonomous Smo inhibition, we generated genetically mosaic neuralized embryoid bodies (nEBs) from mouse embryonic stem cells (mESCs). These experiments utilized novel mESC lines in which Ptch1, Ptch2, Smo, Shh and 7dhcr were inactivated via gene editing in multiple combinations, allowing us to measure non-cell autonomous interactions between cells with differing Ptch1/2 status. In several independent assays, the Hh response was repressed by Ptch1/2 in nearby cells. When 7dhcr was targeted, cells displayed elevated non-cell autonomous inhibition. These findings support a model in which Ptch1/2 mediate secretion of a Smo-inhibitory cholesterol precursor. DOI:http://dx.doi.org/10.7554/eLife.17634.001
Collapse
Affiliation(s)
- Brock Roberts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Catalina Casillas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Astrid C Alfaro
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Carina Jägers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Henk Roelink
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
32
|
Inaguma S, Ito H, Riku M, Ikeda H, Kasai K. Addiction of pancreatic cancer cells to zinc-finger transcription factor ZIC2. Oncotarget 2016; 6:28257-68. [PMID: 26318045 PMCID: PMC4695058 DOI: 10.18632/oncotarget.4960] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022] Open
Abstract
Activity of GLI transcription factors of Hedgehog signaling is key for various cancer cell properties, especially in pancreatic ductal adenocarcinoma (PDAC). Zinc-finger transcriptional regulators ZIC1 to ZIC5 of ZIC gene family were demonstrated to associate with GLI to increase the nuclear accumulation and transcriptional activity of GLI. Notwithstanding this supportive role for GLI-dependent transcription, it was not fully understood whether ZIC plays an independent role in cancer cell biology. Here, we found that ZIC2 is indispensable in the regulation of PDAC cell apoptosis. We found that human PDAC cell lines uniquely express ZIC2. ZIC2 knockdown induced PDAC cell apoptosis; conversely, ZIC2 over-expression enhanced the cellular proliferation. Through a comprehensive screening, we identified fibroblast growth factor receptor 3 (FGFR3) and ANNEXIN A8 (ANXA8) as genes up-regulated by ZIC2 in PDAC cells. The forced expression of these two genes cooperatively rescued the apoptosis of ZIC2-knockdown cells. Immunohistochemical analyses further supported the correlation of ZIC2 expression and these genes in human pancreata harboring PDAC. Intriguingly, the ZIC2-mediated up-regulation of FGFR3 and ANXA8 was indicated to be GLI -independent. This evidence highlights the indispensable role of ZIC2 in regulating cellular proliferation and apoptosis during PDAC development and suggests a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Shingo Inaguma
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Miho Riku
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroshi Ikeda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
33
|
Nochioka K, Okuda H, Tatsumi K, Morita S, Ogata N, Wanaka A. Hedgehog Signaling Components Are Expressed in Choroidal Neovascularization in Laser-induced Retinal Lesion. Acta Histochem Cytochem 2016; 49:67-74. [PMID: 27239075 PMCID: PMC4858541 DOI: 10.1267/ahc.15036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
Choroidal neovascularization is one of the major pathological changes in age-related macular degeneration, which causes devastating blindness in the elderly population. The molecular mechanism of choroidal neovascularization has been under extensive investigation, but is still an open question. We focused on sonic hedgehog signaling, which is implicated in angiogenesis in various organs. Laser-induced injuries to the mouse retina were made to cause choroidal neovascularization. We examined gene expression of sonic hedgehog, its receptors (patched1, smoothened, cell adhesion molecule down-regulated by oncogenes (Cdon) and biregional Cdon-binding protein (Boc)) and downstream transcription factors (Gli1-3) using real-time RT-PCR. At seven days after injury, mRNAs for Patched1 and Gli1 were upregulated in response to injury, but displayed no upregulation in control retinas. Immunohistochemistry revealed that Patched1 and Gli1 proteins were localized to CD31-positive endothelial cells that cluster between the wounded retina and the pigment epithelium layer. Treatment with the hedgehog signaling inhibitor cyclopamine did not significantly decrease the size of the neovascularization areas, but the hedgehog agonist purmorphamine made the areas significantly larger than those in untreated retina. These results suggest that the hedgehog-signaling cascade may be a therapeutic target for age-related macular degeneration.
Collapse
Affiliation(s)
- Katsunori Nochioka
- Department of Ophthalmology, Nara Medical University Faculty of Medicine
| | - Hiroaki Okuda
- Department of Anatomy and Neuroscience, Nara Medical University Faculty of Medicine
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Nara Medical University Faculty of Medicine
| | - Shoko Morita
- Department of Anatomy and Neuroscience, Nara Medical University Faculty of Medicine
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University Faculty of Medicine
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University Faculty of Medicine
| |
Collapse
|
34
|
Vurusaner B, Leonarduzzi G, Gamba P, Poli G, Basaga H. Oxysterols and mechanisms of survival signaling. Mol Aspects Med 2016; 49:8-22. [PMID: 27017897 DOI: 10.1016/j.mam.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
Oxysterols, a family of oxidation products of cholesterol, are increasingly drawing attention of scientists to their multifaceted biochemical properties, several of them of clear relevance to human pathophysiology. Taken up by cells through both vesicular and non-vesicular ways or often generated intracellularly, oxysterols contribute to modulate not only the inflammatory and immunological response but also cell viability, metabolism and function by modulating several signaling pathways. Moreover, they have been recognized as elective ligands for the most important nuclear receptors. The outcome of such a complex network of intracellular reactions promoted by these cholesterol oxidation products appears to be largely dependent not only on the type of cells, the dynamic conditions of the cellular and tissue environment but also on the concentration of the oxysterols. Here focus has been given to the cascade of molecular events exerted by relatively low concentrations of certain oxysterols that elicit survival and functional signals in the cells, with the aim to contribute to further expand the knowledge about the biological and physiological potential of the biochemical reactions triggered and modulated by oxysterols.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey
| | | | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Huveyda Basaga
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| |
Collapse
|
35
|
Abstract
Cancer poses a serious health problem in society and is increasingly surpassing cardiovascular disease as the leading cause of mortality in the United States. Current therapeutic strategies for cancer are extreme and harsh to patients and often have limited success; the danger of cancer is intensified as it metastasizes to secondary locations such as lung, bone, and liver, posing a dire threat to patient treatment and survival. Hedgehog signaling is an important pathway for normal development. Initially identified in Drosophila, the vertebrate and mammalian equivalent of the pathway has been studied extensively for its role in cancer development and progression. As this pathway regulates key target genes involved in development, its action also allows for the modulation of the microenvironment to prepare a tumor-suitable niche by manipulating tumor cell growth, differentiation, and immune regulation, thus creating an enabling environment for progression and metastasis. In this review, we will summarize recent scientific discoveries reporting the impact of the Hedgehog signaling pathway on the tumor initiation process and metastatic cascade, shedding light on the ability of the tumor to take over a mechanism crucially intended for development and normal function.
Collapse
Affiliation(s)
- Ann Hanna
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Wallace Tumor Institute 320D, 1824 6th Avenue South, Birmingham, 35233, Alabama, USA
| | - Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Wallace Tumor Institute 320D, 1824 6th Avenue South, Birmingham, 35233, Alabama, USA.
| |
Collapse
|
36
|
Hanna A, Shevde LA. Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Mol Cancer 2016; 15:24. [PMID: 26988232 PMCID: PMC4797362 DOI: 10.1186/s12943-016-0509-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/11/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer poses a serious health problem in society and is increasingly surpassing cardiovascular disease as the leading cause of mortality in the United States. Current therapeutic strategies for cancer are extreme and harsh to patients and often have limited success; the danger of cancer is intensified as it metastasizes to secondary locations such as lung, bone, and liver, posing a dire threat to patient treatment and survival. Hedgehog signaling is an important pathway for normal development. Initially identified in Drosophila, the vertebrate and mammalian equivalent of the pathway has been studied extensively for its role in cancer development and progression. As this pathway regulates key target genes involved in development, its action also allows for the modulation of the microenvironment to prepare a tumor-suitable niche by manipulating tumor cell growth, differentiation, and immune regulation, thus creating an enabling environment for progression and metastasis. In this review, we will summarize recent scientific discoveries reporting the impact of the Hedgehog signaling pathway on the tumor initiation process and metastatic cascade, shedding light on the ability of the tumor to take over a mechanism crucially intended for development and normal function.
Collapse
Affiliation(s)
- Ann Hanna
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Wallace Tumor Institute 320D, 1824 6th Avenue South, Birmingham, 35233, Alabama, USA
| | - Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Wallace Tumor Institute 320D, 1824 6th Avenue South, Birmingham, 35233, Alabama, USA.
| |
Collapse
|
37
|
Mouden C, Dubourg C, Carré W, Rose S, Quelin C, Akloul L, Hamdi-Rozé H, Viot G, Salhi H, Darnault P, Odent S, Dupé V, David V. Complex mode of inheritance in holoprosencephaly revealed by whole exome sequencing. Clin Genet 2016; 89:659-68. [DOI: 10.1111/cge.12722] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022]
Affiliation(s)
- C. Mouden
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - C. Dubourg
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
- Laboratoire de Génétique Moléculaire et Génomique; C.H.U. de Rennes; Rennes France
| | - W. Carré
- Laboratoire de Génétique Moléculaire et Génomique; C.H.U. de Rennes; Rennes France
| | - S. Rose
- UMR1085 Institut de Recherche sur la Santé, l'Environnement et le Travail; Université de Rennes 1; Rennes France
| | - C. Quelin
- Service de Génétique Clinique; C.H.U. de Rennes; Rennes France
| | - L. Akloul
- Service de Génétique Clinique; C.H.U. de Rennes; Rennes France
| | - H. Hamdi-Rozé
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
- Laboratoire de Génétique Moléculaire et Génomique; C.H.U. de Rennes; Rennes France
| | - G. Viot
- Service de Génétique Médicale; Maternité Port Royal; Paris France
| | - H. Salhi
- Foetopathologie et Anatomie Pathologique Pédiatrique; Hôpital Cochin; Paris France
| | - P. Darnault
- Service de Radiologie et Imagerie Médicale; C.H.U. de Rennes; Rennes France
| | - S. Odent
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
- Service de Génétique Clinique; C.H.U. de Rennes; Rennes France
| | - V. Dupé
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - V. David
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
- Laboratoire de Génétique Moléculaire et Génomique; C.H.U. de Rennes; Rennes France
| |
Collapse
|
38
|
De Luca A, Cerrato V, Fucà E, Parmigiani E, Buffo A, Leto K. Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci 2016; 73:291-303. [PMID: 26499980 PMCID: PMC11108499 DOI: 10.1007/s00018-015-2065-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023]
Abstract
The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Annarita De Luca
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Ketty Leto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
39
|
Jenkins NC, Rao G, Eberhart CG, Pedone CA, Dubuc AM, Fults DW. Somatic cell transfer of c-Myc and Bcl-2 induces large-cell anaplastic medulloblastomas in mice. J Neurooncol 2015; 126:415-24. [PMID: 26518543 DOI: 10.1007/s11060-015-1985-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
A highly aggressive subgroup of the pediatric brain tumor medulloblastoma is characterized by overexpression of the proto-oncogene c-Myc, which encodes a transcription factor that normally maintains neural progenitor cells in an undifferentiated, proliferating state during embryonic development. Myc-driven medulloblastomas typically show a large-cell anaplastic (LCA) histological pattern, in which tumor cells display large, round nuclei with prominent nucleoli. This subgroup of medulloblastoma is therapeutically challenging because it is associated with a high rate of metastatic dissemination, which is a powerful predictor of short patient survival times. Genetically engineered mouse models have revealed important insights into the pathogenesis of medulloblastoma and served as preclinical testing platforms for new therapies. Here we report a new mouse model of Myc-driven medulloblastoma, in which tumors arise in situ after retroviral transfer and expression of Myc in Nestin-expressing neural progenitor cells in the cerebella of newborn mice. Tumor induction required concomitant loss of Tp53 or overexpression of the antiapoptotic protein Bcl-2. Like Myc-driven medulloblastomas in humans, the tumors induced in mice by Myc + Bcl-2 and Myc - Tp53 showed LCA cytoarchitecture and a high rate of metastatic dissemination to the spine. The fact that Myc - Tp53 tumors arose only in Tp53(-/-) mice, coupled with the inefficient germline transmission of the Tp53-null allele, made retroviral transfer of Myc + Bcl-2 a more practical method for generating LCA medulloblastomas. The high rate of spinal metastasis (87% of brain tumor-bearing mice) will be an asset for testing new therapies that target the most lethal aspect of medulloblastoma.
Collapse
Affiliation(s)
- Noah C Jenkins
- Department of Neurosurgery and Huntsman Cancer Institute, University of Utah School of Medicine, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Ganesh Rao
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Carolyn A Pedone
- Department of Neurosurgery and Huntsman Cancer Institute, University of Utah School of Medicine, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Adrian M Dubuc
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel W Fults
- Department of Neurosurgery and Huntsman Cancer Institute, University of Utah School of Medicine, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
40
|
Pua HH, Krishnamurthi S, Farrell J, Margeta M, Ursell PC, Powers M, Slavotinek AM, Jeng LJB. Novel interstitial 2.6 Mb deletion on 9q21 associated with multiple congenital anomalies. Am J Med Genet A 2015; 164A:237-42. [PMID: 24501764 DOI: 10.1002/ajmg.a.36230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Array comparative genomic hybridization (aCGH) is now commonly used to identify copy number changes in individuals with developmental delay, intellectual disabilities, autism spectrum disorders, and/or multiple congenital anomalies. We report on an infant with multiple congenital anomalies and a novel 2.6 Mb interstitial deletion within 9q21.32q21.33 detected by aCGH. Her clinical presentation included dysmorphic craniofacial features, cleft palate, atrial septal defect, bicornuate uterus, bilateral hip dislocation, hypotonia, and recurrent pneumonia. Parental aCGH studies were negative for copy loss in this region. To our knowledge, no similar deletions have been reported in available databases or published literature. This deletion encompasses 12 genes, and prediction algorithms as well as experimental data suggest that a subset is likely to be haploinsufficient. Included are a neurotrophin receptor (NKG2D), a gene implicated in cilia function (KIF27), an adaptor protein important for ubiquitin-dependent protein quality control (UBQLN1), a gene important for transcription and signaling (HNRNPK), and a gene involved in maintaining genomic stability (RMI1). Identifying additional patients with similar copy losses and further study of these genes will contribute to a better understanding of the pathophysiology of multiple congenital anomalies.
Collapse
|
41
|
Pan YB, Gong Y, Ruan HF, Pan LY, Wu XK, Tang C, Wang CJ, Zhu HB, Zhang ZM, Tang LF, Zou CC, Wang HB, Wu XM. Sonic hedgehog through Gli2 and Gli3 is required for the proper development of placental labyrinth. Cell Death Dis 2015; 6:e1653. [PMID: 25695606 PMCID: PMC4669788 DOI: 10.1038/cddis.2015.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/20/2023]
Abstract
Sonic hedgehog (Shh) functions as a conserved morphogen in the development of various organs in metazoans ranging from Drosophila to humans. Here, we have investigated the potential roles and underlying mechanisms of Shh signaling in murine placentation. Immunostaining revealed the abundant expression of the main components of Shh pathway in both the trophectoderm of blastocysts and developing placentas. Disruption of Shh led to impaired vascularogenesis of yolk sac, less branching and malformation of placental labyrinth, thereby leading to a robust decrease in capacity of transplacental passages. Moreover, placenta-specific gene incorporation by lentiviral transduction of mouse blastocysts and blastocyst transplantation robustly knocked down the expression of Gli3 and Gli2 in placenta but not in embryos. Finally, Gli3 knockdown in Shh−/− placentas partially rescued the defects of both yolk sac and placental labyrinth, and robustly restored the capacity of transplacental passages. Gli2 knockdown in Shh+/− placentas affected neither the capacity of tranplacental passages nor the vascularogenesis of yolk sac, however, it partially phenocopied the labyrinthine defects of Shh−/− placentas. Taken together, these results uncover that both Shh/Gli2 and Shh/Gli3 signals are required for proper development of murine placentas and are possibly essential for pregnant maintenance.
Collapse
Affiliation(s)
- Y B Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Y Gong
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - H F Ruan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - L Y Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - X K Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - C Tang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - C J Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H B Zhu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Z M Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - L F Tang
- Department of Internal Medicine, The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - C C Zou
- Department of Internal Medicine, The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H B Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X M Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Winter TC, Kennedy AM, Woodward PJ. Holoprosencephaly: A Survey of the Entity, with Embryology and Fetal Imaging. Radiographics 2015; 35:275-90. [DOI: 10.1148/rg.351140040] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Patel R, Tripathi FM, Singh SK, Rani A, Bhattacharya V, Ali A. A novel GLI3c.750delC truncation mutation in a multiplex Greig cephalopolysyndactyly syndrome family with an unusual phenotypic combination in a patient. Meta Gene 2014; 2:880-7. [PMID: 25606469 PMCID: PMC4297881 DOI: 10.1016/j.mgene.2014.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022] Open
Abstract
Greig cephalopolysyndactyly (GCPS) syndrome is an autosomal dominant disorder with high penetrance in majority of cases, characterized by a triad of polysyndactyly, macrocephaly and hypertelorism. GCPS is known to be caused by mutations in the transcription factor GLI3 gene (7p13) which results in functional haploinsufficiency of this gene. The present study reports a large multiplex family having 12 members affected with GCPS in 3 generations and several unaffected members showing autosomal dominant pattern of inheritance with complete penetrance. Interestingly an affected member of the family had unusual features including thumb which is although biphalangeal (confirmed with X-ray) but morphologically looks like finger and a unilateral tiny bony outgrown (externally indistinguishable) on the distal phalanx of the first toe of the left foot. This member also presented with mild ichthyosis. Although it is also possible that one or more of these features are coincidentally present in this member and might not be part of GCPS. Resequencing of the GLI3 gene detected a novel frame-shift mutation c.750delC in heterozygous state transmitting in the family and co-segregating with the disorder suggesting it to be the causal for the GCPS phenotype in the family. In silico analysis suggests that this mutation creates a truncated GLI3 protein resulting in its haploinsufficiency leading to GCPS syndrome. Furthermore, genotype-phenotype correlation is supported by the mutation as it lies in the amino terminal domain of the protein. The present manuscript report a novel single nucleotide deletion mutation in the GLI3 gene leading to frame-shift truncation in the protein. The uniqueness of this mutation is that along with the typical GCPS phenotypes it also caused some very distinct unusual clinical features.
Collapse
Affiliation(s)
- Rashmi Patel
- Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | | | | - Anjali Rani
- Department of Obstetrics & Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Visweswar Bhattacharya
- Department of Plastic Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Akhtar Ali
- Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| |
Collapse
|
44
|
Abnormal Sonic hedgehog signaling in the lung of rats with esophageal atresia induced by adriamycin. Pediatr Res 2014; 76:355-62. [PMID: 25003913 DOI: 10.1038/pr.2014.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/17/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Abnormal lung development was recently described in the rat model of esophageal atresia and tracheoesophageal fistula (EA-TEF). Since in this condition the ventral-to-dorsal switch of Shh expression in the foregut is disturbed, the present study tested the hypothesis that this abnormal expression at the emergence of the tracheobronchial bud might be translated into the developing lung. METHODS Pregnant rats received either 1.75 mg/kg i.p. adriamycin or vehicle from E7 to E9. Three groups were studied: control and adriamycin-exposed with and without EA-TEF. Embryos were recovered and the lungs were harvested and processed for reverse transcription polymerase chain reaction and immunofluorescence analysis of the Shh signaling cascade. RESULTS Shh signaling was downregulated at the late embryonic stage of lung development (E13) in embryos with EA-TEF. Throughout the subsequent stages of development, the expression of both Shh and its downstream components increased significantly and remained upregulated throughout gestation. Immunofluorescent localization was consistent with these findings. CONCLUSION Defective Shh signaling environment in the foregut is present beyond the emergence of lung buds and probably impairs lung development. Later in gestation, lungs exhibited a remarkable ability to upregulate the Shh cascade, suggesting a compensatory response. These findings may be relevant to understand pulmonary disease suffered by children with EA-TEF.
Collapse
|
45
|
|
46
|
Structural insights into the role of the Smoothened cysteine-rich domain in Hedgehog signalling. Nat Commun 2014; 4:2965. [PMID: 24351982 PMCID: PMC3890372 DOI: 10.1038/ncomms3965] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/20/2013] [Indexed: 01/09/2023] Open
Abstract
Smoothened (Smo) is a member of the Frizzled (FzD) class of G-protein-coupled receptors (GPCRs), and functions as the key transducer in the Hedgehog (Hh) signalling pathway. Smo has an extracellular cysteine-rich domain (CRD), indispensable for its function and downstream Hh signalling. Despite its essential role, the functional contribution of the CRD to Smo signalling has not been clearly elucidated. However, given that the FzD CRD binds to the endogenous Wnt ligand, it has been proposed that the Smo CRD may bind its own endogenous ligand. Here we present the NMR solution structure of the Drosophila Smo CRD, and describe interactions between the glucocorticoid budesonide (Bud) and the Smo CRDs from both Drosophila and human. Our results highlight a function of the Smo CRD, demonstrating its role in binding to small-molecule modulators.
Collapse
|
47
|
Gurgel CAS, Buim MEC, Carvalho KC, Sales CBS, Reis MG, de Souza RO, de Faro Valverde L, de Azevedo RA, Dos Santos JN, Soares FA, Ramos EAG. Transcriptional profiles of SHH pathway genes in keratocystic odontogenic tumor and ameloblastoma. J Oral Pathol Med 2014; 43:619-26. [PMID: 24930892 DOI: 10.1111/jop.12180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sonic hedgehog (SHH) pathway activation has been identified as a key factor in the development of many types of tumors, including odontogenic tumors. Our study examined the expression of genes in the SHH pathway to characterize their roles in the pathogenesis of keratocystic odontogenic tumors (KOT) and ameloblastomas (AB). METHODS We quantified the expression of SHH, SMO, PTCH1, SUFU, GLI1, CCND1, and BCL2 genes by qPCR in a total of 23 KOT, 11 AB, and three non-neoplastic oral mucosa (NNM). We also measured the expression of proteins related to this pathway (CCND1 and BCL2) by immunohistochemistry. RESULTS We observed overexpression of SMO, PTCH1, GLI1, and CCND1 genes in both KOT (23/23) and AB (11/11). However, we did not detect expression of the SHH gene in 21/23 KOT and 10/11 AB tumors. Low levels of the SUFU gene were expressed in KOT (P = 0.0199) and AB (P = 0.0127) relative to the NNM. Recurrent KOT exhibited high levels of SMO (P = 0.035), PTCH1 (P = 0.048), CCND1 (P = 0.048), and BCL2 (P = 0.045) transcripts. Using immunolabeling of CCND1, we observed no statistical difference between primary and recurrent KOT (P = 0.8815), sporadic and NBCCS-KOT (P = 0.7688), and unicystic and solid AB (P = 0.7521). CONCLUSIONS Overexpression of upstream (PTCH1 and SMO) and downstream (GLI1, CCND1 and BCL2) genes in the SHH pathway leads to the constitutive activation of this pathway in KOT and AB and may suggest a mechanism for the development of these types of tumors.
Collapse
|
48
|
Translational research in nasopharyngeal carcinoma. Oral Oncol 2014; 50:345-52. [DOI: 10.1016/j.oraloncology.2013.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/20/2022]
|
49
|
Ferent J, Traiffort E. Hedgehog: Multiple Paths for Multiple Roles in Shaping the Brain and Spinal Cord. Neuroscientist 2014; 21:356-71. [PMID: 24743306 DOI: 10.1177/1073858414531457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the discovery of the segment polarity gene Hedgehog in Drosophila three decades ago, our knowledge of Hedgehog signaling pathway has considerably improved and paved the way to a wide field of investigations in the developing and adult central nervous system. Its peculiar transduction mechanism together with its implication in tissue patterning, neural stem cell biology, and neural tissue homeostasis make Hedgehog pathway of interest in a high number of normal or pathological contexts. Consistent with its role during brain development, misregulation of Hedgehog signaling is associated with congenital diseases and tumorigenic processes while its recruitment in damaged neural tissue may be part of the repairing process. This review focuses on the most recent data regarding the Hedgehog pathway in the developing and adult central nervous system and also its relevance as a therapeutic target in brain and spinal cord diseases.
Collapse
Affiliation(s)
- Julien Ferent
- IRCM, Molecular Biology of Neural Development, Montreal, Quebec, Canada
| | - Elisabeth Traiffort
- INSERM-Université Paris Sud, Neuroprotection and Neuroregeneration: Small Neuroactive Molecules UMR 788, Le Kremlin-Bicêtre, France
| |
Collapse
|
50
|
Liang S, Li HC, Wang YX, Wu SS, Cai YJ, Cui HL, Yang YP, Ya J. Pulmonary endoderm, second heart field and the morphogenesis of distal outflow tract in mouse embryonic heart. Dev Growth Differ 2014; 56:276-92. [PMID: 24697670 DOI: 10.1111/dgd.12129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 01/01/2023]
Abstract
The second heart field (SHF), foregut endoderm and sonic hedgehog (SHH) signaling pathway are all reported to associate with normal morphogenesis and septation of outflow tract (OFT). However, the morphological relationships of the development of foregut endoderm and expression of SHH signaling pathway members with the development of surrounding SHF and OFT are seldom described. In this study, serial sections of mouse embryos from ED9 to ED13 (midgestation) were stained with a series of marker antibodies for specifically highlighting SHF (Isl-1), endoderm (Foxa2), basement membrane (Laminin), myocardium (MHC) and smooth muscle (α-SMA) respectively, or SHH receptors antibodies including patched1 (Ptc1), patched2 (Ptc2) and smoothened, to observe the spatiotemporal relationship between them and their contributions to OFT morphogenesis. Our results demonstrated that the development of an Isl-1 positive field in the splanchnic mesoderm ventral to foregut, a subset of SHF, is closely coupled with pulmonary endoderm or tracheal groove, the Isl-1 positive cells surrounding pulmonary endoderm are distributed in a special cone-shaped pattern and take part in the formation of the lateral walls of the intrapericardial aorta and pulmonary trunk and the transient aortic-pulmonary septum, and Ptc1 and Ptc2 are exclusively expressed in pulmonary endoderm during this Isl-l positive field development, suggesting special roles played in inducing the Isl-l positive field formation by pulmonary endoderm. It is indicated that pulmonary endoderm plays a role in the development and specification of SHF in midgestation, and that pulmonary endoderm-associated Isl-l positive field is involved in patterning the morphogenesis and septation of the intrapericardial arterial trunks.
Collapse
Affiliation(s)
- Shi Liang
- Department of Histology and Embryology, Shanxi Medical University, 56 Xin Jian Nan Road, Taiyuan, 030001, Shanxi, China
| | | | | | | | | | | | | | | |
Collapse
|