1
|
Saito A, Nagayama K, Okada H, Onodera S, Aida N, Nakamura T, Sawada T, Hojo H, Kato S, Azuma T. Downregulation of Nesprin1 by Runx2 deficiency is critical for the development of skeletal laminopathy-like pathology. Proc Natl Acad Sci U S A 2025; 122:e2320138122. [PMID: 40208950 PMCID: PMC12012476 DOI: 10.1073/pnas.2320138122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2025] [Indexed: 04/12/2025] Open
Abstract
Runx2 is a master regulator of bone formation, and its dysfunction causes cleidocranial dysplasia (CCD) in humans. When iPS cells were generated from patients with CCD and Runx2-deficient iPS cells were generated using gene-editing techniques, abnormal laminopathy-like nuclei were observed. Runx2-deficient cells showed reduced Lamin A/C expression, but not protein levels. However, in Runx2-deficient cells, both the gene expression and protein levels of Nesprin1 were reduced, perinuclear actin fibers were sparser, and nuclear stiffness was reduced. Forced expression of Lamin A/C increased nuclear stiffness but did not improve nuclear morphology. In contrast, the induction of Nesprin1 expression alone normalized nuclear stiffness and restored nuclear morphology and perinuclear actin distribution. In Runx2-null cells, mechanical stress-induced phosphorylation of emerin was not observed. In contrast, forced expression of Nesprin1 in Runx2-null cells resulted in phosphorylation of emerin, indicating the restoration of intracellular tension. These observations were confirmed by atomic force microscopy. Therefore, the intracellular tension was inferred to pull the nuclear membrane into its normal shape. CUT&RUN assay and single RNA-seq analysis showed that an aberrant nuclear membrane caused loss of nuclear lamina gene regulation machinery, making the progression of normal osteogenic differentiation impossible; however, supplementation with Nesprin1 restored gene regulation mechanisms and promoted preosteoblast formation with normal nuclear morphology. Nesprin1 expression induced by Runx2 is essential for epigenetic regulation of the nuclear lamina. We propose CCD as a type of laminopathy involving defective expression of Nesprin1 regulated by Runx2.
Collapse
Affiliation(s)
- Akiko Saito
- Department of Biochemistry, Tokyo Dental College, Tokyo101-0061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo101-0061, Japan
| | - Kazuaki Nagayama
- Department of Mechanical Systems Engineering, Ibaraki University, Ibaraki316-8511, Japan
| | - Hiroyuki Okada
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo101-0061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo101-0061, Japan
| | - Natsuko Aida
- Department of Biochemistry, Tokyo Dental College, Tokyo101-0061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo101-0061, Japan
| | - Takashi Nakamura
- Department of Biochemistry, Tokyo Dental College, Tokyo101-0061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo101-0061, Japan
| | - Takashi Sawada
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo101-0061, Japan
| | - Hironori Hojo
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Shigeaki Kato
- Department of Pharmacology, Iryo Sosei University, Fukushima970-8551, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima973-8403, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo101-0061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo101-0061, Japan
- Obitsusankei Hospital, Saitama350-0021, Japan
| |
Collapse
|
2
|
Díaz-López EJ, Sánchez-Iglesias S, Castro AI, Cobelo-Gómez S, Prado-Moraña T, Araújo-Vilar D, Fernandez-Pombo A. Lipodystrophic Laminopathies: From Dunnigan Disease to Progeroid Syndromes. Int J Mol Sci 2024; 25:9324. [PMID: 39273270 PMCID: PMC11395136 DOI: 10.3390/ijms25179324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these disorders. The most fascinating traits include their complex genotype-phenotype associations and clinical heterogeneity, ranging from Dunnigan disease, in which the most relevant feature is precisely adipose tissue dysfunction and lipodystrophy, to the other laminopathies affecting adipose tissue, which are also characterised by the presence of signs of premature ageing (Hutchinson Gilford-progeria syndrome, LMNA-atypical progeroid syndrome, mandibuloacral dysplasia types A and B, Nestor-Guillermo progeria syndrome, LMNA-associated cardiocutaneous progeria). This raises several questions when it comes to understanding how variants in the same gene can lead to similar adipose tissue disturbances and, at the same time, to such heterogeneous phenotypes and variable degrees of metabolic abnormalities. The present review aims to gather the molecular basis of adipose tissue impairment in lipodystrophic laminopathies, their main clinical aspects and recent therapeutic strategies. In addition, it also summarises the key aspects for their differential diagnosis.
Collapse
Affiliation(s)
- Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Antia Fernandez-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Carvalho AA, Machado RA, Maia CMF, Santos LAND, Martelli DRB, Coletta RD, Martelli Júnior H. A rare LMNA missense mutation causing a severe phenotype of mandibuloacral dysplasia type A: a case report. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2024; 42:e2022189. [PMID: 38808865 PMCID: PMC11135898 DOI: 10.1590/1984-0462/2024/42/2022189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/21/2023] [Indexed: 05/30/2024]
Abstract
OBJECTIVE To report the case of a girl presenting a severe phenotype of mandibuloacral dysplasia type A (MADA) characterized by prominent osteolytic changes and ectodermal defects, associated with a rare homozygous LMNA missense mutation (c.1579C>T). CASE DESCRIPTION A 6-year-old girl was evaluated during hospitalization exhibiting the following dysmorphic signs: subtotal alopecia, dysmorphic facies with prominent eyes, marked micrognathia and retrognathia, small beaked nose, teeth crowding and thin lips, generalized lipodystrophy, narrow and sloping shoulders, generalized joint stiffness and bone reabsorption in the terminal phalanges. In dermatological examination, atrophic skin, loss of cutaneous elasticity, hyperkeratosis, dermal calcinosis, and hyperpigmented and hypochromic patches were observed. Radiology exams performed showed bilateral absence of the mandibular condyles, clavicle resorption with local amorphous bone mass confluence with the scapulae, shoulder joints with subluxation and severe bone dysplasia, hip dysplasia, osteopenia and subcutaneous calcifications. COMMENTS MADA is a rare autosomal recessive disease caused by mutations in LMNA gene. It is characterized by craniofacial deformities, skeletal anomalies, skin alterations, lipodystrophy in certain regions of the body and premature ageing. Typical MADA is caused by the p.R527H mutation in the LMNA gene. However, molecular analysis performed from oral epithelial cells obtained from the patient showed the rare mutation c.1579C>T, p. R527C in the exon 9 of LMNA. This is the sixth family identified with this mutation described in the literature.
Collapse
|
4
|
Dahake U, Bang A, Choudhary A, Jain S. Mandibuloacral dysplasia type A. BMJ Case Rep 2024; 17:e260013. [PMID: 38719254 PMCID: PMC11085962 DOI: 10.1136/bcr-2024-260013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Affiliation(s)
- Urmila Dahake
- Department of Pediatrics, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Akash Bang
- Department of Pediatrics, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Abhijit Choudhary
- Department of Pediatrics, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Shikha Jain
- Department of Pediatrics, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| |
Collapse
|
5
|
Besci O, Foss de Freitas MC, Guidorizzi NR, Guler MC, Gilio D, Maung JN, Schill RL, Hoose KS, Obua BN, Gomes AD, Yıldırım Şimşir I, Demir K, Akinci B, MacDougald OA, Oral EA. Deciphering the Clinical Presentations in LMNA-related Lipodystrophy: Report of 115 Cases and a Systematic Review. J Clin Endocrinol Metab 2024; 109:e1204-e1224. [PMID: 37843397 PMCID: PMC10876415 DOI: 10.1210/clinem/dgad606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
CONTEXT Lipodystrophy syndromes are a heterogeneous group of rare genetic or acquired disorders characterized by generalized or partial loss of adipose tissue. LMNA-related lipodystrophy syndromes are classified based on the severity and distribution of adipose tissue loss. OBJECTIVE We aimed to annotate all clinical and metabolic features of patients with lipodystrophy syndromes carrying pathogenic LMNA variants and assess potential genotype-phenotype relationships. METHODS We retrospectively reviewed and analyzed all our cases (n = 115) and all published cases (n = 379) curated from 94 studies in the literature. RESULTS The study included 494 patients. The most common variants in our study, R482Q and R482W, were associated with similar metabolic characteristics and complications though those with the R482W variant were younger (aged 33 [24] years vs 44 [25] years; P < .001), had an earlier diabetes diagnosis (aged 27 [18] vs 40 [17] years; P < .001) and had lower body mass index levels (24 [5] vs 25 [4]; P = .037). Dyslipidemia was the earliest biochemical evidence described in 83% of all patients at a median age of 26 (10) years, while diabetes was reported in 61% of cases. Among 39 patients with an episode of acute pancreatitis, the median age at acute pancreatitis diagnosis was 20 (17) years. Patients who were reported to have diabetes had 3.2 times, while those with hypertriglyceridemia had 12.0 times, the odds of having pancreatitis compared to those who did not. CONCLUSION This study reports the largest number of patients with LMNA-related lipodystrophy syndromes to date. Our report helps to quantify the prevalence of the known and rare complications associated with different phenotypes and serves as a comprehensive catalog of all known cases.
Collapse
Affiliation(s)
- Ozge Besci
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Pediatric Endocrinology, Dokuz Eylul University, Izmir 35340, Turkey
| | | | | | - Merve Celik Guler
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Internal Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Donatella Gilio
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Clinical and Translational Sciences, University of Pisa, Pisa 56126, Italy
| | - Jessica N Maung
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Rebecca L Schill
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Keegan S Hoose
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Bonje N Obua
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Anabela D Gomes
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilgın Yıldırım Şimşir
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ege University, Izmir 35100, Turkey
| | - Korcan Demir
- Division of Pediatric Endocrinology, Dokuz Eylul University, Izmir 35340, Turkey
| | - Baris Akinci
- DEPARK, Dokuz Eylul University & Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey
| | - Ormond A MacDougald
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Elif A Oral
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Liu D, Liu Y, Zhang X, Wang Y, Zhang C, Zheng S. An Exploration of Mutagenesis in a Family with Cleidocranial Dysplasia without RUNX2 Mutation. Front Genet 2021; 12:748111. [PMID: 34737766 PMCID: PMC8560734 DOI: 10.3389/fgene.2021.748111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant inheritable skeletal disorder characterized by cranial dysplasia, clavicle hypoplasia, and dental abnormalities. Mutations involving Runt-related transcription factor 2 (RUNX2) are currently the only known molecular etiology for CCD but are not identified in all CCD patients. No RUNX2 abnormality can be detected in about 20–30% of patients, and the molecular cause remains unknown. The present study includes a family case with typical features of CCD. RUNX2 mutation was first screened by sequencing analysis, and no mutation was detected. Copy number alterations of the RUNX2 gene were then measured by quantitative PCR and multiplex ligation-dependent probe amplification (MLPA). No copy number variation in RUNX2 could be detected. We performed whole-exome sequencing (WES) to identify the underlying genetic mutations. Unexpectedly, no abnormalities could be detected in genes related to the RUNX2 signaling pathway. Therefore, it was supposed that other new unknown gene variations might contribute to the CCD phenotype. We focused on Immunoglobulin superfamily member 10 (IGSF10), a gene related to bone development. An IGSF10 frameshift mutation (c.6001_6002delCT, p.Leu2001Valfs*24) was detected by WES. Sanger sequencing verified that this mutation was only detected in the patient and her affected mother but not in her unaffected father. Bioinformatics studies demonstrated that this mutation could change the 3D structure of the IGSF10 protein and severely damage its function. In addition, alkaline phosphatase (ALP) activity and the ability to form mineralized nodules were inhibited by IGSF10 knockdown compared with normal controls. The expression of bone sialoprotein (BSP) was significantly reduced by IGSF10 knockdown, but not that of other osteogenic markers. Our results provide new genetic evidence that IGSF10 mutation might contribute to CCD.
Collapse
Affiliation(s)
- Dandan Liu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Preventive Dentistry, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yang Liu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Preventive Dentistry, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - XianLi Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Preventive Dentistry, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Stomatology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yixiang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Central Laboratory, Department of Oral and Maxillofacial Surgery, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chenying Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Preventive Dentistry, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuguo Zheng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Preventive Dentistry, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
7
|
Jéru I, Nabil A, El-Makkawy G, Lascols O, Vigouroux C, Abdalla E. Two Decades after Mandibuloacral Dysplasia Discovery: Additional Cases and Comprehensive View of Disease Characteristics. Genes (Basel) 2021; 12:genes12101508. [PMID: 34680903 PMCID: PMC8535562 DOI: 10.3390/genes12101508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Pathogenic variants in the LMNA gene cause a group of heterogeneous genetic disorders, called laminopathies. In particular, homozygous or compound heterozygous variants in LMNA have been associated with “mandibuloacral dysplasia type A” (MADA), an autosomal recessive disorder, characterized by mandibular hypoplasia, growth retardation mainly postnatal, pigmentary skin changes, progressive osteolysis of the distal phalanges and/or clavicles, and partial lipodystrophy. The detailed characteristics of this multisystemic disease have yet to be specified due to its rarity and the limited number of cases described. Here, we report three unrelated Egyptian patients with variable severity of MAD features. Next-generation sequencing using a gene panel revealed a homozygous c.1580G>A-p.Arg527His missense variant in LMNA exon 9 in an affected individual with a typical MADA phenotype. Another homozygous c.1580G>T-p.Arg527Leu variant affecting the same amino acid was identified in two additional patients, who both presented with severe manifestations very early in life. We combined our observations together with data from all MADA cases reported in the literature to get a clearer picture of the phenotypic variability in this disease. This work raises the number of reported MADA families, argues for the presence of the founder effect in Egypt, and strengthens genotype–phenotype correlations.
Collapse
Affiliation(s)
- Isabelle Jéru
- Inserm UMR_S938, Saint-Antoine Research Center, Institute of Cardiometabolism and Nutrition, Sorbonne University, 75012 Paris, France; (O.L.); (C.V.)
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, 75012 Paris, France
- Correspondence: (I.J.); (E.A.); Tel.: +203-428-5455 (ext. 2373 & 8233) (E.A.)
| | - Amira Nabil
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (A.N.); (G.E.-M.)
| | - Gehad El-Makkawy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (A.N.); (G.E.-M.)
| | - Olivier Lascols
- Inserm UMR_S938, Saint-Antoine Research Center, Institute of Cardiometabolism and Nutrition, Sorbonne University, 75012 Paris, France; (O.L.); (C.V.)
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, 75012 Paris, France
| | - Corinne Vigouroux
- Inserm UMR_S938, Saint-Antoine Research Center, Institute of Cardiometabolism and Nutrition, Sorbonne University, 75012 Paris, France; (O.L.); (C.V.)
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, 75012 Paris, France
- National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, 75012 Paris, France
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (A.N.); (G.E.-M.)
- Correspondence: (I.J.); (E.A.); Tel.: +203-428-5455 (ext. 2373 & 8233) (E.A.)
| |
Collapse
|
8
|
Novel clinical features and pleiotropic effect in three unrelated patients with LMNA variant. Clin Dysmorphol 2021; 30:10-16. [PMID: 33038109 DOI: 10.1097/mcd.0000000000000355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
LMNA gene encodes A-type lamins and the encoded proteins join the structure of the nuclear lamina and affect the processes of nuclear homeostasis, DNA replication, repair, transcription, and apoptosis. LMNA variants cause a heterogeneous group of diseases known as laminopathies. Phenotypes associated with LMNA variants mainly affect the heart, skeleton, skin, bones, and nervous system. The affected tissues may vary depending on the site of the variant on the gene and the variation type. Complex phenotypes may also occur in some cases, in which findings of premature aging, cardiomyopathy, mandibuloacral dysplasia, lipodystrophy, renal involvement, metabolic involvement, and myopathy coexist. The pleiotropic effect of LMNA variants can result in heterogeneous phenotypes. In this study, we aimed to describe atypical phenotypic characteristics in a patient with familial partial lipodystrophy type 2 associated with LMNA variant, another with mandibuloacral dysplasia, and a third patient with a complex phenotype as well as discuss them in the context of their relationship with the genotype.
Collapse
|
9
|
R S, H M, M T, A A, M G, I H, E K, K M, F M, R M. Mandibuloacral dysplasia type A in five tunisian patients. Eur J Med Genet 2021; 64:104138. [PMID: 33422685 DOI: 10.1016/j.ejmg.2021.104138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/15/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
Mandibuloacral dysplasia with type A lipodystrophy is a rare autosomal recessive disorder characterized by craniofacial dysmorphism, type A lipodystrophy, clavicular dysplasia, and acroostelolysis. It is caused by homozygous or compound heterozygous missense mutations in LMNA gene. We report five Tunisian patients harboring the same homozygous c.1580G > A; p. (Arg527His) mutation in LMNA gene. The patients presented with typical features of mandibuloacral dysplasia including, prominent eyes, thin or beaked nose, dental overcrowding, mandibular hypoplasia, short and broad finger's distal phalanges with round tips and lipodystrophy type A. Newly recognized signs are growth hormone deficiency and dilated cardiomyopathy. Genotype-phenotype correlation found that at least one of the disease's LMNA mutant alleles involve one of the highly conserved aminoacids, residing in a key site domain for protein function within the C-terminal globular domain of A-type lamins. Also, the severity of the disease depends on the position in the protein's domain and on the type of substitution of the concerned aminoacid.
Collapse
Affiliation(s)
- Sakka R
- Research Unit of Congenital Anomalies and Childhood Cancer LR12SP13, Fattouma Bourguiba University Hospital of Monastir, University of Monastir, Tunisia.
| | - Marmouch H
- Department of Internal Medicine and Endocrinology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Trabelsi M
- Laboratory of Human Genetics, Doctoral School of Science and Biotechnology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
| | - Achour A
- Department of Radiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Golli M
- Department of Radiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Hannachi I
- Faculty of Sciences, University of Carthage, Bizerte, Tunisia
| | - Kerkeni E
- Research Unit of Congenital Anomalies and Childhood Cancer LR12SP13, Fattouma Bourguiba University Hospital of Monastir, University of Monastir, Tunisia
| | - Monastiri K
- Department of Neonatal Medicine and Intensive Care, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Maazoul F
- Laboratory of Human Genetics, Doctoral School of Science and Biotechnology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
| | - M'rad R
- Laboratory of Human Genetics, Doctoral School of Science and Biotechnology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
| |
Collapse
|
10
|
Hennekam RCM. Pathophysiology of premature aging characteristics in Mendelian progeroid disorders. Eur J Med Genet 2020; 63:104028. [PMID: 32791128 DOI: 10.1016/j.ejmg.2020.104028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Aging is a physiological process that is in part genetically determined. Some of the signs and symptoms of aging also occur prematurely in Mendelian disorders. Such disorders are excellent sources of information of underlying mechanisms for these components of aging, and studying these may allow detection of pathways that have not yet considered in detail in physiological aging. Here I define the clinical characteristics that constitute aging and propose that at least 40% of aging signs and symptoms should be present before an entity should be tagged as progeroid. A literature search using these characteristics yields 17 entities that fulfill this definition: Hutchinson-Gilford progeria, mandibulo-acral dysplasia, Nestor-Guillermo progeria, Werner syndrome, Cockayne syndrome, cutis laxa progeroid, Penttinen progeroid syndrome, Mandibular underdevelopment, Deafness, Progeroid features, Lipodystrophy, Fontaine progeroid syndrome, SHORT syndrome, Wiedemann-Rautenstrauch syndrome, Mulvihill-Smith syndrome, dyskeratosis congenita, Marfan syndrome lipodystrophy type, Warburg-Cinotti syndrome, Lessel syndrome and Bloom syndrome. The presenting and main characteristics of these entities are indicated briefly. Their pathophysiology is not complete pathophysiology is reviewed but only the pathophysiology of the premature aging characteristics of this series of entities is compared to the known mechanisms ("Hallmarks") of physiological aging as summarized in the review paper by Lopez-Otin and colleagues. Although many causative genes have not been studied fully for all known aging mechanisms the comparison demonstrates that additional mechanisms must play a role to explain the aging characteristic in some of the progeroid entities of the progeroid entities, and possibly also in physiological aging.
Collapse
Affiliation(s)
- Raoul C M Hennekam
- Department of Paediatrics, Room H7-236, Amsterdam UMC - location AMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Khalil S, Eid E, Hamieh L, Bardawil T, Moujaes Z, Khalil W, Abbas O, Kurban M. Genodermatoses with teeth abnormalities. Oral Dis 2020; 26:1032-1044. [PMID: 32027427 DOI: 10.1111/odi.13295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 01/07/2023]
Abstract
Many genodermatoses exhibit abnormal teeth findings. Studies examining these entities are scarce and narrow in their scope. This paper reviews the evolution, development, and structure of the tooth and provides a summary of genodermatoses with aberrant dental findings. The latter are classified according to the abnormal dental findings: periodontal disease, anodontia/oligodontia/hypodontia, polydontia, enamel hypoplasia, natal teeth, dental pits, and others. Finally, we provide an algorithm that dermatologists and dentists can follow to better recognize genodermatoses with dental involvement.
Collapse
Affiliation(s)
- Samar Khalil
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - Edward Eid
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - Lamia Hamieh
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - Tara Bardawil
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - Ziad Moujaes
- Faculty of Dentistry, Beirut Arab University, Beirut, Lebanon
| | - Wael Khalil
- Faculty of Dentistry, Lebanese University, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
Hitzert MM, van der Crabben SN, Baldewsingh G, van Amstel HKP, van den Wijngaard A, van Ravenswaaij-Arts CMA, Zijlmans CWR. Mandibuloacral dysplasia type B (MADB): a cohort of eight patients from Suriname with a homozygous founder mutation in ZMPSTE24 (FACE1), clinical diagnostic criteria and management guidelines. Orphanet J Rare Dis 2019; 14:294. [PMID: 31856865 PMCID: PMC6924056 DOI: 10.1186/s13023-019-1269-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background Mandibuloacral Dysplasia with type B lipodystrophy (MADB) is a rare premature aging disorder with an autosomal recessive inheritance pattern. MADB is characterized by brittle hair, mottled, atrophic skin, generalized lipodystrophy, insulin resistance, metabolic complications and skeletal features like stunted growth, mandibular and clavicular hypoplasia and acro-osteolysis of the distal phalanges. MADB is caused by reduced activity of the enzyme zinc metalloprotease ZMPSTE24 resulting from compound heterozygous or homozygous mutations in ZMPSTE24. Methods In 2012, and again in 2018, eight related patients from the remote tropical rainforest of inland Suriname were analysed for dysmorphic features. DNA analysis was performed and clinical features were documented. We also analysed all previously reported genetically confirmed MADB patients from literature (n = 12) for their clinical features. Based on the features of all cases (n = 20) we defined major criteria as those present in 85–100% of all MADB patients and minor criteria as those present in 70–84% of patients. Results All the Surinamese patients are of African descent and share the same homozygous c.1196A > G, p.(Tyr399Cys) missense variant in the ZMPSTE24 gene, confirming MADB. Major criteria were found to be: short stature, clavicular hypoplasia, delayed closure of cranial sutures, high palate, mandibular hypoplasia, dental crowding, acro-osteolysis of the distal phalanges, hypoplastic nails, brittle and/or sparse hair, mottled pigmentation, atrophic and sclerodermic skin, and calcified skin nodules. Minor criteria were (generalized or partial) lipoatrophy of the extremities, joint contractures and shortened phalanges. Based on our detailed clinical observations, and a review of previously described cases, we propose that the clinical diagnosis of MADB is highly likely if a patient exhibits ≥4 major clinical criteria OR ≥ 3 major clinical criteria and ≥ 2 minor clinical criteria. Conclusions We report on eight related Surinamese patients with MADB due to a homozygous founder mutation in ZMPSTE24. In low-income countries laboratory facilities for molecular genetic testing are scarce or lacking. However, because diagnosing MADB is essential for guiding clinical management and for family counselling, we defined clinical diagnostic criteria and suggest management guidelines.
Collapse
Affiliation(s)
- M M Hitzert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - S N van der Crabben
- Department of Medical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - G Baldewsingh
- Medical Mission Primary Health Care Suriname, Paramaribo, Suriname
| | - H K Ploos van Amstel
- Department of Medical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - C M A van Ravenswaaij-Arts
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - C W R Zijlmans
- Scientific Research Centre Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname.,Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname.,Department of Paediatrics, Diakonessenhuis Hospital, Paramaribo, Suriname
| |
Collapse
|
13
|
Samson C, Petitalot A, Celli F, Herrada I, Ropars V, Le Du MH, Nhiri N, Jacquet E, Arteni AA, Buendia B, Zinn-Justin S. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res 2019; 46:10460-10473. [PMID: 30137533 PMCID: PMC6212729 DOI: 10.1093/nar/gky736] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/02/2018] [Indexed: 01/22/2023] Open
Abstract
Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF’s ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.
Collapse
Affiliation(s)
- Camille Samson
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ambre Petitalot
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Celli
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isaline Herrada
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Ropars
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Hélène Le Du
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Naïma Nhiri
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Ana-Andrea Arteni
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Buendia
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sophie Zinn-Justin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- To whom correspondence should be addressed. Tel: +33 169083026;
| |
Collapse
|
14
|
Zimmerman H, Yin Z, Zou F, Everett ET. Interfrontal Bone Among Inbred Strains of Mice and QTL Mapping. Front Genet 2019; 10:291. [PMID: 31001328 PMCID: PMC6454051 DOI: 10.3389/fgene.2019.00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/18/2019] [Indexed: 11/24/2022] Open
Abstract
The interfrontal bone (IF) is a minor skeletal trait residing between the frontal bones. IF is considered a quasi-continuous trait. Genetic and environmental factors appear to play roles in its development. The mechanism(s) underlying IF bone development are poorly understood. We sought to survey inbred strains of mice for the prevalence of IF and to perform QTL mapping studies. Archived mouse skulls from a mouse phenome project (MPP) were available for this study. 27 inbred strains were investigated with 6–20 mice examined for each strain. Skulls were viewed dorsally and the IF measured using a zoom stereomicroscope equipped with a calibrated reticle. A two generation cross between C3H/HeJ and C57BL/6J mice was performed to generate a panel of 468 F2 mice. F2 mice were phenotyped for presence or absence of IF bone and among mice with the IF bone maximum widths and lengths were measured. F2 mice were genotyped for 573 SNP markers informative between the two strains and subjected to linkage map construction and interval QTL mapping. Results: Strain dependent differences in the prevalence of IF bones were observed. Overall, 77.8% or 21/27, of the inbred strains examined had IF bones. Six strains (C3H/HeJ, MOLF/EiJ, NZW/LacJ, SPRET/EiJ, SWR/J, and WSB/EiJ) lack IF bones. Among the strains with IF bones, the prevalence ranged from 100% for C57BL/6J, C57/LJ, CBA/J, and NZB/B1NJ and down to 5% for strains such as CAST/Ei. QTL mapping for IF bone length and widths identifies for each trait one strong QTL detected on chromosome 14 along with several other significant QTLs on chromosomes 3, 4, 7, and 11. Strain dependent differences in IF will facilitate investigation of genetic factors contributing to IF development. IF bone formation may be a model to understand intrasutural bone formation.
Collapse
Affiliation(s)
- Heather Zimmerman
- Dental Research, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zhaoyu Yin
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric T Everett
- Dental Research, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pediatric Dentistry, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
15
|
Armando RG, Mengual Gomez DL, Maggio J, Sanmartin MC, Gomez DE. Telomeropathies: Etiology, diagnosis, treatment and follow-up. Ethical and legal considerations. Clin Genet 2019; 96:3-16. [PMID: 30820928 DOI: 10.1111/cge.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Telomeropathies involve a wide variety of infrequent genetic diseases caused by mutations in the telomerase maintenance mechanism or the DNA damage response (DDR) system. They are considered a family of rare diseases that often share causes, molecular mechanisms and symptoms. Generally, these diseases are not diagnosed until the symptoms are advanced, diminishing the survival time of patients. Although several related syndromes may still be unrecognized this work describes those that are known, highlighting that because they are rare diseases, physicians should be trained in their early diagnosis. The etiology and diagnosis are discussed for each telomeropathy and the treatments when available, along with a new classification of this group of diseases. Ethical and legal issues related to this group of diseases are also considered.
Collapse
Affiliation(s)
- Romina G Armando
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego L Mengual Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julián Maggio
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María C Sanmartin
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
16
|
Perepelina K, Klauzen P, Kostareva A, Malashicheva A. Tissue-Specific Influence of Lamin A Mutations on Notch Signaling and Osteogenic Phenotype of Primary Human Mesenchymal Cells. Cells 2019; 8:cells8030266. [PMID: 30901896 PMCID: PMC6468400 DOI: 10.3390/cells8030266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Lamin A is involved in many cellular functions due to its ability to bind chromatin and transcription factors and affect their properties. Mutations of LMNA gene encoding lamin A affect the differentiation capacity of stem cells, but the mechanisms of this influence remain largely unclear. We and others have reported recently an interaction of lamin A with Notch pathway, which is among the main developmental regulators of cellular identity. The aim of this study was to explore the influence of LMNA mutations on the proosteogenic response of human cells of mesenchymal origin and to further explore the interaction of LMNA with Notch pathway. Mutations R527C and R471C in LMNA are associated with mandibuloacral dysplasia type A, a highly penetrant disease with a variety of abnormalities involving bone development. We used lentiviral constructs bearing mutations R527C and R471C and explored its influence on proosteogenic phenotype expression and Notch pathway activity in four types of human cells: umbilical vein endothelial cells (HUVEC), cardiac mesenchymal cells (HCMC), aortic smooth muscle cells (HASMC), and aortic valve interstitial cells (HAVIC). The proosteogenic response of the cells was induced by the addition of either LPS or specific effectors of osteogenic differentiation to the culture medium; phenotype was estimated by the expression of osteogenic markers by qPCR; activation of Notch was assessed by expression of Notch-related and Notch-responsive genes by qPCR and by activation of a luciferase CSL-reporter construct. Overall, we observed different reactivity of all four cell lineages to the stimulation with either LPS or osteogenic factors. R527C had a stronger influence on the proosteogenic phenotype. We observed the inhibiting action of LMNA R527C on osteogenic differentiation in HCMC in the presence of activated Notch signaling, while LMNA R527C caused the activation of osteogenic differentiation in HAVIC in the presence of activated Notch signaling. Our results suggest that the effect of a LMNA mutation is strongly dependent not only on a specific mutation itself, but also might be influenced by the intrinsic molecular context of a cell lineage.
Collapse
Affiliation(s)
- Kseniya Perepelina
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
- St-Petersburg State University, 7-9, Universitetskaya nab., St-Petersburg 199034, Russia.
| | - Polina Klauzen
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
- St-Petersburg State University, 7-9, Universitetskaya nab., St-Petersburg 199034, Russia.
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
| | - Anna Kostareva
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
- St-Petersburg State University, 7-9, Universitetskaya nab., St-Petersburg 199034, Russia.
| | - Anna Malashicheva
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
- St-Petersburg State University, 7-9, Universitetskaya nab., St-Petersburg 199034, Russia.
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
| |
Collapse
|
17
|
A case of diencephalic syndrome presenting with isolated lipodystrophy. Clin Dysmorphol 2018; 27:122-125. [PMID: 29994870 DOI: 10.1097/mcd.0000000000000235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diencephalic syndrome is a disorder characterized by severe emaciation during childhood. The rarity of the disorder coupled with nonspecific symptomology means that there is often a protracted diagnostic journey. Here, we report a child who was referred to a clinical genetics service for investigation of lipodystrophy and failure to thrive. A broad range of genetic differential diagnoses were considered and investigated before a mass lesion was identified in the hypothalamus, confirming diencephalic syndrome. In the context of this case, we consider the relevant differentials and appropriate workup of a child with lipodystrophy presenting to a genetics service. This report also highlights the importance of considering diencephalic syndrome in cases such as this.
Collapse
|
18
|
Wang LR, Radonjic A, Dilliott AA, McIntyre AD, Hegele RA. A De Novo POLD1 Mutation Associated With Mandibular Hypoplasia, Deafness, Progeroid Features, and Lipodystrophy Syndrome in a Family With Werner Syndrome. J Investig Med High Impact Case Rep 2018; 6:2324709618786770. [PMID: 30023403 PMCID: PMC6047234 DOI: 10.1177/2324709618786770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 11/15/2022] Open
Abstract
Background. Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy (MDPL) syndrome is a recently recognized genetic disorder comprised of mandibular hypoplasia, deafness, progeroid features, and lipodystrophy. It is caused by an autosomal dominant mutation in the POLD1 gene, with <20 genetically confirmed cases to date. Clinical overlap with other progeroid syndromes including Werner syndrome (WS) can present diagnostic challenges. Case. The proband is a 36-year-old male of Sicilian ancestry who was phenotypically normal at birth. Onset of lipodystrophic and progeroid features began at 18 months, with progressive loss of subcutaneous fat, prominent eyes, and pinched nose. Over the next 2 decades, he developed hearing loss, small fingers, joint contractures, hypogonadism, osteoporosis, and hypertriglyceridemia. Three of his 4 siblings had premature hair graying and loss, severe bilateral cataracts, skin changes, and varying degrees of age-related metabolic conditions, raising suspicion for a genetic progeroid syndrome. Genetic Analysis. A targeted sequencing panel identified a heterozygous WRN mutation in the proband’s genomic DNA. Sanger sequencing further revealed his parents and an asymptomatic brother to be carriers of this mutation, and in his 3 brothers affected with classic WS the mutation was identified in the homozygous state. Whole exome sequencing ultimately revealed the proband harbored the causative de novo in-frame deletion in POLD1 (p.Ser605del), which is the most common mutation in MDPL patients. Conclusion. We report the unusual convergence of 2 rare progeroid disorders in the same family: the proband displayed sporadic MDPL syndrome, while 3 brothers had classical autosomal recessive WS. Whole exome sequencing was invaluable in clarifying the molecular diagnoses in this family.
Collapse
|
19
|
Burla R, La Torre M, Merigliano C, Vernì F, Saggio I. Genomic instability and DNA replication defects in progeroid syndromes. Nucleus 2018; 9:368-379. [PMID: 29936894 PMCID: PMC7000143 DOI: 10.1080/19491034.2018.1476793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Progeroid syndromes induced by mutations in lamin A or in its interactors – named progeroid laminopathies – are model systems for the dissection of the molecular pathways causing physiological and premature aging. A large amount of data, based mainly on the Hutchinson Gilford Progeria syndrome (HGPS), one of the best characterized progeroid laminopathy, has highlighted the role of lamins in multiple DNA activities, including replication, repair, chromatin organization and telomere function. On the other hand, the phenotypes generated by mutations affecting genes directly acting on DNA function, as mutations in the helicases WRN and BLM or in the polymerase polδ, share many of the traits of progeroid laminopathies. These evidences support the hypothesis of a concerted implication of DNA function and lamins in aging. We focus here on these aspects to contribute to the comprehension of the driving forces acting in progeroid syndromes and premature aging.
Collapse
Affiliation(s)
- Romina Burla
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy
| | - Mattia La Torre
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy
| | - Chiara Merigliano
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy
| | - Fiammetta Vernì
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy
| | - Isabella Saggio
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy.,c Istituto Pasteur Fondazione Cenci Bolognetti , Rome , Italy
| |
Collapse
|
20
|
Perovanovic J, Hoffman EP. Mechanisms of allelic and clinical heterogeneity of lamin A/C phenotypes. Physiol Genomics 2018; 50:694-704. [PMID: 29750601 PMCID: PMC6335092 DOI: 10.1152/physiolgenomics.00128.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the lamin A/C (LMNA) gene cause a broad range of clinical syndromes that show tissue-restricted abnormalities of post mitotic tissues, such as muscle, nerve, heart, and adipose tissue. Mutations in other nuclear envelope proteins cause clinically overlapping disorders. The majority of mutations are dominant single amino acid changes (toxic protein produced by the single mutant gene), and patients are heterozygous with both normal and abnormal proteins. Experimental support has been provided for different models of cellular pathogenesis in nuclear envelope diseases, including changes in heterochromatin formation at the nuclear membrane (epigenomics), changes in the timing of steps during terminal differentiation of cells, and structural abnormalities of the nuclear membrane. These models are not mutually exclusive and may be important in different cells at different times of development. Recent experiments using fusion proteins of normal and mutant lamin A/C proteins fused to a bacterial adenine methyltransferase (DamID) provided compelling evidence of mutation-specific perturbation of epigenomic imprinting during terminal differentiation. These gain-of-function properties include lineage-specific ineffective genomic silencing during exit from the cell cycle (heterochromatinization), as well as promiscuous initiation of silencing at incorrect places in the genome. To date, these findings have been limited to a few muscular dystrophy and lipodystrophy LMNA mutations but seem shared with a distinct nuclear envelope disease, emerin-deficient muscular dystrophy. The dominant-negative structural model and gain-of-function epigenomic models for distinct LMNA mutations are not mutually exclusive, and it is likely that both models contribute to aspects of the many complex clinical phenotypes observed.
Collapse
Affiliation(s)
- Jelena Perovanovic
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health , Bethesda, Maryland
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York , Binghamton New York
| |
Collapse
|
21
|
Gargiuli C, Schena E, Mattioli E, Columbaro M, D'Apice MR, Novelli G, Greggi T, Lattanzi G. Lamins and bone disorders: current understanding and perspectives. Oncotarget 2018; 9:22817-22831. [PMID: 29854317 PMCID: PMC5978267 DOI: 10.18632/oncotarget.25071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Lamin A/C is a major constituent of the nuclear lamina implicated in a number of genetic diseases, collectively known as laminopathies. The most severe forms of laminopathies feature, among other symptoms, congenital scoliosis, osteoporosis, osteolysis or delayed cranial ossification. Importantly, specific bone districts are typically affected in laminopathies. Spine is severely affected in LMNA-linked congenital muscular dystrophy. Mandible, terminal phalanges and clavicles undergo osteolytic processes in progeroid laminopathies and Restrictive Dermopathy, a lethal developmental laminopathy. This specificity suggests that lamin A/C regulates fine mechanisms of bone turnover, as supported by data showing that lamin A/C mutations activate non-canonical pathways of osteoclastogenesis, as the one dependent on TGF beta 2. Here, we review current knowledge on laminopathies affecting bone and LMNA involvement in bone turnover and highlight lamin-dependent mechanisms causing bone disorders. This knowledge can be exploited to identify new therapeutic approaches not only for laminopathies, but also for other rare diseases featuring bone abnormalities.
Collapse
Affiliation(s)
- Chiara Gargiuli
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopaedic Institute, Laboratory of Cell Biology, Bologna, Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopaedic Institute, Laboratory of Cell Biology, Bologna, Italy
| | - Marta Columbaro
- Rizzoli Orthopaedic Institute, Laboratory of Cell Biology, Bologna, Italy
| | | | - Giuseppe Novelli
- Medical Genetics Unit, Policlinico Tor Vergata University Hospital, Rome, Italy
| | - Tiziana Greggi
- Rizzoli Orthopaedic Institute, Spine Deformity Department, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy.,Rizzoli Orthopaedic Institute, Laboratory of Cell Biology, Bologna, Italy
| |
Collapse
|
22
|
Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing. Ageing Res Rev 2018; 42:1-13. [PMID: 29208544 DOI: 10.1016/j.arr.2017.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/09/2017] [Accepted: 12/01/2017] [Indexed: 01/12/2023]
Abstract
Mandibuloacral dysplasia (MAD) is a rare genetic condition characterized by bone abnormalities including localized osteolysis and generalized osteoporosis, skin pigmentation, lipodystrophic signs and mildly accelerated ageing. The molecular defects associated with MAD are mutations in LMNA or ZMPSTE24 (FACE1) gene, causing type A or type B MAD, respectively. Downstream of LMNA or ZMPSTE24 mutations, the lamin A precursor, prelamin A, is accumulated in cells and affects chromatin dynamics and stress response. A new form of mandibuloacral dysplasia has been recently associated with mutations in POLD1 gene, encoding DNA polymerase delta, a major player in DNA replication. Of note, involvement of prelamin A in chromatin dynamics and recruitment of DNA repair factors has been also determined under physiological conditions, at the border between stress response and cellular senescence. Here, we review current knowledge on MAD clinical and pathogenetic aspects and highlight aspects typical of physiological ageing.
Collapse
|
23
|
Florwick A, Dharmaraj T, Jurgens J, Valle D, Wilson KL. LMNA Sequences of 60,706 Unrelated Individuals Reveal 132 Novel Missense Variants in A-Type Lamins and Suggest a Link between Variant p.G602S and Type 2 Diabetes. Front Genet 2017; 8:79. [PMID: 28663758 PMCID: PMC5471320 DOI: 10.3389/fgene.2017.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Mutations in LMNA, encoding nuclear intermediate filament proteins lamins A and C, cause multiple diseases ('laminopathies') including muscular dystrophy, dilated cardiomyopathy, familial partial lipodystrophy (FPLD2), insulin resistance syndrome and progeria. To assess the prevalence of LMNA missense mutations ('variants') in a broad, ethnically diverse population, we compared missense alleles found among 60,706 unrelated individuals in the ExAC cohort to those identified in 1,404 individuals in the laminopathy database (UMD-LMNA). We identified 169 variants in the ExAC cohort, of which 37 (∼22%) are disease-associated including p.I299V (allele frequency 0.0402%), p.G602S (allele frequency 0.0262%) and p.R644C (allele frequency 0.124%), suggesting certain LMNA mutations are more common than previously recognized. Independent analysis of LMNA variants via the type 2 diabetes (T2D) Knowledge Portal showed that variant p.G602S associated significantly with type 2 diabetes (p = 0.02; odds ratio = 4.58), and was more frequent in African Americans (allele frequency 0.297%). The FPLD2-associated variant I299V was most prevalent in Latinos (allele frequency 0.347%). The ExAC cohort also revealed 132 novel LMNA missense variants including p.K108E (limited to individuals with psychiatric disease; predicted to perturb coil-1B), p.R397C and p.R427C (predicted to perturb filament biogenesis), p.G638R and p.N660D (predicted to perturb prelamin A processing), and numerous Ig-fold variants predicted to perturb phenotypically characteristic protein-protein interactions. Overall, this two-pronged strategy- mining a large database for missense variants in a single gene (LMNA), coupled to knowledge about the structure, biogenesis and functions of A-type lamins- revealed an unexpected number of LMNA variants, including novel variants predicted to perturb lamin assembly or function. Interestingly, this study also correlated novel variant p.K108E with psychiatric disease, identified known variant p.I299V as a potential risk factor for metabolic disease in Latinos, linked variant p.G602 with type 2 diabetes, and identified p.G602S as a predictor of diabetes risk in African Americans.
Collapse
Affiliation(s)
- Alyssa Florwick
- Department of Cell Biology, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - Julie Jurgens
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - Katherine L. Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| |
Collapse
|
24
|
Mandibuloacral dysplasia and LMNA A529V mutation in Turkish patients with severe skeletal changes and absent breast development. Clin Dysmorphol 2017; 25:91-7. [PMID: 27100822 DOI: 10.1097/mcd.0000000000000132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mandibuloacral dysplasia (MAD) is an autosomal recessive disorder characterized by acroosteolysis (resorption of terminal phalanges), skin changes (hyperpigmentation), clavicular hypoplasia, craniofascial anomalies, a hook nose and prominent eyes, delayed closures of the cranial sutures, lipodystrophy, alopecia, and skeletal anomalies. MAD patients are classified according to lipodystrophy patterns: type A and type B. The vast majority of MAD cases are caused by LMNA gene mutations. MAD patients with type A lipodystrophy (MADA) have been reported to have LMNA R527H, A529V, or A529T mutations. In this report, we describe two MADA patients with progressive skeletal changes, absent breast development, and cataract in addition to the classical MAD phenotype. Both patients were found to be homozygous for the Ala529Val mutation of the LMNA gene. Our female patient is the oldest MADA patient (59 years old) who has ever been reported with the LMNA mutation and also the LMNA Ala529Val mutation. This study is the second report on MADA patients with a homozygous Ala529Val mutation.
Collapse
|
25
|
Avila-Smirnow D, Gueneau L, Batonnet-Pichon S, Delort F, Bécane HM, Claeys K, Beuvin M, Goudeau B, Jais JP, Nelson I, Richard P, Ben Yaou R, Romero NB, Wahbi K, Mathis S, Voit T, Furst D, van der Ven P, Gil R, Vicart P, Fardeau M, Bonne G, Behin A. Cardiac arrhythmia and late-onset muscle weakness caused by a myofibrillar myopathy with unusual histopathological features due to a novel missense mutation in FLNC. Rev Neurol (Paris) 2016; 172:594-606. [PMID: 27633507 DOI: 10.1016/j.neurol.2016.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/16/2016] [Accepted: 07/26/2016] [Indexed: 11/29/2022]
Abstract
Myofibrillar myopathies (MFM) are mostly adult-onset diseases characterized by progressive morphological alterations of the muscle fibers beginning in the Z-disk and the presence of protein aggregates in the sarcoplasm. They are mostly caused by mutations in different genes that encode Z-disk proteins, including DES, CRYAB, LDB3, MYOT, FLNC and BAG3. A large family of French origin, presenting an autosomal dominant pattern, characterized by cardiac arrhythmia associated to late-onset muscle weakness, was evaluated to clarify clinical, morphological and genetic diagnosis. Muscle weakness began during adult life (over 30 years of age), and had a proximal distribution. Histology showed clear signs of a myofibrillar myopathy, but with unusual, large inclusions. Subsequently, genetic testing was performed in MFM genes available for screening at the time of clinical/histological diagnosis, and desmin (DES), αB-crystallin (CRYAB), myotilin (MYOT) and ZASP (LDB3), were excluded. LMNA gene screening found the p.R296C variant which did not co-segregate with the disease. Genome wide scan revealed linkage to 7q.32, containing the FLNC gene. FLNC direct sequencing revealed a heterozygous c.3646T>A p.Tyr1216Asn change, co-segregating with the disease, in a highly conserved amino acid of the protein. Normal filamin C levels were detected by Western-blot analysis in patient muscle biopsies and expression of the mutant protein in NIH3T3 showed filamin C aggregates. This is an original FLNC mutation in a MFM family with an atypical clinical and histopathological presentation, given the presence of significantly focal lesions and prominent sarcoplasmic masses in muscle biopsies and the constant heart involvement preceding significantly the onset of the myopathy. Though a rare etiology, FLNC gene should not be excluded in early-onset arrhythmia, even in the absence of myopathy, which occurs later in the disease course.
Collapse
Affiliation(s)
- D Avila-Smirnow
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - L Gueneau
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - S Batonnet-Pichon
- Sorbonne Paris Cité, université Paris Diderot, CNRS, unité de biologie fonctionnelle et adaptative, UMR 8251, 75013 Paris, France
| | - F Delort
- Sorbonne Paris Cité, université Paris Diderot, CNRS, unité de biologie fonctionnelle et adaptative, UMR 8251, 75013 Paris, France
| | - H-M Bécane
- AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - K Claeys
- Groupe hospitalier Pitié-Salpêtrière, association institut de myologie, unité de morphologie neuromusculaire, 75013 Paris, France
| | - M Beuvin
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - B Goudeau
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - J-P Jais
- GH Necker Enfants-Malades, université Paris Descartes, faculté de médecine, biostatistique et informatique médicale, EA 4067, 75015 Paris, France
| | - I Nelson
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - P Richard
- AP-HP, groupe hospitalier Pitié-Salpêtrière, service de biochimie métabolique, U.F. cardiogénétique et myogénétique, 75013 Paris, France
| | - R Ben Yaou
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - N B Romero
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; Groupe hospitalier Pitié-Salpêtrière, association institut de myologie, unité de morphologie neuromusculaire, 75013 Paris, France
| | - K Wahbi
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France; AP-HP, groupe hospitalier Cochin-Broca-Hôtel Dieu, service de cardiologie, 75013 Paris, France
| | - S Mathis
- CHU de la Milétrie, service de neurologie, 86021 Poitiers, France
| | - T Voit
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - D Furst
- University of Bonn, institute for cell biology, department of molecular cell biology, Bonn, Germany
| | - P van der Ven
- University of Bonn, institute for cell biology, department of molecular cell biology, Bonn, Germany
| | - R Gil
- CHU de la Milétrie, service de neurologie, 86021 Poitiers, France
| | - P Vicart
- Sorbonne Paris Cité, université Paris Diderot, CNRS, unité de biologie fonctionnelle et adaptative, UMR 8251, 75013 Paris, France
| | - M Fardeau
- Groupe hospitalier Pitié-Salpêtrière, association institut de myologie, unité de morphologie neuromusculaire, 75013 Paris, France
| | - G Bonne
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - A Behin
- AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
26
|
Reinier F, Zoledziewska M, Hanna D, Smith JD, Valentini M, Zara I, Berutti R, Sanna S, Oppo M, Cusano R, Satta R, Montesu MA, Jones C, Cerimele D, Nickerson DA, Angius A, Cucca F, Cottoni F, Crisponi L. Mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome in the context of inherited lipodystrophies. Metabolism 2015; 64:1530-40. [PMID: 26350127 DOI: 10.1016/j.metabol.2015.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 07/10/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipodystrophies are a large heterogeneous group of genetic or acquired disorders characterized by generalized or partial fat loss, usually associated with metabolic complications such as diabetes mellitus, hypertriglyceridemia and hepatic steatosis. Many efforts have been made in the last years in identifying the genetic etiologies of several lipodystrophy forms, although some remain to be elucidated. METHODS We report here the clinical description of a woman with a rare severe lipodystrophic and progeroid syndrome associated with hypertriglyceridemia and diabetes whose genetic bases have been clarified through whole-exome sequencing (WES) analysis. RESULTS This article reports the 5th MDPL (Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome) patient with the same de novo p.S605del mutation in POLD1. We provided further genetic evidence that this is a disease-causing mutation along with a plausible molecular mechanism responsible for this recurring event. Moreover we overviewed the current classification of the inherited forms of lipodystrophy, along with their underlying molecular basis. CONCLUSIONS Progress in the identification of lipodystrophy genes will help in better understanding the role of the pathways involved in the complex physiology of fat. This will lead to new targets towards develop innovative therapeutic strategies for treating the disorder and its metabolic complications, as well as more common forms of adipose tissue redistribution as observed in the metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Frederic Reinier
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - David Hanna
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Josh D Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Maria Valentini
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Ilenia Zara
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Riccardo Berutti
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Manuela Oppo
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy; Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Roberto Cusano
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Rosanna Satta
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche-Dermatologia-Università di Sassari, Italy
| | - Maria Antonietta Montesu
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche-Dermatologia-Università di Sassari, Italy
| | - Chris Jones
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Decio Cerimele
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche-Dermatologia-Università di Sassari, Italy
| | | | - Andrea Angius
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy; Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy; Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Francesca Cottoni
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche-Dermatologia-Università di Sassari, Italy
| | - Laura Crisponi
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy.
| |
Collapse
|
27
|
Marcucci G, Cianferotti L, Beck-Peccoz P, Capezzone M, Cetani F, Colao A, Davì MV, degli Uberti E, Del Prato S, Elisei R, Faggiano A, Ferone D, Foresta C, Fugazzola L, Ghigo E, Giacchetti G, Giorgino F, Lenzi A, Malandrino P, Mannelli M, Marcocci C, Masi L, Pacini F, Opocher G, Radicioni A, Tonacchera M, Vigneri R, Zatelli MC, Brandi ML. Rare diseases in clinical endocrinology: a taxonomic classification system. J Endocrinol Invest 2015; 38:193-259. [PMID: 25376364 DOI: 10.1007/s40618-014-0202-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE Rare endocrine-metabolic diseases (REMD) represent an important area in the field of medicine and pharmacology. The rare diseases of interest to endocrinologists involve all fields of endocrinology, including rare diseases of the pituitary, thyroid and adrenal glands, paraganglia, ovary and testis, disorders of bone and mineral metabolism, energy and lipid metabolism, water metabolism, and syndromes with possible involvement of multiple endocrine glands, and neuroendocrine tumors. Taking advantage of the constitution of a study group on REMD within the Italian Society of Endocrinology, consisting of basic and clinical scientists, a document on the taxonomy of REMD has been produced. METHODS AND RESULTS This document has been designed to include mainly REMD manifesting or persisting into adulthood. The taxonomy of REMD of the adult comprises a total of 166 main disorders, 338 including all variants and subtypes, described into 11 tables. CONCLUSIONS This report provides a complete taxonomy to classify REMD of the adult. In the future, the creation of registries of rare endocrine diseases to collect data on cohorts of patients and the development of common and standardized diagnostic and therapeutic pathways for each rare endocrine disease is advisable. This will help planning and performing intervention studies in larger groups of patients to prove the efficacy, effectiveness, and safety of a specific treatment.
Collapse
Affiliation(s)
- G Marcucci
- Head, Bone Metablic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | - L Cianferotti
- Head, Bone Metablic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - P Beck-Peccoz
- Department of Clinical Sciences and Community Health, University of Milan and Endocrine Unit, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - M Capezzone
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Endocrinology and Metabolism and Biochemistry, University of Siena, Policlinico Santa Maria alle Scotte, Siena, Italy
| | - F Cetani
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Naples, Italy
| | - M V Davì
- Section D, Department of Medicine, Clinic of Internal Medicine, University of Verona, Verona, Italy
| | - E degli Uberti
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - S Del Prato
- Section of Metabolic Diseases and Diabetes, Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - R Elisei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Faggiano
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Naples, Italy
| | - D Ferone
- Endocrinology, Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, University of Genoa, Genoa, Italy
| | - C Foresta
- Department of Medicine and Centre for Human Reproduction Pathology, University of Padova, Padua, Italy
| | - L Fugazzola
- Department of Clinical Sciences and Community Health, University of Milan and Endocrine Unit, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - E Ghigo
- Division of Endocrinology, Diabetology and Metabolism Department of Medical Sciences, University Hospital Città Salute e Scienza, Turin, Italy
| | - G Giacchetti
- Division of Endocrinology, Azienda Ospedaliero-Universitaria, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi, Università Politecnica delle Marche, Ancona, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - A Lenzi
- Chair of Endocrinology, Section Medical Pathophysiology, Food Science and Endocrinology, Department Exp. Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - P Malandrino
- Endocrinology, Department of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - M Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - C Marcocci
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - L Masi
- Department of Orthopedic, Metabolic Bone Diseases Unit AOUC-Careggi Hospital, Largo Palagi, 1, Florence, Italy
| | - F Pacini
- Section of Endocrinology and Metabolism, University of Siena, Siena, Italy
| | - G Opocher
- Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology, IRCCS, Padua, Italy
- Department of Medicine DIMED, University of Padova, Padova, Italy
| | - A Radicioni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - M Tonacchera
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - R Vigneri
- Department of Clinical and Molecular Biomedicine, University of Catania, and Humanitas Catania Center of Oncology, Catania, Italy
| | - M C Zatelli
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - M L Brandi
- Head, Bone Metablic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
28
|
Luo DQ, Wang XZ, Meng Y, He DY, Chen YM, Ke ZY, Yan M, Huang Y, Chen DF. Mandibuloacral dysplasia type A-associated progeria caused by homozygous LMNA mutation in a family from Southern China. BMC Pediatr 2014; 14:256. [PMID: 25286833 PMCID: PMC4287574 DOI: 10.1186/1471-2431-14-256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mandibuloacral dysplasia type A (MADA) is a rare autosomal recessive disorder, characterized by growth retardation, skeletal abnormality with progressive osteolysis of the distal phalanges and clavicles, craniofacial anomalies with mandibular hypoplasia, lipodystrophy and mottled cutaneous pigmentation. Some patients may show progeroid features. MADA with partial lipodystrophy, more marked acral, can be caused by homozygous or compound heterozygous mutation in the gene encoding lamin A and lamin C (LMNA). MADA and Hutchinson-Gilford progeria syndrome are caused by the same gene and may represent a single disorder with varying degrees of severity. MAD patients characterized by generalized lipodystrophy (type B) affecting the face as well as extremities and severe progressive glomerulopathy present heterozygous compound mutations in the ZMPSTE24 gene. CASES PRESENTATIONS We described a rare pedigree from Southern China, among them all three children presented with phenotypes of MADA associated progeria. The two elder sisters had developed severe mandibular hypoplasia associated progeria since the age of 1 year. The eldest sister showed a progressive osteolysis. The youngest son of 10 months showed severer lesions than those of his sisters at the same age, and presented possible muscle damage, and his symptoms progressed gradually. Three genes mutations including LMNA, ZMPSTE24 and BANF1 were tested in the family. LMNA gene sequencing revealed a homozygous missense mutation, c.1579C > T, p.R527C for all three siblings, and heterozygous mutations for their parents, whereas no mutations of ZMPSTE24 and BANF1 genes was detected among them. CONCLUSIONS The same homozygous mutation of c.1579C > T of LMNA gene led to MADA associated progeria for the present family. The course of osteolysis for MADA is progressive.
Collapse
Affiliation(s)
- Di-Qing Luo
- Department of Dermatology, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Scharner J, Lu HC, Fraternali F, Ellis JA, Zammit PS. Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies. Proteins 2013; 82:904-15. [DOI: 10.1002/prot.24465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Juergen Scharner
- Randall Division of Cell and Molecular Biophysics; King's College London; London SE1 1UL United Kingdom
| | - Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics; King's College London; London SE1 1UL United Kingdom
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics; King's College London; London SE1 1UL United Kingdom
| | - Juliet A. Ellis
- Randall Division of Cell and Molecular Biophysics; King's College London; London SE1 1UL United Kingdom
| | - Peter S. Zammit
- Randall Division of Cell and Molecular Biophysics; King's College London; London SE1 1UL United Kingdom
| |
Collapse
|
30
|
Al-Haggar M, Madej-Pilarczyk A, Kozlowski L, Bujnicki JM, Yahia S, Abdel-Hadi D, Shams A, Ahmad N, Hamed S, Puzianowska-Kuznicka M. A novel homozygous p.Arg527Leu LMNA mutation in two unrelated Egyptian families causes overlapping mandibuloacral dysplasia and progeria syndrome. Eur J Hum Genet 2012; 20:1134-1140. [PMID: 22549407 PMCID: PMC3476705 DOI: 10.1038/ejhg.2012.77] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/06/2012] [Accepted: 03/27/2012] [Indexed: 11/08/2022] Open
Abstract
Mandibuloacral dysplasia (MAD) is a rare disease resulting from a mutation of LMNA gene encoding lamins A and C. The most common mutation associated with this disease is a homozygous arginine 527 replacement by histidine. Three female patients originating from two unrelated families from Northeast Egypt were examined. Their growth was retarded; they had microcephaly, widened cranial sutures, prominent eyes and cheeks, micrognathia, dental crowding, hypoplastic mandible, acro-osteolysis of distal phalanges, and joint contractures. In addition, they presented some progeroid features, such as pinched nose, premature loss of teeth, loss of hair, scleroderma-like skin atrophy, spine rigidity, and waddling gait. The clinical presentation of the disease varied between the patient originating from Family 1 and patients from Family 2, suggesting that unknown, possibly epigenetic factors, modify the course of the disease. The first symptoms of the disease appeared at the age of 2.5 (a girl from Family 1), 5, and 3 years (girls from Family 2). All patients had the same, novel homozygous c.1580G>T LMNA mutation, resulting in the replacement of arginine 527 by leucine. Computational predictions of such substitution effects suggested that it might alter protein stability and increase the tendency for protein aggregation, and as a result, might influence its interaction with other proteins. In addition, restriction fragment-length polymorphism analysis performed in 178 unrelated individuals showed that up to 1.12% of inhabitants of Northeast Egypt might be heterozygous carriers of this mutation, suggesting the presence of a founder effect in this area.
Collapse
Affiliation(s)
- Mohammad Al-Haggar
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University Children's Hospital, Mansoura, Egypt
| | | | - Lukasz Kozlowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Sohier Yahia
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Dina Abdel-Hadi
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Amany Shams
- Department of Anatomy and Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nermin Ahmad
- Department of Radiology, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Sahar Hamed
- Mansoura Urology and Nephrology Center, Mansoura, Egypt
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, Warsaw, Poland
| |
Collapse
|
31
|
Ahmad Z, Zackai E, Medne L, Garg A. Early onset mandibuloacral dysplasia due to compound heterozygous mutations in ZMPSTE24. Am J Med Genet A 2011; 152A:2703-10. [PMID: 20814950 DOI: 10.1002/ajmg.a.33664] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mandibuloacral dysplasia (MAD) is an autosomal recessive disorder characterized by hypoplasia of the mandible and clavicles, acro-osteolysis, and lipodystrophy due to mutations in LMNA or ZMPSTE24. Only six MAD patients are reported so far with ZMPSTE24 mutations and limited phenotypic data are available for them. Here, we report on two brothers (4 years and 9-month old) with early onset MAD due to ZMPSTE24 mutations in whom thin skin was noted as early as 5 months of age. Both had micrognathia, mottled hyperpigmentation, and enlarged fontanelles but little evidence of lipodystrophy. There was no delay of mental development. The older brother had small pinched nose, short clavicles, acro-osteolysis, stunted growth, joint stiffness, and repeated fractures. There was no evidence of renal disease. Both patients were compound heterozygotes harboring a previously reported missense ZMPSTE24 mutation, p.Pro248Leu, and a novel null mutation, p.Trp450stop. These patients and the review of literature reveal that compared to MAD patients with LMNA mutations, those with ZMPSTE24 mutations develop manifestations earlier in life. Other distinguishing features in MAD due to ZMPSTE24 mutations may include premature birth, renal disease, calcified skin nodules, and lack of acanthosis nigricans. We conclude that in patients with MAD due to ZMPSTE24 mutations, the onset of disease manifestations such as thin skin and micrognathia occurs as early as 5 months of age. In these patients, skeletal phenotype presents earlier whereas lipodystrophy and renal disease may occur later in life.
Collapse
Affiliation(s)
- Zahid Ahmad
- Center for Human Nutrition, Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
32
|
Cunningham VJ, D'Apice MR, Licata N, Novelli G, Cundy T. Skeletal phenotype of mandibuloacral dysplasia associated with mutations in ZMPSTE24. Bone 2010; 47:591-7. [PMID: 20550970 DOI: 10.1016/j.bone.2010.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/03/2010] [Accepted: 06/05/2010] [Indexed: 02/04/2023]
Abstract
Mandibuloacral dysplasia (MAD) is a rare recessively inherited premature aging disease characterized by skeletal and metabolic anomalies. It is part of the spectrum of diseases called laminopathies and results from mutations in genes regulating the synthesis of the nuclear laminar protein, lamin A. Homozygous or compound heterozygous mutations in the LMNA gene, which encodes both the precursor protein prelamin A and lamin C, are the commonest cause of MAD type A. In a few cases of MAD type B, mutations have been identified in the ZMPSTE24 gene encoding a zinc metalloproteinase important in the post-translational modification of lamin A. Here we describe a new case of MAD resulting from compound heterozygote mutations in ZMPSTE24 (p.N256S/p.Y70fs). The patient had typical skeletal changes of MAD, but in addition a number of unusual skeletal features including neonatal tooth eruption, amorphous calcific deposits, submetaphyseal erosions, vertebral beaking, severe cortical osteoporosis and delayed fracture healing. Treatment with conventional doses of pamidronate improved estimated volumetric bone density in the spine but did not arrest cortical bone loss. We reviewed the literature on cases of MAD associated with proven LMNA and ZMPSTE24 mutations and found that the unusual features described above were all substantially more prevalent in patients with mutations in ZMPSTE24 than in those with LMNA mutations. We conclude that MAD associated with ZMPSTE24 mutations has a more severe phenotype than that associated with LMNA mutations--probably reflecting the greater retention of unprocessed farnesylated prelamin A in the nucleus, which is toxic to cells.
Collapse
|