1
|
Sukno FM, Kelly BD, Lane A, Katina S, Rojas MA, Whelan PF, Waddington JL. Loss of normal facial asymmetry in schizophrenia and bipolar disorder: Implications for development of brain asymmetry in psychotic illness. Psychiatry Res 2024; 342:116213. [PMID: 39326274 DOI: 10.1016/j.psychres.2024.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Development of the craniofacies occurs in embryological intimacy with development of the brain and both show normal left-right asymmetries. While facial dysmorphology occurs to excess in psychotic illness, facial asymmetry has yet to be investigated as a putative index of brain asymmetry. Ninety-three subjects (49 controls, 22 schizophrenia, 22 bipolar disorder) received 3D laser surface imaging of the face. On geometric morphometric analysis with (x, y, z) visualisations of statistical models for facial asymmetries, in controls the upper face and periorbital region, which share embryological intimacy with the forebrain, showed marked asymmetries. Their geometry included: along the x-axis, rightward asymmetry in its dorsal-medial aspects and leftward asymmetry in its ventral-lateral aspects; along the z-axis, anterior protrusion in its right ventral-lateral aspect. In both schizophrenia and bipolar disorder these normal facial asymmetries were diminished, with residual retention of asymmetries in bipolar disorder. This geometry of normal facial asymmetries shows commonalities with that of normal frontal lobe asymmetries. These findings indicate a trans-diagnostic process that involves loss of facial asymmetries in both schizophrenia and bipolar disorder. Embryologically, they implicate loss of face-brain asymmetries across gestational weeks 7-14 in processes that involve genes previously associated with risk for schizophrenia.
Collapse
Affiliation(s)
- Federico M Sukno
- Department of Information and Communication Technologies, Pompeu Fabra University, Barcelona, Spain
| | - Brendan D Kelly
- St. John of God Hospital, Stillorgan, Co. Dublin, Ireland; Department of Psychiatry, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland
| | - Abbie Lane
- St. John of God Hospital, Stillorgan, Co. Dublin, Ireland; School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Stanislav Katina
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK; Institute of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
| | - Mario A Rojas
- Centre for Image Processing and Analysis, Dublin City University, Dublin, Ireland
| | - Paul F Whelan
- Centre for Image Processing and Analysis, Dublin City University, Dublin, Ireland
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Roalf DR, McDonald-McGinn DM, Jee J, Krall M, Crowley TB, Moberg PJ, Kohler C, Calkins ME, Crow AJD, Fleischer N, Gallagher RS, Gonzenbach V, Clark K, Gur RC, McClellan E, McGinn DE, Mordy A, Ruparel K, Turetsky BI, Shinohara RT, White L, Zackai E, Gur RE. Computer-vision analysis of craniofacial dysmorphology in 22q11.2 deletion syndrome and psychosis spectrum disorders. J Neurodev Disord 2024; 16:35. [PMID: 38918700 PMCID: PMC11201300 DOI: 10.1186/s11689-024-09547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Minor physical anomalies (MPAs) are congenital morphological abnormalities linked to disruptions of fetal development. MPAs are common in 22q11.2 deletion syndrome (22q11DS) and psychosis spectrum disorders (PS) and likely represent a disruption of early embryologic development that may help identify overlapping mechanisms linked to psychosis in these disorders. METHODS Here, 2D digital photographs were collected from 22q11DS (n = 150), PS (n = 55), and typically developing (TD; n = 93) individuals. Photographs were analyzed using two computer-vision techniques: (1) DeepGestalt algorithm (Face2Gene (F2G)) technology to identify the presence of genetically mediated facial disorders, and (2) Emotrics-a semi-automated machine learning technique that localizes and measures facial features. RESULTS F2G reliably identified patients with 22q11DS; faces of PS patients were matched to several genetic conditions including FragileX and 22q11DS. PCA-derived factor loadings of all F2G scores indicated unique and overlapping facial patterns that were related to both 22q11DS and PS. Regional facial measurements of the eyes and nose were smaller in 22q11DS as compared to TD, while PS showed intermediate measurements. CONCLUSIONS The extent to which craniofacial dysmorphology 22q11DS and PS overlapping and evident before the impairment or distress of sub-psychotic symptoms may allow us to identify at-risk youths more reliably and at an earlier stage of development.
Collapse
Affiliation(s)
- David R Roalf
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA.
- Neuropsychiatry Section, Department of Psychiatry, 5th Floor, Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | | | - Joelle Jee
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Mckenna Krall
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA
| | - T Blaine Crowley
- 22q and You Center at the Children's Hospital of Philadelphia, Philadelphia, USA
| | - Paul J Moberg
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christian Kohler
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica E Calkins
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Andrew J D Crow
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - R Sean Gallagher
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Virgilio Gonzenbach
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Clark
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Emily McClellan
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Daniel E McGinn
- 22q and You Center at the Children's Hospital of Philadelphia, Philadelphia, USA
| | - Arianna Mordy
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kosha Ruparel
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Bruce I Turetsky
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics (CBICA), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren White
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Elaine Zackai
- 22q and You Center at the Children's Hospital of Philadelphia, Philadelphia, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lifespan Brain Institute, Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
3
|
Correlational research on facial and clinical characteristics of adolescents with obsessive-compulsive disorder. BMC Psychiatry 2021; 21:623. [PMID: 34895185 PMCID: PMC8666025 DOI: 10.1186/s12888-021-03612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The neurodevelopmental model of obsessive-compulsive disorder (OCD) suggests that the neurodevelopmental changes in the ventral striatal circuit of the prefrontal lobe are associated with the initial symptoms of OCD. Facial morphology is one of the most consistent anatomical phenotypes of neurodevelopmental disorders, which can reflect brain structure and function. Facial deformity, an easily measured index of brain malformation, can reflect abnormal brain structure and function. Therefore, this study aims to explore the relationship between clinical features and neurodevelopment of adolescents with OCD through facial morphology. METHODS The enrolled study sample comprised 40 adolescents diagnosed with OCD using the Obsessive Compulsive Inventory-Child Version (OCI-CV) and 38 healthy controls (HCs). Facial photos, 21 facial diameters, and 9 facial angles were collected using image software. RESULTS In males, lower lip red height was significantly lower in OCD patients than in HCs (P < 0.025); no significant differences were observed in other facial indicators (all P > 0.025). In females, the nasolabial angle was smaller in OCD patients than in HCs (P < 0.025); no significant differences were observed in other facial indicators (all P > 0.025). The difference in lower lip red height between the OCD group and HC group was positively correlated with neutralizing symptoms (r = 0.401, P < 0.05). CONCLUSIONS Male OCD patients had a thinner lower lip and female OCD patients had smaller nasolabial angles. The facial features of adolescents with OCD were positively correlated with lower lip redness and neutralizing symptoms.
Collapse
|
4
|
Candelo E, Estrada-Mesa MA, Jaramillo A, Martinez-Cajas CH, Osorio JC, Pachajoa H. The Oral Health of Patients with DiGeorge Syndrome (22q11) Microdeletion: A Case Report. APPLICATION OF CLINICAL GENETICS 2021; 14:267-277. [PMID: 34103968 PMCID: PMC8179788 DOI: 10.2147/tacg.s280066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/20/2021] [Indexed: 11/23/2022]
Abstract
Background DiGeorge syndrome (DG) is a genetic disorder associated with 22q11 deletion. It involves various phenotypes, including craniofacial abnormalities, congenital heart disorders, endocrine dysfunction, cognitive deficits, and psychiatric disorders. Cases commonly involve multiple anomalies. However, little is known about the condition of the oral cavity in this disorder, although palate fissure, abnormal mandible, malocclusion, and tooth hypoplasia have been identified. We aimed to determine the odontological features of patients with 22q11.2 microdeletion, in relation to gingival health and oral hygiene. We report the systemic manifestations of nine patients and results of oral evaluation of two patients. In the oral examination, oral hygiene and gingivitis were evaluated. Case Presentation In terms of the systemic manifestations, we found high frequencies of low weight and height at birth. In terms of the oral manifestations, both examined patients presented malocclusion, enamel hypoplasia, dental crowding, anodontia, and healthy periodontium. Conclusion Although DG has been documented to involve periodontium disease, the patients in this study exhibited more dental manifestations such as enamel defects, misalignment between the teeth and the two dental arches, anodontia, and dental crowding. As such, a multidisciplinary approach combining dentistry and healthcare is recommended in this case.
Collapse
Affiliation(s)
- Estephania Candelo
- Congenital Abnormalities and Rare Disease Centre (CIACER), Cali, Colombia.,Genetics Department, Fundacion Valle del Lili, Cali, Colombia.,Centro de Investigaciones Clínicas, Fundacion Valle del Lili, Cali, Colombia
| | | | - Adriana Jaramillo
- Institución Universitaria Colegios de Colombia (UNICOC), Cali, Colombia
| | | | | | - Harry Pachajoa
- Congenital Abnormalities and Rare Disease Centre (CIACER), Cali, Colombia.,Genetics Department, Fundacion Valle del Lili, Cali, Colombia
| |
Collapse
|
5
|
Abstract
INTRODUCTION Geometric morphometrics (GM) is an advanced landmark-based quantitative method used to study biological shape and form. Historically, GM has been limited to non-biomedical fields such as comparative biology; however, this technique confers advantages over traditional cephalometric methods, warranting a review of current applications of GM to human craniofacial disorders. METHODS The RISmed package was used to extract metadata associated with PubMed publications referencing GM analysis techniques in craniofacial and reconstructive surgery. PubMed search terms included "geometric AND morphometric AND craniofacial;" and "geometric AND morphometric AND reconstructive surgery." Duplicate search results were eliminated. RESULTS Search yielded 139 studies between 2005 and 2020, of which 27 met inclusion criteria. Human craniofacial studies constituted 2% of all queried GM studies. Among these, cleft lip and palate were the most commonly studied craniofacial conditions (7 studies, 26%), followed by sagittal craniosynostosis (4 studies, 15%). Seventeen studies (63%) used GM to assess skeletal structures, seven studies (26%) examined both skeletal and soft tissues, and three studies (11%) analyzed soft tissues only. Eleven studies (40.1%) employed a GM approach to evaluate postoperative changes in craniofacial morphology. Two studies (7%) systematically compared GM analysis with conventional shape measurements. CONCLUSION The ability to study shape while controlling for variability in structure size and imaging technique make GM a promising tool for understanding growth patterns in complex craniofacial diseases. Furthermore, GM overcomes many limitations of traditional cephalometric techniques, and hence may claim an expanded role in the study of human craniofacial disorders in clinical and research settings.
Collapse
|
6
|
Katina S, Kelly BD, Rojas MA, Sukno FM, McDermott A, Hennessy RJ, Lane A, Whelan PF, Bowman AW, Waddington JL. Refining the resolution of craniofacial dysmorphology in bipolar disorder as an index of brain dysmorphogenesis. Psychiatry Res 2020; 291:113243. [PMID: 32593068 PMCID: PMC7487763 DOI: 10.1016/j.psychres.2020.113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
As understanding of the genetics of bipolar disorder increases, controversy endures regarding whether the origins of this illness include early maldevelopment. Clarification would be facilitated by a 'hard' biological index of fetal developmental abnormality, among which craniofacial dysmorphology bears the closest embryological relationship to brain dysmorphogenesis. Therefore, 3D laser surface imaging was used to capture the facial surface of 21 patients with bipolar disorder and 45 control subjects; 21 patients with schizophrenia were also studied. Surface images were subjected to geometric morphometric analysis in non-affine space for more incisive resolution of subtle, localised dysmorphologies that might distinguish patients from controls. Complex and more biologically informative, non-linear changes distinguished bipolar patients from control subjects. On a background of minor dysmorphology of the upper face, maxilla, midface and periorbital regions, bipolar disorder was characterised primarily by the following dysmorphologies: (a) retrusion and shortening of the premaxilla, nose, philtrum, lips and mouth (the frontonasal prominences), with (b) some protrusion and widening of the mandible-chin. The topography of facial dysmorphology in bipolar disorder indicates disruption to early development in the frontonasal process and, on embryological grounds, cerebral dysmorphogenesis in the forebrain, most likely between the 10th and 15th week of fetal life.
Collapse
Affiliation(s)
- Stanislav Katina
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK,Institute of Mathematics and Statistics, Masaryk University, Brno, Czech Republic,Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Brendan D. Kelly
- St. John of God Hospital, Stillorgan, Co., Dublin, Ireland,Department of Psychiatry, Trinity Centre for Health Sciences, Tallaght University Hospital, Dublin, Ireland
| | - Mario A. Rojas
- Centre for Image Processing & Analysis, Dublin City University, Dublin, Ireland,Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Federico M. Sukno
- Centre for Image Processing & Analysis, Dublin City University, Dublin, Ireland,Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aoibhinn McDermott
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robin J. Hennessy
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Abbie Lane
- St. John of God Hospital, Stillorgan, Co., Dublin, Ireland,School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Paul F. Whelan
- Centre for Image Processing & Analysis, Dublin City University, Dublin, Ireland
| | - Adrian W. Bowman
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - John L. Waddington
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland,Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders, College of Pharmaceutical Sciences, Soochow University, Suzhou, China,Corresponding author at: Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
7
|
Schwarze UY, Dobsak T, Gruber R, Bookstein FL. Anatomical similarity between the Sost-knockout mouse and sclerosteosis in humans. Anat Rec (Hoboken) 2019; 303:2295-2308. [PMID: 31729194 PMCID: PMC7496997 DOI: 10.1002/ar.24318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Sclerosteosis, a rare autosomal recessive genetic disorder caused by a mutation of the Sost gene, manifests in the facial skeleton by gigantism, facial distortion, mandibular prognathism, cranial nerve palsy, and, in extreme cases, compression of the medulla oblongata. Mice lacking sclerostin reflect some symptoms of sclerosteosis, but this is the first report of the effect on the facial skeleton. We used geometric morphometrics (GMM) to analyze the deformations of the murine facial skeleton from the wild‐type to the Sost gene knockout. Landmark coordinates were obtained by surface reconstructions from micro‐computed tomography. Centroid size, principal component scores in shape space and form space, and asymmetry were computed by the standard GMM formulas, and dental and skeletal jaw lengths were examined as ratios. We show here that, compared to wild type controls, mice lacking Sost have larger centroid size (effect size, p‐value: 4.59, <.001), higher mean asymmetry (1.14, .065), dental and skeletal mandibular prognathism (1.36, .010 and 5.92, <.001), a smaller foramen magnum (−1.71, .015), and calvaria that are more highly curved (form space p = 4.09, .002; shape space p = 12.82, .002). These features of mice lacking sclerostin largely correspond to the changes of the facial skeleton observed in sclerosteosis. This alignment further supports claims that the Sost gene plays a fundamental role in bony facial development in rodents and humans alike.
Collapse
Affiliation(s)
- Uwe Y Schwarze
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Toni Dobsak
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Periodontology, University of Bern, Bern, Switzerland
| | - Fred L Bookstein
- Department of Anthropology, University of Vienna, Vienna, Austria.,Department of Statistics, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Farrera A, Villanueva M, Vizcaíno A, Medina-Bravo P, Balderrábano-Saucedo N, Rives M, Cruz D, Hernández-Carbajal E, Granados-Riveron J, Sánchez-Urbina R. Ontogeny of the facial phenotypic variability in Mexican patients with 22q11.2 deletion syndrome. Head Face Med 2019; 15:29. [PMID: 31829202 PMCID: PMC6905036 DOI: 10.1186/s13005-019-0213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
22q11.2 deletion syndrome is a medical condition that results from genomic loss at chromosome 22. Affected patients exhibit large variability that ranges from a severe condition to mild symptoms. In addition, the spectrum of clinical features differs among populations and even within family members. The facial features related to this syndrome are not an exception, and although part of its variation arises through development, few studies address this topic in order to understand the intra and inter-population heterogeneities. Here, we analyze the ontogenetic dynamics of facial morphology of Mexican patients with del22q11.2 syndrome.
Methods
Frontal facial photographs of 37 patients (mean age = 7.65 ± 4.21 SE) with del22q11.2DS and 200 control subjects (mean age = 7.69 ± 4.26 SE) were analyzed using geometric morphometric methods. Overall mean shape and size differences between patients and controls were analyzed, as well as differences in ontogenetic trajectories (i.e. development, growth, and allometry).
Results
We found that Mexican patients show typical traits that have been reported for the Caucasian population. Additionally, there were significant differences between groups in the facial shape and size when all the ontogenetic stages were considered together and, along ontogeny. The developmental and allometric trajectories of patients and controls were similar, but they differed in allometric scaling. Finally, patients and controls showed different growth trajectories.
Conclusion
The results suggest that the typical face of patients with del22q11.2DS is established prenatally; nonetheless, the postnatal ontogeny could influence the dysmorphology and its variability through size-related changes.
Collapse
|
9
|
Čaplovičová M, Moslerová V, Dupej J, Macek M, Zemková D, Hoffmannová E, Havlovicová M, Velemínská J. Modeling age-specific facial development in Williams-Beuren-, Noonan-, and 22q11.2 deletion syndromes in cohorts of Czech patients aged 3-18 years: A cross-sectional three-dimensional geometric morphometry analysis of their facial gestalt. Am J Med Genet A 2018; 176:2604-2613. [PMID: 30380201 DOI: 10.1002/ajmg.a.40659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 11/08/2022]
Abstract
Three-dimensional (3D) virtual facial models facilitate genotype-phenotype correlations and diagnostics in clinical dysmorphology. Within cross-sectional analysis of both genders we evaluated facial features in representative cohorts of Czech patients with Williams-Beuren-(WBS; 12 cases), Noonan-(NS; 14), and 22q11.2 deletion syndromes (22q11.2DS; 20) and compared their age-related developmental trajectories to 21 age, sex and ethnically matched controls in 3-18 years of age. Using geometric morphometry statistically significant differences in facial morphology were found in all cases compared to controls. The dysmorphic features observed in WBS were specific and manifested in majority of cases. During ontogenesis, dysmorphic features associated with increased facial convexity become more pronounced whereas other typical features remained relatively stable. Dysmorphic features observed in NS cases were mostly apparent during childhood and gradually diminished with age. Facial development had a similar progress as in controls, while there has been increased growth of patients' nose and chin in adulthood. Facial characteristics observed in 22q11.2DS, except for hypoplastic alae nasi, did not correspond with the standard description of its facial phenotype because of marked facial heterogeneity of this clinical entity. Because of the sensitivity of 3D facial morphometry we were able to reach statistical significance even in smaller retrospective patient cohorts, which proves its clinical utility within the routine setting.
Collapse
Affiliation(s)
- Martina Čaplovičová
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Veronika Moslerová
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague 2, Czech Republic.,Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 5, Czech Republic
| | - Ján Dupej
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague 2, Czech Republic.,Department of Software and Computer Science, Faculty of Mathematics and Physics, Charles University, Prague 2, Czech Republic
| | - Milan Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 5, Czech Republic
| | - Dana Zemková
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 5, Czech Republic
| | - Eva Hoffmannová
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Markéta Havlovicová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 5, Czech Republic
| | - Jana Velemínská
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague 2, Czech Republic
| |
Collapse
|
10
|
Lewyllie A, Cadenas De Llano-Pérula M, Verdonck A, Willems G. Three-dimensional imaging of soft and hard facial tissues in patients with craniofacial syndromes: a systematic review of methodological quality. Dentomaxillofac Radiol 2017; 47:20170154. [PMID: 29168926 DOI: 10.1259/dmfr.20170154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To systematically review the methodological quality of three-dimensional imaging studies of patients with craniofacial syndromes and to propose recommendations for future research. METHODS PubMed, Embase and Cochrane databases as well as Grey literature were electronically searched. Inclusion criteria were patients with genetic syndromes with craniofacial manifestations and three-dimensional imaging of facial soft and/or hard tissues. Exclusion criteria consisted of non-syndromic conditions or conditions owing to environmental causes, injury or trauma, facial soft and hard tissues not included in the image analysis, case reports, reviews, opinion articles. No restrictions were made for patients' ethnicity nor age, publication language or publication date. Study quality was evaluated using the Methodological Index for Non-Randomized Studies (MINORS). RESULTS The search yielded 2228 citations of which 116 were assessed in detail and 60 were eventually included in this review. Studies showed a large heterogeneity in study design, sample size and patient age. An increase was observed in the amount of studies with time, and the imaging method most often used was CT. The most studied craniofacial syndromes were Treacher Collins, Crouzon and Apert syndrome. The articles could be divided into three main groups: diagnostic studies (34/60, 57%), evaluation of surgical outcomes (21/60, 35%) and evaluation of imaging techniques (5/60, 8%). For comparative studies, the median MINORS score was 13 (12-15, 25-75th percentile), and for non-comparative studies, the median MINORS score was 8 (7-9, 25-75th percentile). CONCLUSIONS The median MINORS scores were only 50 and 54% of the maximum scores and there was a lack of prospective, controlled trials with sufficiently large study groups. To improve the quality of future studies in this domain and given the low incidence of craniofacial syndromes, more prospective multicentre controlled trials should be set up.
Collapse
Affiliation(s)
- Arianne Lewyllie
- Department of Oral Health Sciences - Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven , Leuven , Belgium
| | - Maria Cadenas De Llano-Pérula
- Department of Oral Health Sciences - Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven , Leuven , Belgium
| | - Anna Verdonck
- Department of Oral Health Sciences - Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven , Leuven , Belgium
| | - Guy Willems
- Department of Oral Health Sciences - Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven , Leuven , Belgium
| |
Collapse
|
11
|
Waddington JL, Katina S, O'Tuathaigh CMP, Bowman AW. Translational Genetic Modelling of 3D Craniofacial Dysmorphology: Elaborating the Facial Phenotype of Neurodevelopmental Disorders Through the "Prism" of Schizophrenia. Curr Behav Neurosci Rep 2017; 4:322-330. [PMID: 29201594 PMCID: PMC5694503 DOI: 10.1007/s40473-017-0136-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose of Review In the context of human developmental conditions, we review the conceptualisation of schizophrenia as a neurodevelopmental disorder, the status of craniofacial dysmorphology as a clinically accessible index of brain dysmorphogenesis, the ability of genetically modified mouse models of craniofacial dysmorphology to inform on the underlying dysmorphogenic process and how geometric morphometric techniques in mutant mice can extend quantitative analysis. Recent Findings Mutant mice with disruption of neuregulin-1, a gene associated meta-analytically with risk for schizophrenia, constitute proof-of-concept studies of murine facial dysmorphology in a manner analogous to clinical studies in schizophrenia. Geometric morphometric techniques informed on the topography of facial dysmorphology and identified asymmetry therein. Summary Targeted disruption in mice of genes involved in individual components of developmental processes and analysis of resultant facial dysmorphology using geometric morphometrics can inform on mechanisms of dysmorphogenesis at levels of incisiveness not possible in human subjects.
Collapse
Affiliation(s)
- John L Waddington
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.,Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Stanislav Katina
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ UK.,Institute of Mathematics and Statistics, Masaryk University, Brno, Czech Republic.,Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Adrian W Bowman
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ UK
| |
Collapse
|
12
|
Lewyllie A, Roosenboom J, Indencleef K, Claes P, Swillen A, Devriendt K, Carels C, Cadenas De Llano-Pérula M, Willems G, Hens G, Verdonck A. A Comprehensive Craniofacial Study of 22q11.2 Deletion Syndrome. J Dent Res 2017; 96:1386-1391. [PMID: 28732176 DOI: 10.1177/0022034517720630] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is one of the most frequent microdeletion syndromes and presents with a highly variable phenotype. In most affected individuals, specific but subtle facial features can be seen. In this observational study, we aim to investigate the craniofacial and dental features of 20 children with a confirmed diagnosis of 22q11.2DS by analyzing 3-dimensional (3D) facial surface scans, 2-dimensional (2D) clinical photographs, panoramic and cephalometric radiographs, and dental casts. The 3D facial scans were compared to scans of a healthy control group and analyzed using a spatially dense geometric morphometric approach. Cephalometric radiographs were digitally traced, and measurements were compared to existing standards. Occlusal and dental features were studied on dental casts and panoramic radiographs. Interestingly, a general trend of facial hypoplasia in the lower part of the face could be evidenced with the 3D facial analysis in children with 22q11.2DS compared to controls. Cephalometric analysis confirmed a dorsal position of the mandible to the maxilla in 2D and showed an enlarged cranial base angle. Measurements for occlusion did not differ significantly from standards. Despite individual variability, we observed a retruded lower part of the face as a common feature, and we also found a significantly higher prevalence of tooth agenesis in our cohort of 20 children with 22q11.2DS (20%). Furthermore, 3D facial surface scanning proved to be an important noninvasive, diagnostic tool to investigate external features and the underlying skeletal pattern.
Collapse
Affiliation(s)
- A Lewyllie
- 1 Department of Oral Health Sciences - Orthodontics, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - J Roosenboom
- 2 Department of Neurosciences, Experimental Otorhinolaryngology, KU Leuven, Leuven, Belgium
| | - K Indencleef
- 3 Medical Image Computing, ESAT/PSI, Department of Electrical Engineering, KU Leuven, Medical Imaging Research Center, Leuven, Belgium
| | - P Claes
- 3 Medical Image Computing, ESAT/PSI, Department of Electrical Engineering, KU Leuven, Medical Imaging Research Center, Leuven, Belgium
| | - A Swillen
- 4 Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - K Devriendt
- 4 Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - C Carels
- 1 Department of Oral Health Sciences - Orthodontics, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - M Cadenas De Llano-Pérula
- 1 Department of Oral Health Sciences - Orthodontics, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - G Willems
- 1 Department of Oral Health Sciences - Orthodontics, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - G Hens
- 5 Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - A Verdonck
- 1 Department of Oral Health Sciences - Orthodontics, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Bookstein FL. Reconsidering "The inappropriateness of conventional cephalometrics". Am J Orthod Dentofacial Orthop 2017; 149:784-97. [PMID: 27241987 DOI: 10.1016/j.ajodo.2015.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/26/2022]
Abstract
Of all the articles on cephalometrics this journal has published over the last half-century, the one most cited across the scientific literature is the 1979 lecture "The inappropriateness of conventional cephalometrics" by Robert Moyers and me. But the durable salience of this article is perplexing, as its critique was misdirected (it should have been aimed at the craniometrics of the early twentieth century, not merely the roentgenographic extension used in the orthodontic clinic) and its proposed remedies have all failed to establish themselves as methods of any broad utility. When problems highlighted by Moyers and me have been resolved at all, the innovations that resolved them owe to tools very different from those suggested in our article and imported from fields quite a bit farther from biometrics than we expected back in 1979. One of these tools was the creation de novo of a new abstract mathematical construction, statistical shape space, in the 1980s and 1990s; another was a flexible and intuitive new graphic, the thin-plate spline, for meaningfully and suggestively visualizing a wide variety of biological findings in these spaces. On the other hand, many of the complaints Moyers and I enunciated back in 1979, especially those stemming from the disarticulation of morphometrics from the explanatory styles and purposes of clinical medicine, remain unanswered even today. The present essay, a retrospective historical meditation, reviews the context of the 1979 publication, its major themes, and its relevance today. This essay is dedicated to the memory of Robert E. Moyers on the 100th anniversary of the American Journal of Orthodontics and Dentofacial Orthopedics.
Collapse
Affiliation(s)
- Fred L Bookstein
- Professor emeritus, Department of Statistics, University of Washington, Seattle, Wash; professor of Morphometrics, Department of Anthropology, University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Prasad S, Katina S, Hennessy RJ, Murphy KC, Bowman AW, Waddington JL. Craniofacial dysmorphology in 22q11.2 deletion syndrome by 3D laser surface imaging and geometric morphometrics: illuminating the developmental relationship to risk for psychosis. Am J Med Genet A 2016; 167A:529-36. [PMID: 25691406 PMCID: PMC4737262 DOI: 10.1002/ajmg.a.36893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/31/2014] [Indexed: 11/17/2022]
Abstract
Persons with 22q11.2 deletion syndrome (22q11.2DS) are characterized inter alia by facial dysmorphology and greatly increased risk for psychotic illness. Recent studies indicate facial dysmorphology in adults with schizophrenia. This study evaluates the extent to which the facial dysmorphology of 22q11.2DS is similar to or different from that evident in schizophrenia. Twenty‐one 22q11.2DS‐sibling control pairs were assessed using 3D laser surface imaging. Geometric morphometrics was applied to 30 anatomical landmarks, 480 geometrically homologous semi‐landmarks on curves and 1720 semi‐landmarks interpolated on each 3D facial surface. Principal component (PC) analysis of overall shape space indicated PC2 to strongly distinguish 22q11.2DS from controls. Visualization of PC2 indicated 22q11.2DS and schizophrenia to be similar in terms of overall widening of the upper face, lateral displacement of the eyes/orbits, prominence of the cheeks, narrowing of the lower face, narrowing of nasal prominences and posterior displacement of the chin; they differed in terms of facial length (increased in 22q11.2DS, decreased in schizophrenia), mid‐face and nasal prominences (displaced upwards and outwards in 22q11.2DS, less prominent in schizophrenia); lips (more prominent in 22q11.2DS; less prominent in schizophrenia) and mouth (open mouth posture in 22q11.2DS; closed mouth posture in schizophrenia). These findings directly implicate dysmorphogenesis in a cerebral‐craniofacial domain that is common to 22q11.2DS and schizophrenia and which may repay further clinical and genetic interrogation in relation to the developmental origins of psychotic illness. © 2015 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah Prasad
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
15
|
Basel-Vanagaite L, Wolf L, Orin M, Larizza L, Gervasini C, Krantz I, Deardoff M. Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis. Clin Genet 2016; 89:557-63. [DOI: 10.1111/cge.12716] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
Affiliation(s)
- L. Basel-Vanagaite
- Medical Genetics Department; Schneider Children's Medical Center of Israel, Rabin Medical Center; Petah Tikva Israel
- Felsenstein Medical Research Center; Petah Tikva Israel
- Tel Aviv University; Tel Aviv Israel
- FDNA Inc.; Boston, MA USA
| | - L. Wolf
- Tel Aviv University; Tel Aviv Israel
- FDNA Inc.; Boston, MA USA
| | | | - L. Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
- Department of Health Sciences, Medical Genetics; University of Milano; Milan Italy
| | - C. Gervasini
- Laboratory of Medical Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
- Department of Health Sciences, Medical Genetics; University of Milano; Milan Italy
| | - I.D. Krantz
- Division of Human Molecular Genetics; The Children's Hospital of Philadelphia; Philadelphia PA USA
- The Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - M.A. Deardoff
- Division of Human Molecular Genetics; The Children's Hospital of Philadelphia; Philadelphia PA USA
- The Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
16
|
Katina S, McNeil K, Ayoub A, Guilfoyle B, Khambay B, Siebert P, Sukno F, Rojas M, Vittert L, Waddington J, Whelan PF, Bowman AW. The definitions of three-dimensional landmarks on the human face: an interdisciplinary view. J Anat 2015; 228:355-65. [PMID: 26659272 PMCID: PMC4832301 DOI: 10.1111/joa.12407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 11/29/2022] Open
Abstract
The analysis of shape is a key part of anatomical research and in the large majority of cases landmarks provide a standard starting point. However, while the technology of image capture has developed rapidly and in particular three‐dimensional imaging is widely available, the definitions of anatomical landmarks remain rooted in their two‐dimensional origins. In the important case of the human face, standard definitions often require careful orientation of the subject. This paper considers the definitions of facial landmarks from an interdisciplinary perspective, including biological and clinical motivations, issues associated with imaging and subsequent analysis, and the mathematical definition of surface shape using differential geometry. This last perspective provides a route to definitions of landmarks based on surface curvature, often making use of ridge and valley curves, which is genuinely three‐dimensional and is independent of orientation. Specific definitions based on curvature are proposed. These are evaluated, along with traditional definitions, in a study that uses a hierarchical (random effects) model to estimate the error variation that is present at several different levels within the image capture process. The estimates of variation at these different levels are of interest in their own right but, in addition, evidence is provided that variation is reduced at the observer level when the new landmark definitions are used.
Collapse
Affiliation(s)
- Stanislav Katina
- Institute of Mathematics and Statistics, Masaryk University, Brno, Czech Republic.,School of Mathematics and Statistics, The University of Glasgow, Glasgow, UK
| | - Kathryn McNeil
- School of Mathematics and Statistics, The University of Glasgow, Glasgow, UK
| | - Ashraf Ayoub
- College of MVLS, School of Medicine, Dental School, The University of Glasgow, Glasgow, UK
| | | | | | - Paul Siebert
- School of Computing Science, The University of Glasgow, Glasgow, UK
| | - Federico Sukno
- Department of Information and Communication Technologies, Pompeu Fabra University, Barcelona, Spain
| | - Mario Rojas
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Image Processing and Analysis, Dublin City University, Dublin, Ireland
| | - Liberty Vittert
- School of Mathematics and Statistics, The University of Glasgow, Glasgow, UK
| | - John Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul F Whelan
- Centre for Image Processing and Analysis, Dublin City University, Dublin, Ireland
| | - Adrian W Bowman
- School of Mathematics and Statistics, The University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neurosci Biobehav Rev 2015; 58:19-35. [DOI: 10.1016/j.neubiorev.2015.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/03/2023]
|
18
|
Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA, Rothblat LA, LaMantia AS. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Prog Neurobiol 2015; 130:1-28. [PMID: 25866365 DOI: 10.1016/j.pneurobio.2015.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/24/2015] [Accepted: 03/29/2015] [Indexed: 12/21/2022]
Abstract
Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic "model" syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that "modeling a model", in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development.
Collapse
Affiliation(s)
- Daniel W Meechan
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Thomas M Maynard
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Eric S Tucker
- Department of Neurobiology and Anatomy, Neuroscience Graduate Program, and Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alejandra Fernandez
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Beverly A Karpinski
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Lawrence A Rothblat
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States; Department of Psychology, The George Washington University, Washington, DC, United States
| | - Anthony-S LaMantia
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States.
| |
Collapse
|