1
|
Zhuang J, Zhang N, Fu W, Jiang Y, Chen Y, Chen C. Prenatal diagnosis of fetuses with 15q11.2 BP1-BP2 microdeletion in the Chinese population: a seven-year single-center retrospective study. Mol Cytogenet 2024; 17:20. [PMID: 39218907 PMCID: PMC11367773 DOI: 10.1186/s13039-024-00690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The 15q11.2 BP1-BP2 microdeletion syndrome is associated with developmental delays, language impairments, neurobehavioral disorders, and psychiatric complications. The aim of the present study was to provide prenatal and postnatal clinical data for 16 additional fetuses diagnosed with the 15q11.2 BP1-BP2 microdeletion syndrome in the Chinese population. METHODS A total of 5,789 pregnancy women that underwent amniocentesis were enrolled in the present study. Both karyotype analysis and chromosomal microarray analysis (CMA) were conducted on these subjects to detect chromosomal abnormalities and copy number variants (CNVs). Whole exome sequencing (WES) was performed to investigate sequence variants in subjects with clinical abnormalities after birth. RESULTS Sixteen fetuses with 15q11.2 BP1-BP2 microdeletion were identified in the present study, with a detection rate of 0.28% (16/5,789). The 15q11.2 BP1-BP2 microdeletion fragments ranged from 311.8 kb to 849.7 kb, encompassing the NIPA1, NIPA2, CYFIP1, and TUBGCP5 genes. The follow-up results regarding pregnancy outcomes showed that five cases opted for pregnancy termination, while the remaining cases continued with their pregnancies. Subsequent postnatal follow-up indicated that only one case with the 15q11.2 BP1-BP2 microdeletion displayed neurodevelopmental disorders, demonstrating an incomplete penetrance rate of 9.09% (1/11). CONCLUSION The majority of fetuses with the 15q11.2 microdeletion exhibit typical features during early childhood, indicating a low penetrance and mild impact. Nonetheless, pregnancies involving fetuses with the 15q11.2 microdeletion require thorough prenatal counseling. Additionally, enhanced supervision and extended postnatal monitoring are warranted for those who choose to proceed with their pregnancies.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China.
| | - Na Zhang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Wanyu Fu
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Yuying Jiang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Yu'e Chen
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China.
| | - Chunnuan Chen
- Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
2
|
Sciacca M, Marino L, Vitaliti G, Falsaperla R, Marino S. NRXN1 Deletion in Two Twins’ Genotype and Phenotype: A Clinical Case and Literature Review. CHILDREN 2022; 9:children9050698. [PMID: 35626875 PMCID: PMC9139251 DOI: 10.3390/children9050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
In the literature, deletions in the 2p16.3 region of the neurexin gene (NRXN1) are associated with cognitive impairment, and other neuropsychiatric disorders, such as schizophrenia, autism, and Pitt–Hopkins-like syndrome 2. In this paper, we present twins with deletion 2p16.3 of the NRXN1 gene using a comparative genomic hybridization array. The two children had a dual diagnosis consisting of mild cognitive impairment and neurodevelopmental delay. Furthermore, they showed a dysmorphic phenotype characterized by facio-cranial disproportion, turricephalus, macrocrania, macrosomia, strabismus, and abnormal conformation of both auricles with low implantation. The genetic analysis of the family members showed the presence, in the father’s genetic test, of a microdeletion of the short arm of chromosome 2, in the 2p16.3 region. Our case report can expand the knowledge on the genotype–phenotype association in carriers of 2p16.3 deletion and for genetic counseling that could help in the prevention and eventual treatment of this genetic condition. Newborn carriers should undergo neurobehavioral follow-ups for timely detection of warning signs.
Collapse
Affiliation(s)
- Monica Sciacca
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, 95100 Catania, Italy; (M.S.); (L.M.)
| | - Lidia Marino
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, 95100 Catania, Italy; (M.S.); (L.M.)
| | - Giovanna Vitaliti
- Section of Pediatrics, Department of Medical Sciences, Sant’Anna University Hospital, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit, AOU “Policlinico”, PO “San Marco”, University of Catania, 95100 Catania, Italy;
- Unit of Pediatrics and Pediatric Emergency, AOU “Policlinico”, PO “San Marco”, University of Catania, 95100 Catania, Italy;
| | - Silvia Marino
- Unit of Pediatrics and Pediatric Emergency, AOU “Policlinico”, PO “San Marco”, University of Catania, 95100 Catania, Italy;
| |
Collapse
|
3
|
Kang J, Lee CN, Su YN, Lin MW, Tai YY, Hsu WW, Huang KY, Chen CL, Hung CH, Lin SY. The Prenatal Diagnosis and Clinical Outcomes of Fetuses With 15q11.2 Copy Number Variants: A Case Series of 36 Patients. Front Med (Lausanne) 2021; 8:754521. [PMID: 34888324 PMCID: PMC8649837 DOI: 10.3389/fmed.2021.754521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Prenatal genetic counseling of fetuses diagnosed with 15q11.2 copy number variants (CNVs) involving the BP1–BP2 region is difficult due to limited information and controversial opinion on prognosis. In total, we collected the data of 36 pregnant women who underwent prenatal microarray analysis from 2010 to 2017 and were assessed at National Taiwan University Hospital. Comparison of the maternal characteristics, prenatal ultrasound findings, and postnatal outcomes among the different cases involving the 15q11.2 BP1–BP2 region were presented. Out of the 36 fetuses diagnosed with CNVs involving the BP1–BP2 region, five were diagnosed with microduplications and 31 with microdeletions. Among the participants, 10 pregnant women received termination of pregnancy and 26 gave birth to healthy individuals (27 babies in total). The prognoses of 15q11.2 CNVs were controversial and recent studies have revealed its low pathogenicity. In our study, the prenatal abnormal ultrasound findings were recorded in 12 participants and were associated with 15q11.2 deletions. No obvious developmental delay or neurological disorders were detected in early childhood.
Collapse
Affiliation(s)
- Jessica Kang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ning Su
- Sofiva Genomics Co. Ltd., Taipei, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yi-Yun Tai
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Wei Hsu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hospital Yun-Lin Branch, Yunlin, Taiwan
| | - Kuan-Ying Huang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chi-Ling Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Hui Hung
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Adverse Perinatal and Early Life Outcomes following 15q11.2 CNV Diagnosis. Genes (Basel) 2021; 12:genes12101480. [PMID: 34680874 PMCID: PMC8535766 DOI: 10.3390/genes12101480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
The copy number variation (CNV) of 15q11.2, an emerging and common condition observed during prenatal counseling, is encompassed by four highly conserved and non-imprinted genes—TUBGCP5, CYFIP1, NIPA1, and NIPA2—which are reportedly related to developmental delays or general behavioral problems. We retrospectively analyzed 1337 samples from genetic amniocentesis for fetal CNV using microarray-based comparative genomic hybridization analysis between January 2014 and December 2019. 15q11.2 CNV showed a prevalence of 1.5% (21/1337). Separately, 0.7% was noted for 15q11.2 BP1–BP2 microdeletion and 0.8% for 15q11.2 microduplication. Compared to the normal array group, the 15q11.2 BP1–BP2 microdeletion group had more cases of neonatal intensive care unit transfer, an Apgar score of <7 at 1 min, and neonatal death. Additionally, the group was symptomatic with developmental delays and had more infantile deaths related to congenital heart disease (CHD). Our study makes a novel contribution to the literature by exploring the differences in the adverse perinatal outcomes and early life conditions between the 15q11.2 CNV and normal array groups. Parent-origin gender-based differences may help in the prognosis of the fetal phenotype; development levels should be followed up in the long term and echocardiography should be offered prenatally and postnatally for the prevention of a delayed diagnosis of CHD.
Collapse
|
5
|
Peltekova I, Buhas D, Stern L, Kirby E, Yusuf A, Elsabbagh M. Enhancing the Impact of Genomics Research in Autism through Integration of Research Results into Routine Care Pathways-A Case Series. J Pers Med 2021; 11:755. [PMID: 34442399 PMCID: PMC8400173 DOI: 10.3390/jpm11080755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
The return of genetic results (RoR) to participants, enrolled as children, in autism research remains a complex process. Existing recommendations offer limited guidance on the use of genetic research results for clinical care. We highlight current challenges with RoR and illustrate how the use of a guiding framework drawn from existing literature facilitates RoR and the clinical integration of genetic research results. We report a case series (n = 16) involving the return of genetic results to participants in large genomics studies in Autism Spectrum Disorders (ASD). We outline the framework that guided RoR and facilitated integration into clinical care pathways. We highlight specific cases to illustrate challenges that were, or could have been, resolved through this framework. The case series demonstrates the ethical, clinical and practical difficulties of RoR in ASD genomic studies for participants enrolled as children. Challenges were resolved using pre-established framework to guide RoR and incorporate research genetic results into clinical care. We suggest that optimal use of genetic research results relies on their integration into individualized care pathways for participants. We offer a framework that attempts to bridge the gap between research and healthcare in ASD.
Collapse
Affiliation(s)
- Iskra Peltekova
- McGill University Health Centre, McGill University, Montreal, QC H3A 0G4, Canada; (D.B.); (L.S.); (M.E.)
- Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC M4A 3J1, Canada
| | - Daniela Buhas
- McGill University Health Centre, McGill University, Montreal, QC H3A 0G4, Canada; (D.B.); (L.S.); (M.E.)
- Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC M4A 3J1, Canada
| | - Lara Stern
- McGill University Health Centre, McGill University, Montreal, QC H3A 0G4, Canada; (D.B.); (L.S.); (M.E.)
- Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC M4A 3J1, Canada
| | - Emily Kirby
- Centre of Genomics and Policy, McGill University, Montreal, QC H3A 0G1, Canada;
| | - Afiqah Yusuf
- Azrieli Centre for Autism Research, Montreal Neurological Institute, Montreal, QC H3A 2B4, Canada;
| | - Mayada Elsabbagh
- McGill University Health Centre, McGill University, Montreal, QC H3A 0G4, Canada; (D.B.); (L.S.); (M.E.)
- Azrieli Centre for Autism Research, Montreal Neurological Institute, Montreal, QC H3A 2B4, Canada;
| |
Collapse
|
6
|
Phenotypic Diversity of 15q11.2 BP1-BP2 Deletion in Three Korean Families with Development Delay and/or Intellectual Disability: A Case Series and Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11040722. [PMID: 33921555 PMCID: PMC8072617 DOI: 10.3390/diagnostics11040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
The 15q11.2 breakpoint (BP) 1–BP2 deletion syndrome is emerging as the most frequent pathogenic copy number variation in humans related to neurodevelopmental diseases, with changes in cognition, behavior, and brain morphology. Previous publications have reported that patients with 15q11.2 BP1–BP2 deletion showed intellectual disability (ID), speech impairment, developmental delay (DD), and/or behavioral problems. We describe three new cases, aged 3 or 6 years old and belonging to three unrelated Korean families, with a 350-kb 15q11.2 BP1–BP2 deletion of four highly conserved genes, namely, the TUBGCP5, CYFIP1, NIPA2, and NIPA1 genes. All of our cases presented with global DD and/or ID, and the severity ranged from mild to severe, but common facial dysmorphism and congenital malformations in previous reports were not characteristic. The 15q11.2 BP1–BP2 deletion was inherited from an unaffected parent in all cases. Our three cases, together with previous findings from the literature review, confirm some of the features earlier reported to be associated with 15q11.2 BP1–BP2 deletion and help to further delineate the phenotype associated with 15q11.2 deletion. Identification of more cases with 15q11.2 BP1–BP2 deletion will allow us to obtain a better understanding of the clinical phenotypes. Further explanation of the functions of the genes within the 15q11.2 BP1–BP2 region is required to resolve the pathogenic effects on neurodevelopment.
Collapse
|
7
|
Maya I, Perlman S, Shohat M, Kahana S, Yacobson S, Tenne T, Agmon-Fishman I, Tomashov Matar R, Basel-Salmon L, Sukenik-Halevy R. Should We Report 15q11.2 BP1-BP2 Deletions and Duplications in the Prenatal Setting? J Clin Med 2020; 9:jcm9082602. [PMID: 32796639 PMCID: PMC7463673 DOI: 10.3390/jcm9082602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022] Open
Abstract
Copy number variations of the 15q11.2 region at breakpoints 1-2 (BP1-BP2) have been associated with variable phenotypes and low penetrance. Detection of such variations in the prenatal setting can result in significant parental anxiety. The clinical significance of pre- and postnatally detected 15q11.2 BP1-BP2 deletions and duplications was assessed. Of 11,004 chromosomal microarray tests performed in a single referral lab (7596 prenatal, 3408 postnatal), deletions were detected in 66 cases: 39 in prenatal tests (0.51%) and 27 in postnatal tests (0.79%). Duplications were detected in 94 cases: 62 prenatal tests (0.82%) and 32 postnatal tests (0.94%). The prevalence of deletions and duplications among clinically indicated prenatal tests (0.57% and 0.9%, respectively) did not differ significantly in comparison to unindicated tests (0.49% and 0.78%, respectively). The prevalence of deletions and duplications among postnatal tests performed for clinical indications was similar to the prevalence in healthy individuals (0.73% and 1% vs. 0.98% and 0.74%, respectively). The calculated penetrance of deletions and duplications over the background risk was 2.18% and 1.16%, respectively. We conclude that the pathogenicity of 15q11.2 BP1-BP2 deletions and duplications is low. Opting out the report of these copy number variations to both clinicians and couples should be considered.
Collapse
Affiliation(s)
- Idit Maya
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva 49100, Israel; (I.M.); (S.K.); (S.Y.); (I.A.-F.); (R.T.M.); (L.B.-S.)
| | - Sharon Perlman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.P.); (M.S.)
- Ultrasound Unit, Helen Schneider Women’s Hospital, Rabin Medical Center, Petach Tikva 49100, Israel
| | - Mordechai Shohat
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.P.); (M.S.)
- Genetic Institute, Maccabi Health medicinal organization, Rehovot, and Bioinformatics Unit, Cancer Research center, Chaim Sheba Medical Center, Tel-Hashome 52621, Israel
| | - Sarit Kahana
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva 49100, Israel; (I.M.); (S.K.); (S.Y.); (I.A.-F.); (R.T.M.); (L.B.-S.)
| | - Shiri Yacobson
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva 49100, Israel; (I.M.); (S.K.); (S.Y.); (I.A.-F.); (R.T.M.); (L.B.-S.)
| | - Tamar Tenne
- Genetic Institute, Meir Medical Center, Kfar Saba 28164, Israel;
| | - Ifaat Agmon-Fishman
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva 49100, Israel; (I.M.); (S.K.); (S.Y.); (I.A.-F.); (R.T.M.); (L.B.-S.)
| | - Reut Tomashov Matar
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva 49100, Israel; (I.M.); (S.K.); (S.Y.); (I.A.-F.); (R.T.M.); (L.B.-S.)
| | - Lina Basel-Salmon
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva 49100, Israel; (I.M.); (S.K.); (S.Y.); (I.A.-F.); (R.T.M.); (L.B.-S.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.P.); (M.S.)
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Pediatric Genetics Unit, Schneider Children’s Medical Center, Petah Tikva 49100, Israel
| | - Rivka Sukenik-Halevy
- Recanati Genetic Institute, Rabin Medical Center, Petah Tikva 49100, Israel; (I.M.); (S.K.); (S.Y.); (I.A.-F.); (R.T.M.); (L.B.-S.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.P.); (M.S.)
- Correspondence: ; Tel.: +972-52-6007249
| |
Collapse
|
8
|
Beygo J, Buiting K, Ramsden SC, Ellis R, Clayton-Smith J, Kanber D. Update of the EMQN/ACGS best practice guidelines for molecular analysis of Prader-Willi and Angelman syndromes. Eur J Hum Genet 2019; 27:1326-1340. [PMID: 31235867 PMCID: PMC6777528 DOI: 10.1038/s41431-019-0435-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 11/23/2022] Open
Abstract
This article is an update of the best practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes published in 2010 in BMC Medical Genetics [1]. The update takes into account developments in terms of techniques, differential diagnoses and (especially) reporting standards. It highlights the advantages and disadvantages of each method and moreover, is meant to facilitate the interpretation of the obtained results - leading to improved standardised reports.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Rachael Ellis
- Department of Medical Genetics, Yorkhill NHS Trust, Yorkhill Hospital, Glasgow, G3 8SJ, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
- Division of Evolution and Genomic Sciences School of Biological Sciences University of Manchester, Manchester, UK
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
9
|
Woo YJ, Kanellopoulos AK, Hemati P, Kirschen J, Nebel RA, Wang T, Bagni C, Abrahams BS. Domain-Specific Cognitive Impairments in Humans and Flies With Reduced CYFIP1 Dosage. Biol Psychiatry 2019; 86:306-314. [PMID: 31202490 PMCID: PMC6679746 DOI: 10.1016/j.biopsych.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Deletions encompassing a four-gene region on chromosome 15 (BP1-BP2 at 15q11.2), seen at a population frequency of 1 in 500, are associated with increased risk for schizophrenia, epilepsy, and other common neurodevelopmental disorders. However, little is known in terms of how these common deletions impact cognition. METHODS We used a Web-based tool to characterize cognitive function in a novel cohort of adult carriers and their noncarrier family members. Results from 31 carrier and 38 noncarrier parents from 40 families were compared with control data from 6530 individuals who self-registered on the Lumosity platform and opted in to participate in research. We then examined aspects of sensory and cognitive function in flies harboring a mutation in Cyfip, the homologue of one of the genes within the deletion. For the fly studies, 10 or more groups of 50 individuals per genotype were included. RESULTS Our human studies revealed profound deficits in grammatical reasoning, arithmetic reasoning, and working memory in BP1-BP2 deletion carriers. No such deficits were observed in noncarrier spouses. Our fly studies revealed deficits in associative and nonassociative learning despite intact sensory perception. CONCLUSIONS Our results provide new insights into outcomes associated with BP1-BP2 deletions and call for a discussion on how to appropriately communicate these findings to unaffected carriers. Findings also highlight the utility of an online tool in characterizing cognitive function in a geographically distributed population.
Collapse
Affiliation(s)
- Young Jae Woo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Parisa Hemati
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York; Human Genetics Program, Sarah Lawrence College, Yonkers, New York
| | - Jill Kirschen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Rebecca A Nebel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Brett S Abrahams
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
10
|
Magnesium Supplement and the 15q11.2 BP1-BP2 Microdeletion (Burnside-Butler) Syndrome: A Potential Treatment? Int J Mol Sci 2019; 20:ijms20122914. [PMID: 31207912 PMCID: PMC6627575 DOI: 10.3390/ijms20122914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
The 15q11.2 BP1–BP2 microdeletion (Burnside–Butler) syndrome is an emerging disorder that encompasses four genes (NIPA1, NIPA2, CYFIP1, and TUBGCP5). When disturbed, these four genes can lead to cognitive impairment, language and/or motor delay, psychiatric/behavioral problems (attention-deficit hyperactivity, autism, dyslexia, schizophrenia/paranoid psychosis), ataxia, seizures, poor coordination, congenital anomalies, and abnormal brain imaging. This microdeletion was reported as the most common cytogenetic finding when using ultra-high- resolution chromosomal microarrays in patients presenting for genetic services due to autism with or without additional clinical features. Additionally, those individuals with Prader–Willi or Angelman syndromes having the larger typical 15q11–q13 type I deletion which includes the 15q11.2 BP1–BP2 region containing the four genes, show higher clinical severity than those having the smaller 15q11–q13 deletion where these four genes are intact. Two of the four genes (i.e., NIPA1 and NIPA2) are expressed in the brain and encode magnesium transporters. Magnesium is required in over 300 enzyme systems that are critical for multiple cellular functions, energy expenditure, protein synthesis, DNA transcription, and muscle and nerve function. Low levels of magnesium are found in those with seizures, depression, and acute or chronic brain diseases. Anecdotally, parents have administered magnesium supplements to their children with the 15q11.2 BP1–BP2 microdeletion and have observed improvement in behavior and clinical presentation. These observations require more attention from the medical community and should include controlled studies to determine if magnesium supplements could be a treatment option for this microdeletion syndrome and also for a subset of individuals with Prader–Willi and Angelman syndromes.
Collapse
|
11
|
Fricano-Kugler C, Gordon A, Shin G, Gao K, Nguyen J, Berg J, Starks M, Geschwind DH. CYFIP1 overexpression increases fear response in mice but does not affect social or repetitive behavioral phenotypes. Mol Autism 2019; 10:25. [PMID: 31198525 PMCID: PMC6555997 DOI: 10.1186/s13229-019-0278-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background CYFIP1, a protein that interacts with FMRP and regulates protein synthesis and actin dynamics, is overexpressed in Dup15q syndrome as well as autism spectrum disorder (ASD). While CYFIP1 heterozygosity has been rigorously studied due to its loss in 15q11.2 deletion, Prader-Willi and Angelman syndrome, the effects of CYFIP1 overexpression, as is observed in patients with CYFIP1 duplication, are less well understood. Methods We developed and validated a mouse model of human CYFIP1 overexpression (CYFIP1 OE) using qPCR and western blot analysis. We performed a large battery of behavior testing on these mice, including ultrasonic vocalizations, three-chamber social assay, home-cage behavior, Y-maze, elevated plus maze, open field test, Morris water maze, fear conditioning, prepulse inhibition, and the hot plate assay. We also performed RNA sequencing and analysis on the basolateral amygdala. Results Extensive behavioral testing in CYFIP1 OE mice reveals no changes in the core behaviors related to ASD: social interactions and repetitive behaviors. However, we did observe mild learning deficits and an exaggerated fear response. Using RNA sequencing of the basolateral amygdala, a region associated with fear response, we observed changes in pathways related to cytoskeletal regulation, oligodendrocytes, and myelination. We also identified GABA-A subunit composition changes in basolateral amygdala neurons, which are essential components of the neural fear conditioning circuit. Conclusion Overall, this research identifies the behavioral and molecular consequences of CYFIP1 overexpression and how they contribute to the variable phenotype seen in Dup15q syndrome and in ASD patients with excess CYFIP1.
Collapse
Affiliation(s)
- Catherine Fricano-Kugler
- Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Aaron Gordon
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Grace Shin
- Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Kun Gao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Jade Nguyen
- Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Jamee Berg
- Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Mary Starks
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Daniel H. Geschwind
- Program in Neurobehavioral Genetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
12
|
Chen CP, Chang SY, Wang LK, Chang TY, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Yang CW, Town DD, Chen LF, Wang W. Prenatal diagnosis of a familial 15q11.2 (BP1-BP2) microdeletion encompassing TUBGCP5, CYFIP1, NIPA2 and NIPA1 in a fetus with ventriculomegaly, microcephaly and intrauterine growth restriction on prenatal ultrasound. Taiwan J Obstet Gynecol 2019; 57:730-733. [PMID: 30342661 DOI: 10.1016/j.tjog.2018.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis of a 15q11.2 (BP1-BP2) microdeletion encompassing TUBGCP5, CYFIP1, NIPA2 and NIPA1 in a fetus with ventriculomegaly, microcephaly and intrauterine growth restriction (IUGR) on prenatal ultrasound. CASE REPORT A 30-year-old, gravida 3, para 2, woman was referred to the hospital for amniocentesis because of fetal ventriculomegaly on prenatal ultrasound. Her husband was 31 years old. The couple had two healthy daughters, and there was no family history of mental disorders and congenital malformations. Amniocentesis revealed a karyotype of 46,XX. Array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes revealed a 451.89-kb 15q11.2 microdeletion or arr 15q11.2 (22,765,628-23,217,514) × 1.0 [GRCh37 (hg19)] encompassing TUBGCP5, CYFIP1, NIPA2 and NIPA1. The parental karyotypes were normal. aCGH analysis on the DNAs extracted from parental bloods revealed a 402-kb 15q11.2 microdeletion or arr 15q11.2 (22,815,577-23,217,514) × 1.0 (hg19) encompassing TUBGCP5, CYFIP1, NIPA2 and NIPA1 in the phenotypically normal father. The mother did not have any genomic imbalance. Level II ultrasound at 21 weeks of gestation revealed microcephaly and IUGR. The parents elected to terminate the pregnancy at 22 weeks of gestation, and a female fetus was delivered with a body weight of 448 g (10th centile) and a body length of 26 cm (3rd-10th centile) but no gross abnormalities. CONCLUSION Fetuses with a 15q11.2 (BP1-BP2) microdeletion may present ventriculomegaly, microcephaly and IUGR on prenatal ultrasound, and aCGH is helpful for prenatal diagnosis under such a circumstance.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Shu-Yuan Chang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Liang-Kai Wang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Dai-Dyi Town
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Li-Feng Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
13
|
Phenotypic association of 15q11.2 CNVs of the region of breakpoints 1–2 (BP1–BP2) in a large cohort of samples referred for genetic diagnosis. J Hum Genet 2018; 64:253-255. [DOI: 10.1038/s10038-018-0543-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/29/2023]
|
14
|
Sgardioli IC, Lustosa-Mendes E, dos Santos AP, Vieira TP, Gil-da-Silva-Lopes VL. A Rare Case of Concomitant Deletions in 15q11.2 and 19p13.3. Cytogenet Genome Res 2018; 156:80-86. [DOI: 10.1159/000493283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2018] [Indexed: 01/29/2023] Open
Abstract
A female individual with concomitant deletions in 15q11.2 and 19p13.3 is reported. She presents facial dysmorphisms, motor delay, learning difficulties, and mild behavioral impairment. After chromosomal microarray analysis, the final karyotype was established as 46,XX.arr[GRCh37] 15q11.2 (22770421_23282798)×1,19p13.3(3793904_4816330)×1. The deletion in 15q11.2 is 507 kb in size involving 7 non-imprinted genes, 4 of which are registered in the OMIM database and are implicated in neuropsychiatric or neurodevelopmental disorders. The deletion in 19p13.3 is 1,022 kb in size and encompasses 47 genes, most of which do not have a well-known function. The genotype-phenotype correlation is discussed, and most of the features could be related to the 19p13.3 deletion, except for velopharyngeal insufficiency. Other genes encompassed in the deleted region, as well as unrecognized epistatic factors could also be involved. Nevertheless, the two-hit model related to the 15q11.2 deletion would be an important hypothesis to be considered.
Collapse
|
15
|
Hammond CL, Willoughby JM, Parker MJ. Genomics for paediatricians: promises and pitfalls. Arch Dis Child 2018; 103:895-900. [PMID: 29574410 DOI: 10.1136/archdischild-2017-314558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
In recent years, there have been significant advances in genetic technologies, evolving the field of genomics from genetics. This has huge diagnostic potential, as genomic testing increasingly becomes part of mainstream medicine. However, there are numerous potential pitfalls in the interpretation of genomic data. It is therefore essential that we educate clinicians more widely about the appropriate interpretation and utilisation of genomic testing.
Collapse
Affiliation(s)
- Carrie Louise Hammond
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Josh Matthew Willoughby
- Sheffield Diagnostic Genetic Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Michael James Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
16
|
Kuroda Y, Ohashi I, Naruto T, Ida K, Enomoto Y, Saito T, Nagai JI, Yanagi S, Ueda H, Kurosawa K. Familial total anomalous pulmonary venous return with 15q11.2 (BP1-BP2) microdeletion. J Hum Genet 2018; 63:1185-1188. [PMID: 30108319 DOI: 10.1038/s10038-018-0499-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/12/2018] [Accepted: 07/21/2018] [Indexed: 01/28/2023]
Abstract
A 15q11.2 microdeletion (BP1-BP2) is associated with congenital heart diseases (CHDs), developmental delay, and epilepsy. This deletion co-occurs with CHD in 20-30% patients, but a familial case of CHD and a 15q11.2 deletion has not been identified. Here we report the first familial (three siblings) case of total anomalous pulmonary venous return associated with 15q11.2 deletion. Array comparative genomic hybridization identified a ~395 kb deletion at 15q11.2 in patient 1. This deletion was confirmed by fluorescence in situ hybridization in patients 1 and 3 and their asymptomatic father. No deleterious mutation was identified by proband-only exome sequencing of patient 1. One healthy sibling and their mother did not carry the deletion. This deletion is often inherited from asymptomatic parents with an estimated low penetrance of 10.4%. Conversely, we observed high penetrance of this deletion, but secondary copy-number variants or pathogenic variants were not detected in this family.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan.
| | - Ikuko Ohashi
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kazumi Ida
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Toshiyuki Saito
- Department of Clinical Laboratory, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Jun-Ichi Nagai
- Department of Clinical Laboratory, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Sadamitsu Yanagi
- Department of Cardiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hideaki Ueda
- Department of Cardiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan.
| |
Collapse
|
17
|
Al Shehhi M, Forman EB, Fitzgerald JE, McInerney V, Krawczyk J, Shen S, Betts DR, Ardle LM, Gorman KM, King MD, Green A, Gallagher L, Lynch SA. NRXN1 deletion syndrome; phenotypic and penetrance data from 34 families. Eur J Med Genet 2018; 62:204-209. [PMID: 30031152 DOI: 10.1016/j.ejmg.2018.07.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/24/2018] [Accepted: 07/17/2018] [Indexed: 11/16/2022]
Abstract
The spectrum of phenotypes associated with heterozygous deletions of neurexin-1 (NRXN1) is diverse and includes: autism spectrum disorder, attention deficit hyperactivity disorder, intellectual disability, seizures, schizophrenia, mood disorders and congenital malformations. Reduced penetrance and variable expressivity of deletions in this gene remain a challenge for genetic counselling. We clinically reviewed 67 NRXN1 deletions from 34 families to document the phenotype and determine odds ratio. Thirty-four probands (5 adults, 29 children (<16 years)) were initially identified from a cohort clinically referred for arrayCGH. A further 33 NRXN1 deletions (16 with established phenotype) from the families were identified following cascade screening. Speech and language delay was a consistent clinical presentation. Pedigree analysis of the inherited group revealed numerous untested relatives with a history of mental health and developmental issues, most notably in the NRXN1β isoform patients. Our study highlights the complex nature of the NRXN1 phenotype in this population.
Collapse
Affiliation(s)
| | - Eva B Forman
- Children's University Hospital, Temple St., Dublin, Ireland.
| | - Jacqueline E Fitzgerald
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland; Trinity Institute of Neuroscience, Dublin, Ireland
| | - Veronica McInerney
- HRB Clinical Research Facility, National University of Ireland Galway, Newcastle Road Galway, Ireland
| | - Janusz Krawczyk
- HRB Clinical Research Facility, National University of Ireland Galway, Newcastle Road Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, (NUI) Galway, Ireland
| | - David R Betts
- Department of Clinical Genetics, OLCHC, Dublin12, Ireland
| | - Linda Mc Ardle
- Department of Clinical Genetics, OLCHC, Dublin12, Ireland
| | | | - Mary D King
- Children's University Hospital, Temple St., Dublin, Ireland; Academic Center on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Ireland
| | - Andrew Green
- Department of Clinical Genetics, OLCHC, Dublin12, Ireland; Children's University Hospital, Temple St., Dublin, Ireland; Academic Center on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Ireland
| | - Louise Gallagher
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Sally A Lynch
- Department of Clinical Genetics, OLCHC, Dublin12, Ireland; Children's University Hospital, Temple St., Dublin, Ireland; Academic Center on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Ireland
| |
Collapse
|
18
|
Butler MG. Clinical and genetic aspects of the 15q11.2 BP1-BP2 microdeletion disorder. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2017; 61:568-579. [PMID: 28387067 PMCID: PMC5464369 DOI: 10.1111/jir.12382] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/09/2017] [Accepted: 03/09/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND The 15q11.2 BP1-BP2 microdeletion (Burnside-Butler susceptibility locus) is an emerging condition with over 200 individuals reported in the literature. TUBGCP5, CFYIP1, NIPA1 and NIPA2 genes are located in this chromosome 15 region and when disturbed individually are known to cause neurological, cognitive or behavioural problems as well as playing a role in both Prader-Willi and Angelman syndromes. These syndromes were the first examples in humans of genomic imprinting and typically caused by a deletion but involving the distal chromosome 15q11-q13 breakpoint BP3 and proximally placed breakpoints BP1 or BP2 of different parental origin. The typical 15q11-q13 deletion involves BP1 and BP3 and the typical type II deletion at BP2 and BP3. Several studies have shown that individuals with the larger type I deletion found in both Prader-Willi and Angelman syndromes are reported with more severe neurodevelopmental symptoms compared to those individuals with the smaller type II deletion. METHODS The literature was reviewed and clinical and cytogenetic findings summarised in 200 individuals with this microdeletion along with the role of deleted genes in diagnosis, medical care and counseling of those affected and their family members. RESULTS Reported findings in this condition include developmental delays (73% of cases) and language impairment (67%) followed by motor delay (42%), attention deficit disorder/attention deficit hyperactivity disorder (35%) and autism spectrum disorder (27%). The de novo deletion frequency has been estimated at 5 to 22% with low penetrance possibly related to subclinical manifestation or incomplete clinical information on family members. A prevalence of 0.6 to 1.3% has been identified in one study for patients with neurological or behavioural problems presenting for genetic services and chromosomal microarray analysis. CONCLUSIONS The summarised results indicate that chromosome 15q11.2 BP1-BP2 microdeletion is emerging as one of the most common cytogenetic abnormalities seen in individuals with intellectual impairment, autism spectrum disorder and other related behavioural or clinical findings, but more research is needed.
Collapse
Affiliation(s)
- Merlin G. Butler
- University of Kansas Medical Center, Departments of Psychiatry & Behavioral Sciences and Pediatrics, Kansas City, KS USA
| |
Collapse
|
19
|
Benítez-Burraco A, Barcos-Martínez M, Espejo-Portero I, Jiménez-Romero S. Variable Penetrance of the 15q11.2 BP1-BP2 Microduplication in a Family with Cognitive and Language Impairment. Mol Syndromol 2017; 8:139-147. [PMID: 28588435 DOI: 10.1159/000468192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 11/19/2022] Open
Abstract
The 15q11.2 BP1-BP2 region is found duplicated or deleted in people with cognitive, language, and behavioral impairment. We report on a family (a father and 3 male twin siblings) that presents with a duplication of the 15q11.2 BP1-BP2 region and a variable phenotype: the father and the fraternal twin are normal carriers, whereas the monozygotic twins exhibit severe language and cognitive delay as well as behavioral disturbances. The genes located within the duplicated region are involved in brain development and function, and some of them are related to language processing. The probands' phenotype may result from changes in the expression level of some of these genes important for cognitive development.
Collapse
Affiliation(s)
| | - Montserrat Barcos-Martínez
- Maimónides Institute of Biomedical Research, Córdoba, Spain.,Laboratory of Molecular Genetics, University Hospital 'Reina Sofía', Córdoba, Spain
| | - Isabel Espejo-Portero
- Maimónides Institute of Biomedical Research, Córdoba, Spain.,Laboratory of Molecular Genetics, University Hospital 'Reina Sofía', Córdoba, Spain
| | - Salud Jiménez-Romero
- Maimónides Institute of Biomedical Research, Córdoba, Spain.,Department of Psychology, University of Córdoba, Córdoba, Spain
| |
Collapse
|
20
|
Chen CP, Lin SP, Lee CL, Chern SR, Wu PS, Chen YN, Chen SW, Wang W. Familial transmission of recurrent 15q11.2 (BP1-BP2) microdeletion encompassing NIPA1 , NIPA2 , CYFIP1 , and TUBGCP5 associated with phenotypic variability in developmental, speech, and motor delay. Taiwan J Obstet Gynecol 2017; 56:93-97. [DOI: 10.1016/j.tjog.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 02/08/2023] Open
|
21
|
Abstract
Although Prader-Willi syndrome (PWS) is a well-described clinical dysmorphic syndrome, DNA testing is required for a definitive diagnosis. A definitive diagnosis can be made in approximately 99% of cases using DNA testing; there are a number of DNA tests that can be used for this purpose, although there is no set standard algorithm of testing. The dilemma arises because of the complex genetic mechanisms at the basis of PWS, which need to be elucidated. To establish the molecular mechanism with a complete work up, involves at least 2 tests. Here we discuss the commonly used tests currently available and suggest a cost-effective approach to diagnostic testing.
Collapse
Affiliation(s)
- Arabella Smith
- University of Sydney Clinical School, Children's Hospital at Westmead, Westmead, Australia
| | - Dorothy Hung
- Children's Hospital at Westmead, Sydney Genome Diagnostics (Cytogenetics), Children's Hospital Network, PO Box 4001, Westmead, Australia
| |
Collapse
|
22
|
Wright D, Carey L, Battersby S, Nguyen T, Clarke M, Nash B, Gulesserian E, Cross J, Darmanian A. Validation of a Chromosomal Microarray for Prenatal Diagnosis Using a Prospective Cohort of Pregnancies with Increased Risk for Chromosome Abnormalities. Genet Test Mol Biomarkers 2016; 20:791-798. [PMID: 27690282 DOI: 10.1089/gtmb.2016.0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM Validation of a chromosomal microarray for improved prenatal diagnosis for chromosomal abnormalities among high-risk pregnancies. METHODS A cohort of 213 pregnancies was investigated by chromosomal microarray and the results were compared with quantitative fluorescent polymerase chain reaction (QF-PCR), karyotype, and 850K single-nucleotide polymorphism microarray results. The detection limit of mosaicism was determined by assaying different trisomy mosaic constructs down to ∼12%. Imprecision estimates from replicates of mean log2 ratio values for a 200 kb deletion and 400 kb duplication were determined by evaluating the coefficient of variation (CV%). RESULTS Excluding pregnancies with aneuploidy, the chromosomal microarray detected 19/213 (8.9%) pregnancies with copy number abnormalities. These were classified as pathogenic in 11/213 (5.2%) cases, as variants of uncertain significance in 4/213 (1.9%) cases, and as likely benign in 4/213 (1.9%) cases. In 15/213 (7.0%) pregnancies, these abnormalities were not detectable by karyotype. Importantly, 8/11 (72.7%) of the pathogenic abnormalities detected by chromosomal microarray were only detectable by this modality. There were no false-positive results and only eight false-negative results. The chromosomal microarray showed excellent sensitivity (96.2%) and specificity (100.0%). The lower detection limit for mosaicism was ∼12%. Imprecision for the 0.2 Mb deletion (11.6 CV%) and 0.4 Mb duplication (5.9 CV%) was very low. CONCLUSION This chromosomal microarray showed excellent diagnostic performance with improved detection rates compared to karyotyping for prenatal diagnosis of clinically relevant fetal chromosomal abnormalities.
Collapse
Affiliation(s)
- Dale Wright
- Department of Cytogenetics, Sydney Genome Diagnostics, The Children's Hospital at Westmead , Westmead, Australia
| | - Louise Carey
- Department of Cytogenetics, Sydney Genome Diagnostics, The Children's Hospital at Westmead , Westmead, Australia
| | - Siobhan Battersby
- Department of Cytogenetics, Sydney Genome Diagnostics, The Children's Hospital at Westmead , Westmead, Australia
| | - Thuy Nguyen
- Department of Cytogenetics, Sydney Genome Diagnostics, The Children's Hospital at Westmead , Westmead, Australia
| | - Melanie Clarke
- Department of Cytogenetics, Sydney Genome Diagnostics, The Children's Hospital at Westmead , Westmead, Australia
| | - Benjamin Nash
- Department of Cytogenetics, Sydney Genome Diagnostics, The Children's Hospital at Westmead , Westmead, Australia
| | - Elee Gulesserian
- Department of Cytogenetics, Sydney Genome Diagnostics, The Children's Hospital at Westmead , Westmead, Australia
| | - Jill Cross
- Department of Cytogenetics, Sydney Genome Diagnostics, The Children's Hospital at Westmead , Westmead, Australia
| | - Artur Darmanian
- Department of Cytogenetics, Sydney Genome Diagnostics, The Children's Hospital at Westmead , Westmead, Australia
| |
Collapse
|
23
|
Abstract
Congenital heart disease (CHD) is the most common class of major malformations in humans. The historical association with large chromosomal abnormalities foreshadowed the role of submicroscopic rare copy number variations (CNVs) as important genetic causes of CHD. Recent studies have provided robust evidence for these structural variants as genome-wide contributors to all forms of CHD, including CHD that appears isolated without extra-cardiac features. Overall, a CNV-related molecular diagnosis can be made in up to one in eight patients with CHD. These include de novo and inherited variants at established (chromosome 22q11.2), emerging (chromosome 1q21.1), and novel loci across the genome. Variable expression of rare CNVs provides support for the notion of a genetic spectrum of CHD that crosses traditional anatomic classification boundaries. Clinical genetic testing using genome-wide technologies (e.g., chromosomal microarray analysis) is increasingly employed in prenatal, paediatric and adult settings. CNV discoveries in CHD have translated to changes to clinical management, prognostication and genetic counselling. The convergence of findings at individual gene and at pathway levels is shedding light on the mechanisms that govern human cardiac morphogenesis. These clinical and research advances are helping to inform whole-genome sequencing, the next logical step in delineating the genetic architecture of CHD.
Collapse
|
24
|
Menke LA, van Belzen MJ, Alders M, Cristofoli F, Ehmke N, Fergelot P, Foster A, Gerkes EH, Hoffer MJV, Horn D, Kant SG, Lacombe D, Leon E, Maas SM, Melis D, Muto V, Park SM, Peeters H, Peters DJM, Pfundt R, van Ravenswaaij-Arts CMA, Tartaglia M, Hennekam RCM. CREBBP mutations in individuals without Rubinstein-Taybi syndrome phenotype. Am J Med Genet A 2016; 170:2681-93. [PMID: 27311832 DOI: 10.1002/ajmg.a.37800] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 11/08/2022]
Abstract
Mutations in CREBBP cause Rubinstein-Taybi syndrome. By using exome sequencing, and by using Sanger in one patient, CREBBP mutations were detected in 11 patients who did not, or only in a very limited manner, resemble Rubinstein-Taybi syndrome. The combined facial signs typical for Rubinstein-Taybi syndrome were absent, none had broad thumbs, and three had only somewhat broad halluces. All had apparent developmental delay (being the reason for molecular analysis); five had short stature and seven had microcephaly. The facial characteristics were variable; main characteristics were short palpebral fissures, telecanthi, depressed nasal ridge, short nose, anteverted nares, short columella, and long philtrum. Six patients had autistic behavior, and two had self-injurious behavior. Other symptoms were recurrent upper airway infections (n = 5), feeding problems (n = 7) and impaired hearing (n = 7). Major malformations occurred infrequently. All patients had a de novo missense mutation in the last part of exon 30 or beginning of exon 31 of CREBBP, between base pairs 5,128 and 5,614 (codons 1,710 and 1,872). No missense or truncating mutations in this region have been described to be associated with the classical Rubinstein-Taybi syndrome phenotype. No functional studies have (yet) been performed, but we hypothesize that the mutations disturb protein-protein interactions by altering zinc finger function. We conclude that patients with missense mutations in this specific CREBBP region show a phenotype that differs substantially from that in patients with Rubinstein-Taybi syndrome, and may prove to constitute one (or more) separate entities. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leonie A Menke
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands
| | - Martine J van Belzen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Francesca Cristofoli
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Nadja Ehmke
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Fergelot
- Department of Genetics, and INSERM U1211, University Hospital of Bordeaux, Bordeaux, France
| | - Alison Foster
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Clinical Genetics Unit, University of Birmingham, Birmingham, United Kingdom
| | - Erica H Gerkes
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Denise Horn
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Didier Lacombe
- Department of Genetics, and INSERM U1211, University Hospital of Bordeaux, Bordeaux, France
| | - Eyby Leon
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Saskia M Maas
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Daniela Melis
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Valentina Muto
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Hilde Peeters
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Raoul C M Hennekam
- Department of Pediatrics, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Srebniak MI, van Zutven LJCM, Petit F, Bouquillon S, van Heel IPJ, Knapen MFCM, Cornette JMJ, Kremer A, Van Opstal D, Diderich KEM. Interstitial 6q21q23 duplication - variant of variable phenotype and incomplete penetrance or benign duplication? Mol Cytogenet 2016; 9:43. [PMID: 27274769 PMCID: PMC4891832 DOI: 10.1186/s13039-016-0253-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosome 6q duplication syndrome is a chromosome abnormality associated with characteristic phenotypic features such as intellectual disability (ID), short stature, feeding difficulties, microcephaly, dysmorphic features (prominent forehead, downslanting palpebral fissures, flat nasal bridge, tented upper lip, micrognathia, short webbed neck) and joint contractures. Only a few cases of pure partial 6q trisomy have been published and the severity of the phenotype seems to depend on the breakpoint position. Unfortunately, most of these cases were identified using karyotyping or FISH, so breakpoints at the molecular level and thus gene content are not known. CASES PRESENTATION We report the first two families with an interstitial 6q duplication identified by karyotyping where the gene content and breakpoints were characterized with microarray. In family 1, the 6q22.1q23.2 duplication was detected in a female patient with ID. In family 2, the 6q21q22.33 duplication was identified in a male fetus with multiple congenital malformations. In both families, the duplication seems to show phenotypic heterogeneity and in family 1 also incomplete penetrance suggesting the co-existence of an "additional hit" in affected patients. This "additional hit" was identified in the first family to be a microduplication in 16p11.2, a known susceptibility locus (SL) for neurodevelopmental disorders, that co-segregated with an abnormal phenotype in the affected family members. CONCLUSIONS Our study shows that interstitial 6q21q23 duplication may represent a private variant that is benign, but may also contribute to developmental disorders of variable expressivity in a "multi-hit" model. Finding the "additional hit" within the family is therefore very important for genetic counseling and assessment of the CNV penetrance within the particular family.
Collapse
Affiliation(s)
- Malgorzata I Srebniak
- Department of Clinical Genetics, Erasmus MC, Ee2475, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Laura J C M van Zutven
- Department of Clinical Genetics, Erasmus MC, Ee2475, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Florence Petit
- Department of Clinical Genetics, University Hospital, Lille, France
| | | | - Ilse P J van Heel
- Department of Clinical Genetics, Erasmus MC, Ee2475, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Maarten F C M Knapen
- Department of Obstetrics and Gynecology, subdivision Obstetrics and Prenatal Medicine, Erasmus MC, Rotterdam, The Netherlands ; Stichting Prenatale Screening Zuidwest Nederland, Wytemaweg 80, Na-1509, 3015, GE Na-1503 Rotterdam, The Netherlands
| | - Jerome M J Cornette
- Department of Obstetrics and Gynecology, subdivision Obstetrics and Prenatal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Andreas Kremer
- Department of Bioinformatics Erasmus MC, Rotterdam, The Netherlands
| | - Diane Van Opstal
- Department of Clinical Genetics, Erasmus MC, Ee2475, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC, Ee2475, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
26
|
Parker MJ, Teasdale K, Parker MJ. The genetic assessment of looked after children: common reasons for referral and recent advances. Arch Dis Child 2016; 101:581-584. [PMID: 26848122 DOI: 10.1136/archdischild-2014-307215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/03/2016] [Indexed: 11/04/2022]
Abstract
Looked after children are recognised as generally having greater health needs than their peers. There are numerous potential causes, environmental and genetic, and the aetiology is often multifactorial. Assessments, especially clinical genetic ones, may be limited if the information available is incomplete or not shared. There have been some exciting recent advances in diagnostic genetic testing and more are on the horizon. However, we are currently only able to make a genetic diagnosis in less than half of patients, even when both parents are available for comparative testing. There may, therefore, remain an inevitable degree of residual uncertainty about the genetic contribution to a particular child's problems. There are increasing societal pressures for genetic information to be made available to individuals in general. However, there are significant considerations in carrier/predictive testing in children and we would maintain that looked after children should not be treated differently to other children in this regard, unless there is a compelling 'best interest' justification for so doing. Diagnostic criteria exist for fetal alcohol syndrome and other embryopathies and should be applied. Such should be considered as diagnoses of exclusion, so a child should not be prematurely labelled with these conditions, without fully assessing for the contribution of other factors, genetic or otherwise.
Collapse
Affiliation(s)
- Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, South Yorkshire, UK
| | - Katherine Teasdale
- Looked After and Adoptive Children's Health Team, Sheffield, South Yorkshire, UK
| | - Michael J Parker
- The Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome. PLoS One 2016; 11:e0147824. [PMID: 26841067 PMCID: PMC4739598 DOI: 10.1371/journal.pone.0147824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/08/2016] [Indexed: 11/19/2022] Open
Abstract
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.
Collapse
|
28
|
Nebel RA, Zhao D, Pedrosa E, Kirschen J, Lachman HM, Zheng D, Abrahams BS. Reduced CYFIP1 in Human Neural Progenitors Results in Dysregulation of Schizophrenia and Epilepsy Gene Networks. PLoS One 2016; 11:e0148039. [PMID: 26824476 PMCID: PMC4732616 DOI: 10.1371/journal.pone.0148039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
Deletions encompassing the BP1-2 region at 15q11.2 increase schizophrenia and epilepsy risk, but only some carriers have either disorder. To investigate the role of CYFIP1, a gene within the region, we performed knockdown experiments in human neural progenitors derived from donors with 2 copies of each gene at the BP1-2 locus. RNA-seq and cellular assays determined that knockdown of CYFIP1 compromised cytoskeletal remodeling. FMRP targets and postsynaptic density genes, each implicated in schizophrenia, were significantly overrepresented among differentially expressed genes (DEGs). Schizophrenia and/or epilepsy genes, but not those associated with randomly selected disorders, were likewise significantly overrepresented. Mirroring the variable expressivity seen in deletion carriers, marked between-line differences were observed for dysregulation of disease genes. Finally, a subset of DEGs showed a striking similarity to known epilepsy genes and represents novel disease candidates. Results support a role for CYFIP1 in disease and demonstrate that disease-related biological signatures are apparent prior to neuronal differentiation.
Collapse
Affiliation(s)
- Rebecca A. Nebel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dejian Zhao
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jill Kirschen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Brett S. Abrahams
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Barone C, Novelli A, Bianca I, Cataliotti del Grano A, Campisi M, Ettore C, Pappalardo E, Indaco L, Ettore G, Bartoloni G, Bianca S. 15q11.2 microdeletion and hypoplastic left heart syndrome. Eur J Med Genet 2015; 58:608-10. [DOI: 10.1016/j.ejmg.2015.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/25/2015] [Accepted: 09/28/2015] [Indexed: 10/23/2022]
|
30
|
Rare copy number variations in an adult with transposition of the great arteries emphasize the importance of updated genetic assessments in syndromic congenital cardiac disease. Int J Cardiol 2015; 203:516-8. [PMID: 26551885 DOI: 10.1016/j.ijcard.2015.10.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022]
|
31
|
Centanni TM, Green JR, Iuzzini-Seigel J, Bartlett CW, Hogan TP. Evidence for the multiple hits genetic theory for inherited language impairment: a case study. Front Genet 2015; 6:272. [PMID: 26379700 PMCID: PMC4547018 DOI: 10.3389/fgene.2015.00272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 11/20/2022] Open
Abstract
Communication disorders have complex genetic origins, with constellations of relevant gene markers that vary across individuals. Some genetic variants are present in healthy individuals as well as those affected by developmental disorders. Growing evidence suggests that some variants may increase susceptibility to these disorders in the presence of other pathogenic gene mutations. In the current study, we describe eight children with specific language impairment and four of these children had a copy number variant in one of these potential susceptibility regions on chromosome 15. Three of these four children also had variants in other genes previously associated with language impairment. Our data support the theory that 15q11.2 is a susceptibility region for developmental disorders, specifically language impairment.
Collapse
Affiliation(s)
- Tracy M Centanni
- Massachusetts General Hospital Institute of Health Professions, Boston, MA USA ; Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jordan R Green
- Massachusetts General Hospital Institute of Health Professions, Boston, MA USA
| | - Jenya Iuzzini-Seigel
- Massachusetts General Hospital Institute of Health Professions, Boston, MA USA ; Marquette University, Milwaukee, WI USA
| | | | - Tiffany P Hogan
- Massachusetts General Hospital Institute of Health Professions, Boston, MA USA
| |
Collapse
|