1
|
Lefebvre A, Traut N, Pedoux A, Maruani A, Beggiato A, Elmaleh M, Germanaud D, Amestoy A, Ly-Le Moal M, Chatham C, Murtagh L, Bouvard M, Alisson M, Leboyer M, Bourgeron T, Toro R, Dumas G, Moreau C, Delorme R. Exploring the multidimensional nature of repetitive and restricted behaviors and interests (RRBI) in autism: neuroanatomical correlates and clinical implications. Mol Autism 2023; 14:45. [PMID: 38012709 PMCID: PMC10680239 DOI: 10.1186/s13229-023-00576-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Repetitive and restricted behaviors and interests (RRBI) are core symptoms of autism with a complex entity and are commonly categorized into 'motor-driven' and 'cognitively driven'. RRBI symptomatology depends on the individual's clinical environment limiting the understanding of RRBI physiology, particularly their associated neuroanatomical structures. The complex RRBI heterogeneity needs to explore the whole RRBI spectrum by integrating the clinical context [autistic individuals, their relatives and typical developing (TD) individuals]. We hypothesized that different RRBI dimensions would emerge by exploring the whole spectrum of RRBI and that these dimensions are associated with neuroanatomical signatures-involving cortical and subcortical areas. METHOD A sample of 792 individuals composed of 267 autistic subjects, their 370 first-degree relatives and 155 TD individuals was enrolled in the study. We assessed the whole patterns of RRBI in each individual by using the Repetitive Behavior Scale-Revised and the Yale-Brown Obsessive Compulsive Scale. We estimated brain volumes using MRI scanner for a subsample of the subjects (n = 152, 42 ASD, 89 relatives and 13 TD). We first investigated the dimensionality of RRBI by performing a principal component analysis on all items of these scales and included all the sampling population. We then explored the relationship between RRBI-derived factors with brain volumes using linear regression models. RESULTS We identified 3 main factors (with 30.3% of the RRBI cumulative variance): Factor 1 (FA1, 12.7%) reflected mainly the 'motor-driven' RRBI symptoms; Factor 2 and 3 (respectively, 8.8% and 7.9%) gathered mainly Y-BOCS related items and represented the 'cognitively driven' RRBI symptoms. These three factors were significantly associated with the right/left putamen volumes but with opposite effects: FA1 was negatively associated with an increased volume of the right/left putamen conversely to FA2 and FA3 (all uncorrected p < 0.05). FA1 was negatively associated with the left amygdala (uncorrected p < 0.05), and FA2 was positively associated with the left parietal structure (uncorrected p = 0.001). CONCLUSION Our results suggested 3 coherent RRBI dimensions involving the putamen commonly and other structures according to the RRBI dimension. The exploration of the putamen's integrative role in RSBI needs to be strengthened in further studies.
Collapse
Affiliation(s)
- Aline Lefebvre
- Fondation Vallée, GHT Paris Sud, Hospital of Child and Adolescent Psychiatry, Gentilly, France.
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.
- UNIACT Neurospin - INSERM UMR 1129, CEA, Saclay, France.
- Department of Adult Psychiatry, Henri Mondor and Albert Chenevier Hospital, Créteil, France.
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| | - Nicolas Traut
- Unité de Neuroanatomie Appliquée et Théorique, Institut Pasteur, Paris, France
| | - Amandine Pedoux
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Anna Maruani
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Anita Beggiato
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Monique Elmaleh
- Department of Pediatric Radiology, Robert-Debré Hospital, APHP, Paris, France
| | - David Germanaud
- UNIACT Neurospin - INSERM UMR 1129, CEA, Saclay, France
- Department of Clinical Genetics, Robert Debré Hospital, APHP, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Cité, Paris, France
| | - Anouck Amestoy
- Autism Expert Center, Charles Perrens Hospital, Bordeaux, France
- Fondation FondaMental, French National Science Foundation, Créteil, France
| | | | - Christopher Chatham
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Lorraine Murtagh
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Manuel Bouvard
- Autism Expert Center, Charles Perrens Hospital, Bordeaux, France
- Fondation FondaMental, French National Science Foundation, Créteil, France
| | - Marianne Alisson
- Department of Pediatric Radiology, Robert-Debré Hospital, APHP, Paris, France
| | - Marion Leboyer
- Fondation FondaMental, French National Science Foundation, Créteil, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France
| | - Thomas Bourgeron
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Roberto Toro
- Unité de Neuroanatomie Appliquée et Théorique, Institut Pasteur, Paris, France
| | - Guillaume Dumas
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, QC, Canada
| | - Clara Moreau
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Richard Delorme
- Fondation Vallée, GHT Paris Sud, Hospital of Child and Adolescent Psychiatry, Gentilly, France
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Fondation FondaMental, French National Science Foundation, Créteil, France
- Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Salluzzo M, Vianello C, Abdullatef S, Rimondini R, Piccoli G, Carboni L. The Role of IgLON Cell Adhesion Molecules in Neurodegenerative Diseases. Genes (Basel) 2023; 14:1886. [PMID: 37895235 PMCID: PMC10606101 DOI: 10.3390/genes14101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.
Collapse
Affiliation(s)
- Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Sandra Abdullatef
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
3
|
Fernell E, Gillberg C. Autism under the umbrella of ESSENCE. Front Psychiatry 2023; 14:1002228. [PMID: 36756219 PMCID: PMC9901504 DOI: 10.3389/fpsyt.2023.1002228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
This brief article gives a short overview of "comorbidity" in autism. The most common co-occurring disorders will be presented and discussed within the context of ESSENCE (Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations), a concept that provides a holistic perspective for neurodevelopmental disorders. The ESSENCE concept also considers the heterogeneous and changing clinical panorama of developmental disorders over time, and also the multifactorial etiologies, including so called behavioral phenotype syndromes. Aspects on behavioral interventions in autism are presented-interventions that need to be adapted and take into account all non-autism associated ESSENCE, including intellectual disability and Attention-Deficit/Hyperactivity Disorder (ADHD). The article also focuses on current research on pharmacological intervention based on the hypothesis of imbalance in excitatory/inhibitory transmitter systems in autism and some other ESSENCE.
Collapse
Affiliation(s)
- Elisabeth Fernell
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
4
|
Deletion of 11q24.2-qter in a male child with cleft lip and palate: an atypical feature of Jacobsen syndrome. J Genet 2022. [DOI: 10.1007/s12041-022-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Shared genetic architectures of subjective well-being in East Asian and European ancestry populations. Nat Hum Behav 2022; 6:1014-1026. [PMID: 35589828 DOI: 10.1038/s41562-022-01343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
Subjective well-being (SWB) has been explored in European ancestral populations; however, whether the SWB genetic architecture is shared across populations remains unclear. We conducted a cross-population genome-wide association study for SWB using samples from Korean (n = 110,919) and European (n = 563,176) ancestries. Five ancestry-specific loci and twelve cross-ancestry significant genomic loci were identified. One novel locus (rs12298541 near HMGA2) associated with SWB was also identified through the European meta-analysis. Significant cross-ancestry genetic correlation for SWB between samples was observed. Polygenic risk analysis in an independent Korean cohort (n = 22,455) demonstrated transferability between populations. Significant correlations between SWB and major depressive disorder, and significant enrichment of central nervous system-related polymorphisms heritability in both ancestry populations were found. Hence, large-scale cross-ancestry genome-wide association studies can advance our understanding of SWB genetic architecture and mental health.
Collapse
|
6
|
Moon S, Zhao YT. Recursive splicing is a rare event in the mouse brain. PLoS One 2022; 17:e0263082. [PMID: 35089962 PMCID: PMC8797253 DOI: 10.1371/journal.pone.0263082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
Recursive splicing (RS) is a splicing mechanism to remove long introns from messenger RNA precursors of long genes. Compared to the hundreds of RS events identified in humans and drosophila, only ten RS events have been reported in mice. To further investigate RS in mice, we analyzed RS in the mouse brain, a tissue that is enriched in the expression of long genes. We found that nuclear total RNA sequencing is an efficient approach to investigate RS events. We analyzed 1.15 billion uniquely mapped reads from the nuclear total RNA sequencing data in the mouse cerebral cortex. Unexpectedly, we only identified 20 RS sites, suggesting that RS is a rare event in the mouse brain. We also identified that RS is constitutive between excitatory and inhibitory neurons and between sexes in the mouse cerebral cortex. In addition, we found that the primary sequence context is associated with RS splicing intermediates and distinguishes RS AGGT site from non-RS AGGT sites, indicating the importance of the primary sequence context in RS sites. Moreover, we discovered that cryptic exons may use an RS-like mechanism for splicing. Overall, we provide novel findings about RS in long genes in the mouse brain.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Ying-Tao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Atli EI, Atli E, Yalcintepe S, Demir S, Kalkan R, Akurut C, Ozen Y, Gurkan H. Investigation of Genetic Alterations in Congenital Heart Diseases in Prenatal Period. Glob Med Genet 2021; 9:29-33. [PMID: 35169781 PMCID: PMC8837410 DOI: 10.1055/s-0041-1736566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
The prenatal diagnosis of congenital heart disease (CHD) is important because of mortality risk. The onset of CHD varies, and depending on the malformation type, the risk of aneuploidy is changed. To identify possible genetic alterations in CHD, G-banding, chromosomal microarray or if needed DNA mutation analysis and direct sequence analysis should be planned. In present study, to identify genetic alterations, cell culture, karyotype analysis, and single nucleotide polymorphism, array analyses were conducted on a total 950 samples. Interventional prenatal genetic examination was performed on 23 (2, 4%, 23/950) fetal CHD cases. Chromosomal abnormalities were detected in 5 out of 23 cases (21, 7%). Detected chromosomal abnormalities were 10q23.2 deletion, trisomy 18, 8p22.3-p23.2 deletion, 8q21.3-q24.3 duplication, 11q24.2q24.5 (9 Mb) deletion, and 8p22p12 (16.8 Mb) deletion. Our study highlights the importance of genetic testing in CHD.
Collapse
Affiliation(s)
- Emine Ikbal Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Engin Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Selma Demir
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Cisem Akurut
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Yasemin Ozen
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
8
|
Liu Z, Chen W, Zhang Z, Wang J, Yang YK, Hai L, Wei Y, Qiao J, Sun Y. Whole-Genome Methylation Analysis Revealed ART-Specific DNA Methylation Pattern of Neuro- and Immune-System Pathways in Chinese Human Neonates. Front Genet 2021; 12:696840. [PMID: 34589113 PMCID: PMC8473827 DOI: 10.3389/fgene.2021.696840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
The DNA methylation of human offspring can change due to the use of assisted reproductive technology (ART). In order to find the differentially methylated regions (DMRs) in ART newborns, cord blood maternal cell contamination and parent DNA methylation background, which will add noise to the real difference, must be removed. We analyzed newborns’ heel blood from six families to identify the DMRs between ART and natural pregnancy newborns, and the genetic model of methylation was explored, meanwhile we analyzed 32 samples of umbilical cord blood of infants born with ART and those of normal pregnancy to confirm which differences are consistent with cord blood data. The DNA methylation level was lower in ART-assisted offspring at the whole genome-wide level. Differentially methylated sites, DMRs, and cord blood differentially expressed genes were enriched in the important pathways of the immune system and nervous system, the genetic patterns of DNA methylation could be changed in the ART group. A total of three imprinted genes and 28 housekeeping genes which were involved in the nervous and immune systems were significant different between the two groups, six of them were detected both in heel blood and cord blood. We concluded that there is an ART-specific DNA methylation pattern involved in neuro- and immune-system pathways of human ART neonates, providing an epigenetic basis for the potential long-term health risks in ART-conceived neonates.
Collapse
Affiliation(s)
- Zongzhi Liu
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Wei Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zilong Zhang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,Tianjin Novogene Bioinformatic Technology Co., Ltd.,, Tianjin, China
| | - Junyun Wang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Yi-Kun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuan Wei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yingli Sun
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| |
Collapse
|
9
|
Conrad S, Demurger F, Moradkhani K, Pichon O, Le Caignec C, Pascal C, Thomas C, Bayart S, Perlat A, Dubourg C, Jaillard S, Nizon M. 11q24.2q24.3 microdeletion in two families presenting features of Jacobsen syndrome, without intellectual disability: Role of FLI1, ETS1, and SENCR long noncoding RNA. Am J Med Genet A 2019; 179:993-1000. [PMID: 30888095 DOI: 10.1002/ajmg.a.61113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
This report presents two families with interstitial 11q24.2q24.3 deletion, associated with malformations, hematologic features, and typical facial dysmorphism, observed in Jacobsen syndrome (JS), except for intellectual disability (ID). The smallest 700 Kb deletion contains only two genes: FLI1 and ETS1, and a long noncoding RNA, SENCR, narrowing the minimal critical region for some features of JS. Consistent with recent literature, it adds supplemental data to confirm the crucial role of FLI1 and ETS1 in JS, namely FLI1 in thrombocytopenia and ETS1 in cardiopathy and immune deficiency. It also supports that combined ETS1 and FLI1 haploinsufficiency explains dysmorphic features, notably ears, and nose anomalies. Moreover, it raises the possibility that SENCR, a long noncoding RNA, could be responsible for limb defects, because of its early role in endothelial cell commitment and function. Considering ID and autism spectrum disorder, which are some of the main features of JS, a participation of ETS1, FLI1, or SENCR cannot be excluded. But, considering the normal neurodevelopment of our patients, their role would be either minor or with an important variability in penetrance. Furthermore, according to literature, ARHGAP32 and KIRREL3 seem to be the strongest candidate genes in the 11q24 region for other Jacobsen patients.
Collapse
Affiliation(s)
| | | | | | | | - Cédric Le Caignec
- Service de Génétique Médicale, CHU Nantes, France.,INSERM, CNRS, UNIV Nantes, l'Institut du Thorax, Nantes, France
| | - Cécile Pascal
- Service de Cardiologie pédiatrique et fœtale, Hôpital privé du Confluent, Nantes, France
| | | | - Sophie Bayart
- Centre de traitement des maladies hémorragiques, CHU Rennes, France
| | - Antoinette Perlat
- Service de Médecine Interne-Immunologie Clinique, CHU de Rennes, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU Rennes, France.,Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), UMR 6290, Rennes, France
| | - Sylvie Jaillard
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France.,INSERM U1085-IRSET, Université de Rennes 1, Rennes, France
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, France.,INSERM, CNRS, UNIV Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
10
|
Schurz H, Kinnear CJ, Gignoux C, Wojcik G, van Helden PD, Tromp G, Henn B, Hoal EG, Möller M. A Sex-Stratified Genome-Wide Association Study of Tuberculosis Using a Multi-Ethnic Genotyping Array. Front Genet 2019; 9:678. [PMID: 30713548 PMCID: PMC6346682 DOI: 10.3389/fgene.2018.00678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex disease with a known human genetic component. Males seem to be more affected than females and in most countries the TB notification rate is twice as high in males than in females. While socio-economic status, behavior and sex hormones influence the male bias they do not fully account for it. Males have only one copy of the X chromosome, while diploid females are subject to X chromosome inactivation. In addition, the X chromosome codes for many immune-related genes, supporting the hypothesis that X-linked genes could contribute to TB susceptibility in a sex-biased manner. We report the first TB susceptibility genome-wide association study (GWAS) with a specific focus on sex-stratified autosomal analysis and the X chromosome. A total of 810 individuals (410 cases and 405 controls) from an admixed South African population were genotyped using the Illumina Multi Ethnic Genotyping Array, specifically designed as a suitable platform for diverse and admixed populations. Association testing was done on the autosome (8,27,386 variants) and X chromosome (20,939 variants) in a sex stratified and combined manner. SNP association testing was not statistically significant using a stringent cut-off for significance but revealed likely candidate genes that warrant further investigation. A genome wide interaction analysis detected 16 significant interactions. Finally, the results highlight the importance of sex-stratified analysis as strong sex-specific effects were identified on both the autosome and X chromosome.
Collapse
Affiliation(s)
- Haiko Schurz
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Genevieve Wojcik
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Paul D. van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | - Brenna Henn
- Department of Anthropology, UC Davis Genome Center, University of California, Davis, Davis, CA, United States
| | - Eileen G. Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
11
|
Maruani A, Dumas G, Beggiato A, Traut N, Peyre H, Cohen-Freoua A, Amsellem F, Elmaleh M, Germanaud D, Launay JM, Bourgeron T, Toro R, Delorme R. Morning Plasma Melatonin Differences in Autism: Beyond the Impact of Pineal Gland Volume. Front Psychiatry 2019; 10:11. [PMID: 30787884 PMCID: PMC6372551 DOI: 10.3389/fpsyt.2019.00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
While low plasma melatonin, a neuro-hormone synthesized in the pineal gland, has been frequently associated with autism, our understanding of the mechanisms behind it have remained unclear. In this exploratory study, we hypothesized that low melatonin levels in ASD could be linked to a decrease of the pineal gland volume (PGV). PGV estimates with magnetic resonance imaging (MRI) with a voxel-based volumetric measurement method and early morning plasma melatonin levels were evaluated for 215 participants, including 78 individuals with ASD, 90 unaffected relatives, and 47 controls. We first found that both early morning melatonin level and PGV were lower in patients compared to controls. We secondly built a linear model and observed that plasma melatonin was correlated to the group of the participant, but also to the PGV. To further understand the relationship between PGV and melatonin, we generated a normative model of the PGV relationship with melatonin level based on control participant data. We found an effect of PGV on normalized melatonin levels in ASD. Melatonin deficit appeared however more related to the group of the subject. Thus, melatonin variations in ASD could be mainly driven by melatonin pathway dysregulation.
Collapse
Affiliation(s)
- Anna Maruani
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Guillaume Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Anita Beggiato
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Nicolas Traut
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Hugo Peyre
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - Alicia Cohen-Freoua
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - Frédérique Amsellem
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Monique Elmaleh
- Pediatric Radiology Department, Robert Debré Hospital, Paris, France
| | - David Germanaud
- Department of Pediatric Neurology, Robert Debré Hospital, AP-HP, Paris, France.,Neuropaediatric Team, UNIACT, NeuroSpin, CEA-Saclay, Gif-sur-Yvette, France
| | - Jean-Marie Launay
- Biochemistry Department, INSERM U942, Lariboisière Hospital, Assistance Publique-Hopitaux de Paris EA 3621, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Richard Delorme
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Puvabanditsin S, Chen CW, Botwinick M, Hussein K, Mariduena J, Mehta R. Ventriculomegaly and cerebellar hypoplasia in a neonate with interstitial 11q 24 deletion in Jacobsen syndrome region. Clin Case Rep 2018; 6:1268-1275. [PMID: 29988670 PMCID: PMC6028426 DOI: 10.1002/ccr3.1560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 11/10/2022] Open
Abstract
Jacobsen syndrome (JS) is a rare contiguous gene disorder caused by partial deletion of the distal part of the long arm of chromosome 11 ranging in size from 7 to 20 Mb. We report a term male neonate with an interstitial deletion of about 12.3 megabase (Mb) of chromosome 11q24.1qter. Our case is the first reported newborn patient with 11q24 deletion.
Collapse
Affiliation(s)
- Surasak Puvabanditsin
- Department of PediatricsRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew Jersey
| | - Charlotte Wang Chen
- Department of PediatricsRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew Jersey
| | - Marissa Botwinick
- Department of PediatricsRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew Jersey
| | - Karen Hussein
- Department of PediatricsRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew Jersey
| | - Joseph Mariduena
- Department of PediatricsRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew Jersey
| | - Rajeev Mehta
- Department of PediatricsRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew Jersey
| |
Collapse
|
13
|
Nelissen TP, Bamford RA, Tochitani S, Akkus K, Kudzinskas A, Yokoi K, Okamoto H, Yamamoto Y, Burbach JPH, Matsuzaki H, Oguro-Ando A. CD38 is Required for Dendritic Organization in Visual Cortex and Hippocampus. Neuroscience 2018; 372:114-125. [PMID: 29306053 DOI: 10.1016/j.neuroscience.2017.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/26/2022]
Abstract
Morphological screening of mouse brains with known behavioral deficits can give great insight into the relationship between brain regions and their behavior. Oxytocin- and CD38-deficient mice have previously been shown to have behavioral phenotypes, such as restrictions in social memory, social interactions, and maternal behavior. CD38 is reported as an autism spectrum disorder (ASD) candidate gene and its behavioral phenotypes may be linked to ASD. To address whether these behavioral phenotypes relate to brain pathology and neuronal morphology, here we investigate the morphological changes in the CD38-deficient mice brains, with focus on the pathology and neuronal morphology of the cortex and hippocampus, using Nissl staining, immunohistochemistry, and Golgi staining. No difference was found in terms of cortical layer thickness. However, we found abnormalities in the number of neurons and neuronal morphology in the visual cortex and dentate gyrus (DG). In particular, there were arborisation differences between CD38-/- and CD38+/+ mice in the apical dendrites of the visual cortex and hippocampal CA1 pyramidal neurons. The data suggest that CD38 is implicated in appropriate development of brain regions important for social behavior.
Collapse
Affiliation(s)
- Thom P Nelissen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Stratenum 4.205, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom
| | - Shiro Tochitani
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan; Department of Radiological Technology, Faculty of Health Science, Suzaka University of Medical Science, Suzaka, Mie, Japan
| | - Kamuran Akkus
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom
| | - Aurimas Kudzinskas
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom
| | - Kenichiro Yokoi
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendei 980-8575, Japan; Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Stratenum 4.205, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui 910-1193, Japan.
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom.
| |
Collapse
|
14
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|
15
|
Mazitov T, Bregin A, Philips MA, Innos J, Vasar E. Deficit in emotional learning in neurotrimin knockout mice. Behav Brain Res 2016; 317:311-318. [PMID: 27693610 DOI: 10.1016/j.bbr.2016.09.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/04/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Neurotrimin (Ntm) belongs to the IgLON family of cell adhesion molecules with Lsamp, Obcam and kilon that regulate the outgrowth of neurites mostly by forming heterodimers. IgLONs have been associated with psychiatric disorders, intelligence, body weight, heart disease and tumours. This study provides an initial behavioural and pharmacological characterization of the phenotype of Ntm-deficient mice. We expected to see at least some overlap with the phenotype of Lsamp-deficient mice as Ntm and Lsamp are the main interaction partners in the IgLON family and are colocalized in some brain regions. However, Ntm-deficient mice displayed none of the deviations in behaviour that we have previously shown in Lsamp-deficient mice, but differently from Lsamp-deficient mice, had a deficit in emotional learning in the active avoidance task. The only overlap was decreased sensitivity to the locomotor stimulating effect of amphetamine in both knockout models. Thus, despite being interaction partners, on the behavioural level Lsamp seems to play a much more central role than Ntm and the roles of these two proteins seem to be complementary rather than overlapping.
Collapse
Affiliation(s)
- Timur Mazitov
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Aleksandr Bregin
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia.
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
16
|
Interstitial 11q24 deletion: a new case and review of the literature. J Appl Genet 2016; 57:357-62. [PMID: 27020790 DOI: 10.1007/s13353-015-0333-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
We describe a 19-month-old male presenting with right stenotic megaureter, anemia and thrombocytopenia, cardiac and ophthalmologic abnormalities. Analysis with array-based comparative genomic hybridization (aCGH) revealed an interstitial deletion of about 2.4 Mb of chromosome 11q24.2q24.3. We compared the phenotype of our patient with that of recently reported patients studied by aCGH, who showed an overlapping deletion. We also analysed the gene content of the deleted region in order to investigate the possible involvement of specific genes in the clinical phenotype.
Collapse
|
17
|
Linares Chávez EP, Toral López J, Valdés Miranda JM, González Huerta LM, Perez Cabrera A, Del Refugio Rivera Vega M, Messina Baas OM, Cuevas-Covarrubias SA. Jacobsen Syndrome: Surgical Complications due to Unsuspected Diagnosis, the Importance of Molecular Studies in Patients with Craniosynostosis. Mol Syndromol 2015; 6:229-35. [PMID: 26997943 DOI: 10.1159/000442477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Jacobsen syndrome (JBS) is an uncommon contiguous gene syndrome. About 85-92% of cases have a de novo origin. Clinical variability and severity probably depend on the size of the affected region. The typical clinical features in JBS include intellectual disability, growth retardation, craniofacial dysmorphism as well as craniosynostosis, congenital heart disease, and platelet abnormalities. The proband was a 1 year/3-month-old Mexican male. Oligonucleotide-SNP array analysis using the GeneChip Human Cytoscan HD was carried out for the patient from genomic DNA. The SNP array showed a 14.2-Mb deletion in chromosome 11q23.3q25 (120,706-134,938 Mb), which involved 163 RefSeq genes in the database of genomic variation. We report a novel deletion in JBS that increases the knowledge of the variability in the mutation sites in this region and expands the spectrum of molecular and clinical defects in this syndrome.
Collapse
Affiliation(s)
- Etzalli P Linares Chávez
- Departamento de Genética Médica, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
| | - Jaime Toral López
- Departamento de Genética Médica, Centro Médico Ecatepec, ISSEMYM, Edomex México, México
| | - Juan M Valdés Miranda
- Departamento de Genética Médica, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
| | - Luz M González Huerta
- Departamento de Genética Médica, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
| | - Adrian Perez Cabrera
- Departamento de Genética Médica, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
| | | | - Olga M Messina Baas
- Departamento de Genética Médica, Oftalmología, Hospital General de México, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
| | | |
Collapse
|