1
|
Lam C, Scaglia F, Berry GT, Larson A, Sarafoglou K, Andersson HC, Sklirou E, Tan QKG, Starosta RT, Sadek M, Wolfe L, Horikoshi S, Ali M, Barone R, Campbell T, Chang IJ, Coles K, Cook E, Eklund EA, Engelhardt NM, Freeman M, Friedman J, Fu DYT, Botzo G, Rawls B, Hernandez C, Johnsen C, Keller K, Kramer S, Kuschel B, Leshinski A, Martinez-Duncker I, Mazza GL, Mercimek-Andrews S, Miller BS, Muthusamy K, Neira J, Patterson MC, Pogorelc N, Powers LN, Ramey E, Reinhart M, Squire A, Thies J, Vockley J, Vreugdenhil H, Witters P, Youbi M, Zeighami A, Zemet R, Edmondson AC, Morava E. Frontiers in congenital disorders of glycosylation consortium, a cross-sectional study report at year 5 of 280 individuals in the natural history cohort. Mol Genet Metab 2024; 142:108509. [PMID: 38959600 PMCID: PMC11299528 DOI: 10.1016/j.ymgme.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Our report describes clinical, genetic, and biochemical features of participants with a molecularly confirmed congenital disorder of glycosylation (CDG) enrolled in the Frontiers in Congenital Disorders of Glycosylation (FCDGC) Natural History cohort at year 5 of the study. METHODS We enrolled individuals with a known or suspected CDG into the FCDGC Natural History Study, a multicenter prospective and retrospective natural history study of all genetic causes of CDG. We conducted a cross-sectional analysis of baseline study visit data from participants with confirmed CDG who were consented into the FCDGC Natural History Study (5U54NS115198) from October 2019 to November 2023. RESULTS Three hundred thirty-three subjects consented to the FCDGC Natural History Study. Of these, 280 unique individuals had genetic data available that was consistent with a diagnosis of CDG. These 280 individuals were enrolled into the study between October 8, 2019 and November 29, 2023. One hundred forty-one (50.4%) were female, and 139 (49.6%) were male. Mean and median age at enrollment was 10.1 and 6.5 years, respectively, with a range of 0.22 to 71.4 years. The cohort encompassed individuals with disorders of N-linked protein glycosylation (57%), glycosylphosphatidylinositol anchor disorder (GPI anchor) (15%), disorders of Golgi homeostasis, trafficking and transport (12%), dolichol metabolism disorders (5%), disorders of multiple pathways (6%), and other (5%). The most frequent presenting symptom(s) leading to diagnosis were developmental delay/disability (77%), followed by hypotonia (56%) and feeding difficulties (42%). Mean and median time between first related symptom and diagnosis was 2.7 and 0.8 years, respectively. One hundred percent of individuals in our cohort had developmental differences/disabilities at the time of their baseline visit, followed by 97% with neurologic involvement, 91% with gastrointestinal (GI)/liver involvement, and 88% with musculoskeletal involvement. Severity of disease in individuals was scored on the Nijmegen Progression CDG Rating Scale (NPCRS) with 27% of scores categorized as mild, 44% moderate, and 29% severe. Of the individuals with N-linked protein glycosylation defects, 83% of those with data showed a type 1 pattern on carbohydrate deficient transferrin (CDT) analysis including 82/84 individuals with PMM2-CDG, 6% a type 2 pattern, 1% both type 1 and type 2 pattern and 10% a normal or nonspecific pattern. One hundred percent of individuals with Golgi homeostasis and trafficking defects with data showed a type 2 pattern on CDT analysis, while Golgi transport defect showed a type II pattern 73% of the time, a type 1 pattern for 7%, and 20% had a normal or nonspecific pattern. Most of the variants documented were classified as pathogenic or likely pathogenic using ACMG criteria. For the majority of the variants, the predicted molecular consequence was missense followed by nonsense and splice site, and the majority of the diagnoses are inherited in an autosomal recessive pattern but with disorders of all major nuclear inheritance included. DISCUSSION The FCDGC Natural History Study serves as an important resource to build future research studies, improve clinical care, and prepare for clinical trial readiness. Herein is the first overview of CDG participants of the FCDGC Natural History Study.
Collapse
Affiliation(s)
- Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong KongSAR, China
| | - Gerard T Berry
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin Larson
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, USA
| | - Kyriakie Sarafoglou
- Divisions of Endocrinology and Genetics-Metabolism, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Hans C Andersson
- Hayward Genetics Center, Dept Pediatrics Tulane School of Medicine, USA
| | - Evgenia Sklirou
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Queenie K G Tan
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Rodrigo T Starosta
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, USA
| | - Mustafa Sadek
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Lynne Wolfe
- Medical Genetic Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Seishu Horikoshi
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute, IRCCS, Troina, Italy
| | - Teresa Campbell
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Irene J Chang
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Kiaira Coles
- Child Health Research Enterprise, Children's Hospital Colorado, USA
| | - Edward Cook
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Erik A Eklund
- Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Nicole M Engelhardt
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Mary Freeman
- Division of Medical Genetics and Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, USA
| | - Jennifer Friedman
- Division of Neurosciences and Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA; Rady Children's Institute for Genomic Medicine, San Diego, CA, USA; Rady Children's Hospital, San Diego, CA, USA
| | - Debbie Y T Fu
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Grace Botzo
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Christin Johnsen
- Department of Pediatrics and Adolescent Medicine, University Medical Centre, Göttingen, Germany
| | - Kierstin Keller
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Sara Kramer
- Pediatric Clinical Research Services, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Kuschel
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Angela Leshinski
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ivan Martinez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Gina L Mazza
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley S Miller
- Division of Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Juanita Neira
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Marc C Patterson
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Natalie Pogorelc
- Pediatric Clinical Research Services, University of Minnesota, Minneapolis, MN, USA
| | - Lex N Powers
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Elizabeth Ramey
- Pediatric Clinical Research Services, University of Minnesota, Minneapolis, MN, USA
| | - Michaela Reinhart
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Audrey Squire
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Jenny Thies
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Jerry Vockley
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Hayden Vreugdenhil
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Peter Witters
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Center for Metabolic Diseases, Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Mehdi Youbi
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Aziza Zeighami
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Eva Morava
- Division of Medical Genetics and Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, USA
| |
Collapse
|
2
|
Hayes V, Gong T, Jiang J, Bornman R, Gheybi K, Stricker P, Weischenfeldt J, Mutambirwa S. Rare pathogenic structural variants show potential to enhance prostate cancer germline testing for African men. RESEARCH SQUARE 2024:rs.3.rs-4531885. [PMID: 38947031 PMCID: PMC11213160 DOI: 10.21203/rs.3.rs-4531885/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is highly heritable, with men of African ancestry at greatest risk and associated lethality. Lack of representation in genomic data means germline testing guidelines exclude for African men. Established that structural variations (SVs) are major contributors to human disease and prostate tumourigenesis, their role is under-appreciated in familial and therapeutic testing. Utilising a clinico-methodologically matched African (n = 113) versus European (n = 57) deep-sequenced PCa resource, we interrogated 42,966 high-quality germline SVs using a best-fit pathogenicity prediction workflow. We identified 15 potentially pathogenic SVs representing 12.4% African and 7.0% European patients, of which 72% and 86% met germline testing standard-of-care recommendations, respectively. Notable African-specific loss-of-function gene candidates include DNA damage repair MLH1 and BARD1 and tumour suppressors FOXP1, WASF1 and RB1. Representing only a fraction of the vast African diaspora, this study raises considerations with respect to the contribution of kilo-to-mega-base rare variants to PCa pathogenicity and African associated disparity.
Collapse
Affiliation(s)
| | | | - Jue Jiang
- Garvan Institute of Medical Research
| | | | | | | | | | | |
Collapse
|
3
|
Thompson MD, Knaus A. Rare Genetic Developmental Disabilities: Mabry Syndrome (MIM 239300) Index Cases and Glycophosphatidylinositol (GPI) Disorders. Genes (Basel) 2024; 15:619. [PMID: 38790248 PMCID: PMC11121671 DOI: 10.3390/genes15050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
The case report by Mabry et al. (1970) of a family with four children with elevated tissue non-specific alkaline phosphatase, seizures and profound developmental disability, became the basis for phenotyping children with the features that became known as Mabry syndrome. Aside from improvements in the services available to patients and families, however, the diagnosis and treatment of this, and many other developmental disabilities, did not change significantly until the advent of massively parallel sequencing. As more patients with features of the Mabry syndrome were identified, exome and genome sequencing were used to identify the glycophosphatidylinositol (GPI) biosynthesis disorders (GPIBDs) as a group of congenital disorders of glycosylation (CDG). Biallelic variants of the phosphatidylinositol glycan (PIG) biosynthesis, type V (PIGV) gene identified in Mabry syndrome became evidence of the first in a phenotypic series that is numbered HPMRS1-6 in the order of discovery. HPMRS1 [MIM: 239300] is the phenotype resulting from inheritance of biallelic PIGV variants. Similarly, HPMRS2 (MIM 614749), HPMRS5 (MIM 616025) and HPMRS6 (MIM 616809) result from disruption of the PIGO, PIGW and PIGY genes expressed in the endoplasmic reticulum. By contrast, HPMRS3 (MIM 614207) and HPMRS4 (MIM 615716) result from disruption of post attachment to proteins PGAP2 (HPMRS3) and PGAP3 (HPMRS4). The GPI biosynthesis disorders (GPIBDs) are currently numbered GPIBD1-21. Working with Dr. Mabry, in 2020, we were able to use improved laboratory diagnostics to complete the molecular diagnosis of patients he had originally described in 1970. We identified biallelic variants of the PGAP2 gene in the first reported HPMRS patients. We discuss the longevity of the Mabry syndrome index patients in the context of the utility of pyridoxine treatment of seizures and evidence for putative glycolipid storage in patients with HPMRS3. From the perspective of the laboratory innovations made that enabled the identification of the HPMRS phenotype in Dr. Mabry's patients, the need for treatment innovations that will benefit patients and families affected by developmental disabilities is clear.
Collapse
Affiliation(s)
- Miles D. Thompson
- Krembil Brain Institute, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| |
Collapse
|
4
|
Kang M, Wu M, Crane JL. Asfotase alfa improved skeletal mineralization and fracture healing in a child with MCAHS. Bone 2023; 172:116778. [PMID: 37088336 PMCID: PMC10214309 DOI: 10.1016/j.bone.2023.116778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Tissue non-specific alkaline phosphatase (TNSALP) is an enzyme that is tethered to the cell membrane by glycosylphosphatidylinositol (GPI) and converts inorganic pyrophosphate to inorganic phosphate. Inorganic phosphate combines with calcium to form hydroxyapatite, the main mineral in the skeleton. When TNSALP is defective, conversion of inorganic pyrophosphate to inorganic phosphate is impaired and the skeleton is at risk of under-mineralization. Phosphatidylinositol glycan anchor biosynthesis class N (PIGN) is one of more than 20 genes in the GPI-biosynthesis family. Pathogenic variants in PIGN have been identified in multiple congenital anomalies-hypotonia-seizures syndrome (OMIM 614080), although a metabolic bone disease or skeletal fragility phenotype has not been reported. We describe a female child with multiple congenital anomalies-hypotonia-seizures syndrome due to a compound heterozygous pathogenic variant in PIGN who sustained a low-trauma distal femur fracture at age 7.4 years. We hypothesized that the GPI synthesis defect may result in metabolic bone disease from inadequate anchoring of TNSALP in bone and initiated asfotase alfa, a human bone-targeted recombinant TNSALP-Fc-deca-aspartate peptide, as it could bypass the PIGN genetic defect that possibly caused her skeletal fragility. Asfotase alfa was begun at 8.5 years. Baseline X-rays revealed mild rachitic findings of wrists and knees, which resolved by 5 months of treatment. Bone mineral density (BMD) assessed by dual-energy X-ray absorptiometry (DXA) showed mild improvement in spine, hip and total body less head after 16 months of treatment, while radius declined. She sustained additional low trauma fractures at right tibia and left humeral neck at 11 and 15 months into treatment, which healed quickly. Calcium, phosphorus, and parathyroid hormone levels have remained within the normal range over the 18 months of treatment. For adverse effect, she experienced a rash and discomfort in the first week of treatment which resolved with ibuprofen and diphenhydramine. She also developed subcutaneous fat atrophy. Overall, in this child with a compound pathogenic variant in PIGN, off-label use of asfotase alfa has been generally well tolerated with minimal side effects and resolution of rickets, but she continues to remain skeletally fragile.
Collapse
Affiliation(s)
- Min Kang
- Division of Endocrinology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malinda Wu
- Division of Endocrinology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet L Crane
- Division of Endocrinology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Conte F, Sam JE, Lefeber DJ, Passier R. Metabolic Cardiomyopathies and Cardiac Defects in Inherited Disorders of Carbohydrate Metabolism: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108632. [PMID: 37239976 DOI: 10.3390/ijms24108632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure (HF) is a progressive chronic disease that remains a primary cause of death worldwide, affecting over 64 million patients. HF can be caused by cardiomyopathies and congenital cardiac defects with monogenic etiology. The number of genes and monogenic disorders linked to development of cardiac defects is constantly growing and includes inherited metabolic disorders (IMDs). Several IMDs affecting various metabolic pathways have been reported presenting cardiomyopathies and cardiac defects. Considering the pivotal role of sugar metabolism in cardiac tissue, including energy production, nucleic acid synthesis and glycosylation, it is not surprising that an increasing number of IMDs linked to carbohydrate metabolism are described with cardiac manifestations. In this systematic review, we offer a comprehensive overview of IMDs linked to carbohydrate metabolism presenting that present with cardiomyopathies, arrhythmogenic disorders and/or structural cardiac defects. We identified 58 IMDs presenting with cardiac complications: 3 defects of sugar/sugar-linked transporters (GLUT3, GLUT10, THTR1); 2 disorders of the pentose phosphate pathway (G6PDH, TALDO); 9 diseases of glycogen metabolism (GAA, GBE1, GDE, GYG1, GYS1, LAMP2, RBCK1, PRKAG2, G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO, PIGT, PIGV, PMM2, POMT1, POMT2, SRD5A3, XYLT2); 15 carbohydrate-linked lysosomal storage diseases (CTSA, GBA1, GLA, GLB1, HEXB, IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS, ARSB, GUSB, ARSK). With this systematic review we aim to raise awareness about the cardiac presentations in carbohydrate-linked IMDs and draw attention to carbohydrate-linked pathogenic mechanisms that may underlie cardiac complications.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Scheffer IE, Bennett CA, Gill D, de Silva MG, Boggs K, Marum J, Baker N, Palmer EE, Howell KB. Exome sequencing for patients with developmental and epileptic encephalopathies in clinical practice. Dev Med Child Neurol 2023; 65:50-57. [PMID: 35701389 PMCID: PMC10952465 DOI: 10.1111/dmcn.15308] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
AIM To assess the clinical utility of exome sequencing for patients with developmental and epileptic encephalopathies (DEEs). METHOD Over 2 years, patients with DEEs were recruited for singleton exome sequencing. Parental segregation was performed where indicated. RESULTS Of the 103 patients recruited (54 males, 49 females; aged 2 weeks-17 years), the genetic aetiology was identified in 36 out of 103 (35%) with management implications in 13 out of 36. Exome sequencing revealed pathogenic or likely pathogenic variants in 30 out of 103 (29%) patients, variants of unknown significance in 39 out of 103 (38%), and 34 out of 103 (33%) were negative on exome analysis. After the description of new genetic diseases, a molecular diagnosis was subsequently made for six patients or through newly available high-density chromosomal microarray testing. INTERPRETATION We demonstrate the utility of exome sequencing in routine clinical care of children with DEEs. We highlight that molecular diagnosis often leads to changes in management and informs accurate prognostic and reproductive counselling. Our findings reinforce the need for ongoing analysis of genomic data to identify the aetiology in patients in whom the cause is unknown. The implementation of genomic testing in the care of children with DEEs should become routine in clinical practice. WHAT THIS PAPER ADDS The cause was identified in 35% of patients with developmental and epileptic encephalopathies. KCNQ2, CDKL5, SCN1A, and STXBP1 were the most frequently identified genes. Reanalysis of genomic data found the cause in an additional six patients. Genetic aetiology was identified in 41% of children with seizure onset under 2 years, compared to 18% with older onset. Finding the molecular cause led to management changes in 36% of patients with DEEs.
Collapse
Affiliation(s)
- Ingrid E. Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin HealthThe University of MelbourneHeidelbergVictoria
- Department of PaediatricsThe University of MelbourneVictoria
- Florey Institute of Neuroscience and Mental HealthHeidelbergVictoria
- Murdoch Children's Research InstituteParkvilleVictoria
| | - Caitlin A. Bennett
- Epilepsy Research Centre, Department of Medicine, Austin HealthThe University of MelbourneHeidelbergVictoria
| | - Deepak Gill
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadNew South Wales
| | - Michelle G. de Silva
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
- Australian Genomics Health AllianceMelbourne
| | - Kirsten Boggs
- Australian Genomics Health AllianceMelbourne
- Sydney Children's Hospitals NetworkSydney
| | - Justine Marum
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
| | - Naomi Baker
- Department of PaediatricsThe University of MelbourneVictoria
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
| | | | - Katherine B. Howell
- Department of PaediatricsThe University of MelbourneVictoria
- Murdoch Children's Research InstituteParkvilleVictoria
- Department of NeurologyThe Royal Children's HospitalParkvilleVictoriaAustralia
| |
Collapse
|
7
|
Loong L, Tardivo A, Knaus A, Hashim M, Pagnamenta AT, Alt K, Böhrer-Rabel H, Caro-Llopis A, Cole T, Distelmaier F, Edery P, Ferreira CR, Jezela-Stanek A, Kerr B, Kluger G, Krawitz PM, Kuhn M, Lemke JR, Lesca G, Lynch SA, Martinez F, Maxton C, Mierzewska H, Monfort S, Nicolai J, Orellana C, Pal DK, Płoski R, Quarrell OW, Rosello M, Rydzanicz M, Sabir A, Śmigiel R, Stegmann APA, Stewart H, Stumpel C, Szczepanik E, Tzschach A, Wolfe L, Taylor JC, Murakami Y, Kinoshita T, Bayat A, Kini U. Biallelic variants in PIGN cause Fryns syndrome, multiple congenital anomalies-hypotonia-seizures syndrome, and neurologic phenotypes: A genotype-phenotype correlation study. Genet Med 2023; 25:37-48. [PMID: 36322149 PMCID: PMC11790076 DOI: 10.1016/j.gim.2022.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.
Collapse
Affiliation(s)
- Lucy Loong
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Agostina Tardivo
- National Center of Medical Genetics, National Administration of Health Laboratories and Institutes, National Ministry of Health, Buenos Aires, Argentina
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Mona Hashim
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kerstin Alt
- Genetikum, Center for Human Genetics, Neu-Ulm, Germany
| | | | - Alfonso Caro-Llopis
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Trevor Cole
- West Midlands Clinical Genetics Unit, Birmingham Women's and Children's NHS FT and Birmingham Health Partners, Birmingham, United Kingdom
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Edery
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, United Kingdom
| | | | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Marius Kuhn
- Genetikum, Center for Human Genetics, Neu-Ulm, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Francisco Martinez
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Hanna Mierzewska
- Clinic of Pediatric Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Sandra Monfort
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Carmen Orellana
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Deb K Pal
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Oliver W Quarrell
- Department of Clinical Genetics, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Monica Rosello
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Ataf Sabir
- West Midlands Clinical Genetics Unit, Birmingham Women's and Children's NHS FT and Birmingham Health Partners, Birmingham, United Kingdom
| | - Robert Śmigiel
- Division Pediatric Propedeutics and Rare Disorders, Department of Pediatrics, Wroclaw Medical University, Wrocław, Poland
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Constance Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Elżbieta Szczepanik
- Clinic of Pediatric Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Andreas Tzschach
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lynne Wolfe
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
| |
Collapse
|
8
|
Bukowska-Olech E, Glista F, Dinwiddie A, Pepler A, Jamsheer A. Rare multiple congenital anomalies-hypotonia-seizures syndrome type 1 (MCAHS1) - the clinical and molecular summary. Eur J Med Genet 2022; 66:104668. [PMID: 36384198 DOI: 10.1016/j.ejmg.2022.104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
Multiple congenital anomalies-hypotonia-seizures syndrome type 1 (MCAHS1) is a rare autosomal recessive genetic disease belonging to glycosylphosphatidylinositols biosynthesis defects (GPIBD), a group of recessive disorders characterized by intellectual disability, hypotonia, and seizures. Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor and remodel cell proteins. These processes are highly conserved and fundamental in the metabolism of all eukaryotes, including humans. Here, we have reported a male patient presenting with hypotonia, intellectual disability, and epilepsy, who underwent whole exome sequencing (WES). The analysis revealed the presence of two deleterious variants in PIGN that encodes GPI ethanolamine phosphate transferase-1 - one novel (c.1247_1251delAAGTG; p.Glu416Glyfs*22), and one that has been previously reported in the medical literature (c.1434+5G>A) resulting in MCAHS1. The detailed clinical assessment followed by the medical literature review also pointed out transient macrosomia and unreported in MCAHS1 advanced bone age and postnatal tall stature. These symptoms suggest that MCAHS1 shares a phenotypic overlap with disorders associated with overgrowth. To conclude, our case report and summary of the medical literature may be helpful for clinicians and geneticists who diagnose patients presenting with hypotonia accompanied by tall stature, advanced bone age, and transient macrosomia.
Collapse
Affiliation(s)
| | - Filip Glista
- Poznan University of Medical Sciences, Department of Medical Genetics, Poznan, Poland
| | | | | | - Aleksander Jamsheer
- Poznan University of Medical Sciences, Department of Medical Genetics, Poznan, Poland; Centers for Medical Genetics GENESIS, Poznan, Poland.
| |
Collapse
|
9
|
Siavrienė E, Maldžienė Ž, Mikštienė V, Petraitytė G, Rančelis T, Dapkūnas J, Burnytė B, Benušienė E, Sasnauskienė A, Grikinienė J, Griškevičiūtė E, Utkus A, Preikšaitienė E. PIGN-Related Disease in Two Lithuanian Families: A Report of Two Novel Pathogenic Variants, Molecular and Clinical Characterisation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1526. [PMID: 36363484 PMCID: PMC9693321 DOI: 10.3390/medicina58111526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
Background and Objectives: Pathogenic variants of PIGN are a known cause of multiple congenital anomalies-hypotonia-seizures syndrome 1 (MCAHS1). Many affected individuals have clinical features overlapping with Fryns syndrome and are mainly characterised by developmental delay, congenital anomalies, hypotonia, seizures, and specific minor facial anomalies. This study investigates the clinical and molecular data of three individuals from two unrelated families, the clinical features of which were consistent with a diagnosis of MCAHS1. Materials and Methods: Next-generation sequencing (NGS) technology was used to identify the changes in the DNA sequence. Sanger sequencing of gDNA of probands and their parents was used for validation and segregation analysis. Bioinformatics tools were used to investigate the consequences of pathogenic or likely pathogenic PIGN variants at the protein sequence and structure level. Results: The analysis of NGS data and segregation analysis revealed a compound heterozygous NM_176787.5:c.[1942G>T];[1247_1251del] PIGN genotype in family 1 and NG_033144.1(NM_176787.5):c.[932T>G];[1674+1G>C] PIGN genotype in family 2. In silico, c.1942G>T (p.(Glu648Ter)), c.1247_1251del (p.(Glu416GlyfsTer22)), and c.1674+1G>C (p.(Glu525AspfsTer68)) variants are predicted to result in a premature termination codon that leads to truncated and functionally disrupted protein causing the phenotype of MCAHS1 in the affected individuals. Conclusions: PIGN-related disease represents a wide spectrum of phenotypic features, making clinical diagnosis inaccurate and complicated. The genetic testing of every individual with this phenotype provides new insights into the origin and development of the disease.
Collapse
Affiliation(s)
- Evelina Siavrienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Živilė Maldžienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Violeta Mikštienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Gunda Petraitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Tautvydas Rančelis
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Justas Dapkūnas
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Eglė Benušienė
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Aušra Sasnauskienė
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Centre, Vilnius University, 10257 Vilnius, Lithuania
| | - Jurgita Grikinienė
- Centre of Pediatrics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | | | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08410 Vilnius, Lithuania
| |
Collapse
|
10
|
Hou F, Shan S, Jin H. PIGN mutation multiple congenital anomalies-hypotonia-seizures syndrome 1: A case report. World J Clin Cases 2022; 10:5441-5445. [PMID: 35812661 PMCID: PMC9210875 DOI: 10.12998/wjcc.v10.i16.5441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple congenital anomalies-hypotonia-seizures syndrome 1 (MCAHS1) associated with mutations in PIGN gene.
CASE SUMMARY The authors report 1 case of a 16 years old girl who was presented with epilepsy, developmental delay and cerebellar atrophy. She harbors a compound heterozygous variant in the PIGN gene, include a nonsense splice site mutation (c.2557A>C) which was inherited from her mother, and a novel site mutation (c.980del) which was inherited from her father.
CONCLUSION This case report expands the mutation spectrum found in PIGN gene, and strengthens the association between PIGN mutation and MCAHS1. Mutations in PIGN gene may be an underestimated cause of epilepsy. The authors recommend that, for patients with epilepsy or prenatal diagnosis of highly suspicious fetus, gene sequencing should be the preferred detection method.
Collapse
Affiliation(s)
- Fei Hou
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Shan Shan
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Hua Jin
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| |
Collapse
|
11
|
Tian M, Chen J, Li J, Pan H, Lei W, Shu X. Damaging novel mutations in PIGN cause developmental epileptic-dyskinetic encephalopathy: a case report. BMC Pediatr 2022; 22:222. [PMID: 35468813 PMCID: PMC9036787 DOI: 10.1186/s12887-022-03246-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mutations in PIGN, resulting in a glycosylphosphatidylinositol (GPI) anchor deficiency, typically leads to multiple congenital anomalies-hypotonia-seizures syndrome. However, the link between PIGN and epilepsy or paroxysmal non-kinesigenic dyskinesia (PNKD) is not well-described. This study reported a patient with PIGN mutation leading to developmental and epileptic encephalopathy and PNKD, to expand upon the genotype–phenotype correlation of PIGN. Case presentation During the first 10 days of life, a girl exhibited paroxysmal staring episodes with durations that ranged from several minutes to hours. These episodes occurred 2–5 times daily and always occurred during wakefulness. Ictal electroencephalography revealed no abnormalities, and PNKD was diagnosed. The patient also exhibited severely delayed psychomotor development and generalized seizures at the age of 4 months. Results of brain magnetic resonance imaging and metabolic screenings were normal, but trio-based whole-exome sequencing identified two novel compound heterozygous PIGN mutations (NM_176787; c.163C > T [p.R55 > X] and c.283C > T [p.R95W]). Flow cytometry analysis of the patient’s granulocytes revealed dramatically reduced expression of GPI-anchored proteins. This indicated that the mutations compromised GPI functions. The patient got seizure-free for 1 year, and her dyskinesia episodes reduced significantly (1–2 times/month) after treatment with levetiracetam (600 mg/day) and clonazepam (1.5 mg/day). No progress was observed with respect to psychomotor development; however, no craniofacial dysmorphic features, cleft lip/palate, brachytelephalangy with nail hypoplasia, and internal malformations have been observed until now (6 years of age). Conclusion This is the first study to document developmental and epileptic encephalopathy with PNKD in a human with PIGN mutations. This report expanded our understanding of the genotype–phenotype correlation of PIGN, and PIGN may be considered a potentially relevant gene when investigating cases of epilepsy or PNKD.
Collapse
Affiliation(s)
- Maoqiang Tian
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143 Dalian Road, Zunyi, 563003, China.
| | - Jing Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143 Dalian Road, Zunyi, 563003, China
| | - Juan Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143 Dalian Road, Zunyi, 563003, China
| | - Hong Pan
- Department of Cosmetic Skin Laser, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Wenting Lei
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143 Dalian Road, Zunyi, 563003, China
| | - Xiaomei Shu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143 Dalian Road, Zunyi, 563003, China
| |
Collapse
|
12
|
Bayat A, de Valles-Ibáñez G, Pendziwiat M, Knaus A, Alt K, Biamino E, Bley A, Calvert S, Carney P, Caro-Llopis A, Ceulemans B, Cousin J, Davis S, des Portes V, Edery P, England E, Ferreira C, Freeman J, Gener B, Gorce M, Heron D, Hildebrand MS, Jezela-Stanek A, Jouk PS, Keren B, Kloth K, Kluger G, Kuhn M, Lemke JR, Li H, Martinez F, Maxton C, Mefford HC, Merla G, Mierzewska H, Muir A, Monfort S, Nicolai J, Norman J, O'Grady G, Oleksy B, Orellana C, Orec LE, Peinhardt C, Pronicka E, Rosello M, Santos-Simarro F, Schwaibold EMC, Stegmann APA, Stumpel CT, Szczepanik E, Terczyńska I, Thevenon J, Tzschach A, Van Bogaert P, Vittorini R, Walsh S, Weckhuysen S, Weissman B, Wolfe L, Reymond A, De Nittis P, Poduri A, Olson H, Striano P, Lesca G, Scheffer IE, Møller RS, Sadleir LG. PIGN encephalopathy: Characterizing the epileptology. Epilepsia 2022; 63:974-991. [PMID: 35179230 DOI: 10.1111/epi.17173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.
Collapse
Affiliation(s)
- Allan Bayat
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark.,Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | | | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian Albrecht University, Kiel, Germany.,Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel, Kiel, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rhenish Friedrich Wilhelm University of Bonn, Bonn, Germany
| | | | - Elisa Biamino
- Department of Pediatrics, Regina Margherita Children's Hospital, Turin, Italy
| | - Annette Bley
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sophie Calvert
- Department of Neurosciences, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Patrick Carney
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Janice Cousin
- Section of Human Biochemical Genetics, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Suzanne Davis
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | | | - Patrick Edery
- Department of Medical Genetics, University Hospital of Lyon, Lyon, France
| | - Eleina England
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Carlos Ferreira
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jeremy Freeman
- Royal Children's Hospital, Parkville, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Blanca Gener
- Department of Genetics, Cruces University Hospital, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | - Delphine Heron
- Department of Genetics, Intellectual Disability and Autism Clinical Research Group, Pierre and Marie Curie University, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Michael S Hildebrand
- Royal Children's Hospital, Florey institute and Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Pierre-Simon Jouk
- Inserm U1209, Grenoble Alpes University Hospital Center, University of Grenoble Alpes, Grenoble, France
| | - Boris Keren
- Department of Genetics, Intellectual Disability and Autism Clinical Research Group, Pierre and Marie Curie University, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Katja Kloth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.,Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Hong Li
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Francisco Martinez
- Genomics Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St, Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Giuseppe Merla
- Department of Pediatrics, Regina Margherita Children's Hospital, Turin, Italy
| | - Hanna Mierzewska
- Department of Mother and Child Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Alison Muir
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St, Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sandra Monfort
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Gina O'Grady
- Starship Children's Hospital, Auckland, New Zealand
| | - Barbara Oleksy
- Department of Child and Adolescent Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Carmen Orellana
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Laura Elena Orec
- Center for Child and Adolescent Medicine, Pediatric Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ewa Pronicka
- Department of Medical Genetics, Children's Memorial Health Institute, Warsaw, Poland
| | - Monica Rosello
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Constance T Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Elzbieta Szczepanik
- Department of Child and Adolescent Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Iwona Terczyńska
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Julien Thevenon
- Department of Genetics, University of Bourgogne-Franche Comté, Dijon, France
| | - Andreas Tzschach
- Institute of Clinical Genetics, Dresden University of Technology, Dresden, Germany
| | | | - Roberta Vittorini
- Department of Pediatrics, Regina Margherita Children's Hospital, Turin, Italy
| | - Sonja Walsh
- Institute of Clinical Genetics, Dresden University of Technology, Dresden, Germany
| | - Sarah Weckhuysen
- Neurology Department, University Hospital Antwerp, Antwerp, Belgium.,Applied and Translational Genomics Group, Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Barbara Weissman
- Center for Child and Adolescent Medicine, Pediatric Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lynne Wolfe
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Heather Olson
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Gaetan Lesca
- Department of Medical Genetics, University Hospital of Lyon, Lyon, France
| | - Ingrid E Scheffer
- Royal Children's Hospital, Florey institute and Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Departments of Medicine and Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Rikke S Møller
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark.,Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
13
|
Paprocka J, Hutny M, Hofman J, Tokarska A, Kłaniewska M, Szczałuba K, Stembalska A, Jezela-Stanek A, Śmigiel R. Spectrum of Neurological Symptoms in Glycosylphosphatidylinositol Biosynthesis Defects: Systematic Review. Front Neurol 2022; 12:758899. [PMID: 35058872 PMCID: PMC8763846 DOI: 10.3389/fneur.2021.758899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mutations of genes involved in the synthesis of glycosylphosphatidylinositol and glycosylphosphatidylinositol-anchored proteins lead to rare syndromes called glycosylphosphatidylinositol-anchored proteins biosynthesis defects. Alterations of their structure and function in these disorders impair often fundamental processes in cells, resulting in severe clinical image. This study aimed to provide a systematic review of GPIBD cases reports published in English-language literature. Methods: The browsing of open-access databases (PubMed, PubMed Central. and Medline) was conducted, followed by statistical analysis of gathered information concerning neurological symptomatology. The inclusion criteria were: studies on humans, age at onset (<18 y.o.), and report of GPIBD cases with adequate data on the genetic background and symptomatology. Exclusion criteria were: publication type (manuscripts, personal communication, review articles); reports of cases of GPI biosynthesis genes mutations in terms of other disorders; reports of GPIBD cases concentrating on non-neurological symptoms; or articles concentrating solely on the genetic issues of GPI biosynthesis. Risk of bias was assessed using Joanna Brigs Institute Critical Appraisal Checklists. Data synthesis was conducted using STATISTICA 13.3.721.1 (StatSoft Polska Sp. z.o.o.). Used tests were chi-square, Fisher's exact test (for differences in phenotype), and Mann-Whitney U test (for differences in onset of developmental delay). Results: Browsing returned a total of 973 articles which, after ruling out the repetitions and assessing the inclusion and exclusion criteria, led to final inclusion of 77 articles (337 GPIBD cases) in the analysis. The main outcomes were prevalence of neurological symptoms, onset and semiology of seizures and their response to treatment, and onset of developmental delay. Based on this data a synthesis of phenotypical differences between the groups of GPIBD cases and the general GPIBD cases population was made. Discussion: A synthetical analysis of neurological components in clinical image of GPIBD patients was presented. It highlights the main features of these disorders, which might be useful in clinical practice for consideration in differential diagnosis with children presenting with early-onset seizures and developmental delay. The limitation of this review is the scarcity of the specific data in some reports, concerning the semiology and onset of two main features of GPIBD.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michał Hutny
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jagoda Hofman
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Tokarska
- Department of Pediatrics and Developmental Age Neurology, Upper Silesian Child Health Centre, Katowice, Poland
| | | | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Robert Śmigiel
- Department of Pediatrics, Medical University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
14
|
De Giorgis V, Paoletti M, Varesio C, Gana S, Rognone E, Dallavalle G, Papalia G, Pichiecchio A. Novel insights into the clinico-radiological spectrum of phenotypes associated to PIGN mutations. Eur J Paediatr Neurol 2021; 33:21-28. [PMID: 34051595 DOI: 10.1016/j.ejpn.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Autosomic recessive mutations in the PIGN gene have been described in less than 30 subjects to date, in whom multiple congenital anomalies combined with severe developmental delay, hypotonia, epileptic encephalopathy, and cerebellar atrophy have been described as crucial features. A clear-cut neuroradiological characterization of this entity, however, is still lacking. We aim to present three pediatric PIGN mutated cases with an in-depth evaluation of their brain abnormalities. METHODS We present the neuroradiological, clinical, and genetic characterization of three Caucasian pediatric subjects with pathogenic/likely pathogenic variants in the PIGN gene revealed by Next Generation Sequencing analysis. RESULTS We identified three subjects (two siblings, one unrelated case) presenting with encephalopathy with early-onset epilepsy, hypotonia, and severe global developmental delay. No additional severe multiple congenital anomalies were detected. Neuroradiological evaluation showed extensive quantitative reduction of white matter, severe and progressive cortical atrophy, with frontal predominance and an anteroposterior gradient, combined with cerebellar and brainstem atrophy. CONCLUSIONS Our findings broaden and systematize the neuroradiological spectrum of abnormalities in PIGN related encephalopathy. Furthermore, our dataset confirms that mutations in PIGN gene appear to be pan-ethnic and represent an underestimated cause of early-onset encephalopathy.
Collapse
Affiliation(s)
- Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.
| | - Simone Gana
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Elisa Rognone
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Gianfranco Dallavalle
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Grazia Papalia
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Liu X, Shen Q, Zheng G, Guo H, Lu X, Wang X, Yang X, Cao Z, Chen J. Gene and Phenotype Expansion of Unexplained Early Infantile Epileptic Encephalopathy. Front Neurol 2021; 12:633637. [PMID: 34163418 PMCID: PMC8215605 DOI: 10.3389/fneur.2021.633637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The genetic aetiology of epileptic encephalopathy (EE) is growing rapidly based on next generation sequencing (NGS) results. In this single-centre study, we aimed to investigate a cohort of Chinese children with early infantile epileptic encephalopathy (EIEE). Methods: NGS was performed on 50 children with unexplained EIEE. The clinical profiles of children with pathogenic variants were characterised and analysed in detail. Conservation analysis and homology modelling were performed to predict the impact of STXBP1 variant on the protein structure. Results: Pathogenic variants were identified in 17 (34%) of 50 children. Sixteen variants including STXBP1 (n = 2), CDKL5 (n = 2), PAFAH1B1, SCN1A (n = 9), SCN2A, and KCNQ2 were de novo, and one (PIGN) was a compound heterozygous variant. The phenotypes of the identified genes were broadened. PIGN phenotypic spectrum may include EIEE. The STXBP1 variants were predicted to affect protein stability. Significance: NGS is a useful diagnostic tool for EIEE and contributes to expanding the EIEE-associated genotypes. Early diagnosis may lead to precise therapeutic interventions and can improve the developmental outcome.
Collapse
Affiliation(s)
- Xianyu Liu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyang Shen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guo Zheng
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Guo
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopeng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Wang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Yang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zixuan Cao
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Chen
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Sun L, Yang X, Xu Y, Sun S, Wu Q. Prenatal diagnosis of familial recessive PIGN mutation associated with multiple anomalies: A case report. Taiwan J Obstet Gynecol 2021; 60:530-533. [PMID: 33966742 DOI: 10.1016/j.tjog.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE We present a novel homozygous splice site mutation in the PIGN gene identified by whole exome sequencing and explored the genotype-phenotype correlation. CASE REPORT A healthy 32-year-old woman underwent an ultrasound at 13 + 5 weeks of gestation. The ultrasound revealed multiple anomalies again including cystic hygroma, omphalocele and a ventricular septal defect. The pregnancy was subsequently terminated, and whole exome sequencing revealed a novel homozygous splice site mutation in the PIGN gene c.963 G > A (p.Gln321Gln). The same variant was also detected by pedigree-based Sanger sequencing in both parents as heterozygous, while they had normal karyotypes. CONCLUSION Our case report enhances the phenotype-genotype correlation associated with homozygous loss of function mutations in the PIGN gene.
Collapse
Affiliation(s)
- Li Sun
- Center of Prenatal Diagnosis, Women and Children's Hospital Affiliated to Xiamen University, PR China
| | - Xiaomei Yang
- Center of Prenatal Diagnosis, Women and Children's Hospital Affiliated to Xiamen University, PR China
| | - Yasong Xu
- Center of Prenatal Diagnosis, Women and Children's Hospital Affiliated to Xiamen University, PR China
| | - Shiyu Sun
- Center of Prenatal Diagnosis, Women and Children's Hospital Affiliated to Xiamen University, PR China
| | - Qichang Wu
- Center of Prenatal Diagnosis, Women and Children's Hospital Affiliated to Xiamen University, PR China.
| |
Collapse
|
17
|
PIGF deficiency causes a phenotype overlapping with DOORS syndrome. Hum Genet 2021; 140:879-884. [PMID: 33386993 DOI: 10.1007/s00439-020-02251-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
DOORS syndrome is characterized by deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. In this study, we report two unrelated individuals with DOORS syndrome without deafness. Exome sequencing revealed a homozygous missense variant in PIGF (NM_173074.3:c.515C>G, p.Pro172Arg) in both. We demonstrate impaired glycosylphosphatidylinositol (GPI) biosynthesis through flow cytometry analysis. We thus describe the causal role of a novel disease gene, PIGF, in DOORS syndrome and highlight the overlap between this condition and GPI deficiency disorders. For each gene implicated in DOORS syndrome and/or inherited GPI deficiencies, there is considerable clinical variability so a high index of suspicion is warranted even though not all features are noted.
Collapse
|
18
|
Biomedical Knowledge Graph Embeddings for Personalized Medicine. PROGRESS IN ARTIFICIAL INTELLIGENCE 2021. [DOI: 10.1007/978-3-030-86230-5_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Bayat A, Kløvgaard M, Johannesen KM, Barakat TS, Kievit A, Montomoli M, Parrini E, Pietrafusa N, Schelhaas J, van Slegtenhorst M, Miya K, Guerrini R, Tranebjærg L, Tümer Z, Rubboli G, Møller RS. Deciphering the premature mortality in PIGA-CDG - An untold story. Epilepsy Res 2020; 170:106530. [PMID: 33508693 DOI: 10.1016/j.eplepsyres.2020.106530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Congenital disorder of glycosylation (CDG) due to a defective phosphatidylinositol glycan anchor biosynthesis class A protein (PIGA) is a severe X-linked developmental and epileptic encephalopathy. Seizures are often treatment refractory, and patients have intellectual disability and global developmental delay. Previous reports have suggested that patients with PIGA-CDG have a high risk of premature mortality. This study aimed to evaluate the observed high mortality and the causes of death in PIGA-CDG patients. METHODS We reviewed the literature and collected additional unpublished patients through an international network. RESULTS In total, we reviewed the data of 88 patients of whom 30 patients born alive were deceased, and the overall mortality before the age of 20 years was 30 % (26/88). Age at death ranged from 15 days to 48 years of life. The median age at death was two years and more than half of the patients deceased in early childhood. The PIGA-specific mortality rate/1000 person-years was 44.9/1000 person-years (95 %, CI 31.4-64.3). There were no cases of definite or probable sudden unexpected death in epilepsy (SUDEP) and half of the patients died due to respiratory failure (15/30, 50 %) or possible SUDEP (3/30, 10 %). Three patients (10 %) died from severe cardiomyopathy, liver failure and gastrointestinal bleeding, respectively. The cause of death was unclassified in nine patients (30 %). Autopsies were rarely performed and the true cause of death remains unknown for the majority of patients. SIGNIFICANCE Our data indicate an increased risk of premature death in patients with PIGA-CDG when compared to most monogenic developmental and epileptic encephalopathies.
Collapse
Affiliation(s)
- Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department for Regional Health Services, University of Southern Denmark, Odense, Denmark.
| | - Marius Kløvgaard
- The Epilepsy Clinic, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC - University Medical Center, Rotterdam, the Netherlands
| | - Anneke Kievit
- Department of Clinical Genetics, Erasmus MC - University Medical Center, Rotterdam, the Netherlands
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Nicola Pietrafusa
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Jurgen Schelhaas
- Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC - University Medical Center, Rotterdam, the Netherlands
| | - Kazushi Miya
- Department of Educational Sciences (Human Development and Welfare Course), University of Toyama, Faculty of Human Development, Toyama, Japan
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Lisbeth Tranebjærg
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guido Rubboli
- Department for Regional Health Services, University of Southern Denmark, Odense, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department for Regional Health Services, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Xiao SQ, Li MH, Meng YL, Li C, Huang HL, Liu CX, Lyu Y, Na Q. Case Report: Compound Heterozygous Phosphatidylinositol-Glycan Biosynthesis Class N ( PIGN) Mutations in a Chinese Fetus With Hypotonia-Seizures Syndrome 1. Front Genet 2020; 11:594078. [PMID: 33193741 PMCID: PMC7652820 DOI: 10.3389/fgene.2020.594078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Multiple congenital anomalies-hypotonia-seizures syndrome 1 (MCAHS1) caused by phosphatidylinositol-glycan biosynthesis class N (PIGN) mutations is an autosomal recessive disease involving many systems of the body, such as the urogenital, cardiovascular, gastrointestinal, and central nervous systems. Here, compound heterozygous variants NM_012327.6:c.2427-2A > G and c.963G > A in PIGN were identified in a Chinese proband with MCAHS1. The features of the MCAHS1 family proband were evaluated to understand the mechanism of the PIGN mutation leading to the occurrence of MCAHS1. Ultrasound was conducted to examine the fetus, and his clinical manifestations were evaluated. Genetic testing was performed by whole-exome sequencing and the results were verified by Sanger sequencing of the proband and his parents. Reverse transcription-polymerase chain reaction was performed, and the products were subjected to Sanger sequencing. Quantitative PCR (Q-PCR) was conducted to compare gene expression between the patient and wild-type subjects. The compound heterozygous mutation NM_012327.6:c.2427-2A > G and c.963G > A was identified by whole-exome sequencing and was confirmed by Sanger sequencing. The NM_012327.6:c.2427-2A > G mutation led to skipping of exon 26, which resulted in a low expression level of the gene, as measured by Q-PCR. These findings provided a basis for genetic counseling and reproduction guidance in this family. Phenotype-genotype correlations may be defined by an expanded array of mutations.
Collapse
Affiliation(s)
- Shi-Qi Xiao
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mei-Hui Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Lin Meng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chuang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hai-Long Huang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Xia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuan Lyu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Quan Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Molecular analysis of GPI-anchor biosynthesis pathway genes in rat strains used for the Pig-a gene mutation assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503256. [DOI: 10.1016/j.mrgentox.2020.503256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/05/2020] [Accepted: 09/11/2020] [Indexed: 11/20/2022]
|
22
|
Jezela-Stanek A, Mierzewska H, Szczepanik E. Vertical nystagmus as a feature of PIGN-related glycosylphosphatidylinositol biosynthesis defects. Clin Neurol Neurosurg 2020; 196:106033. [PMID: 32585529 DOI: 10.1016/j.clineuro.2020.106033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/10/2023]
Abstract
Vertical nystagmus is a known clinical feature, is however rarely observed in a specific neurodevelopmental disorder. Based on our experience with Polish patients with glycosylphosphatidylinositol biosynthesis defects (GPIBD) due to PIGN variants, supported by literature review, we have verified the clinical significance of this feature in PIGN-related disorder. We hope to underline the clinical implication of vertical nystagmus in the evaluation of patients with developmental encephalopathy with epilepsy, which may accelerate the neurological diagnosis process by orientating it towards PIGN-GPIBD.
Collapse
Affiliation(s)
- Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland.
| | - Hanna Mierzewska
- Clinic of Paediatric Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Elżbieta Szczepanik
- Clinic of Paediatric Neurology, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
23
|
Wu T, Yin F, Guang S, He F, Yang L, Peng J. The Glycosylphosphatidylinositol biosynthesis pathway in human diseases. Orphanet J Rare Dis 2020; 15:129. [PMID: 32466763 PMCID: PMC7254680 DOI: 10.1186/s13023-020-01401-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/06/2020] [Indexed: 01/15/2023] Open
Abstract
Glycosylphosphatidylinositol biosynthesis defects cause rare genetic disorders characterised by developmental delay/intellectual disability, seizures, dysmorphic features, and diverse congenital anomalies associated with a wide range of additional features (hypotonia, hearing loss, elevated alkaline phosphatase, and several other features). Glycosylphosphatidylinositol functions as an anchor to link cell membranes and protein. These proteins function as enzymes, adhesion molecules, complement regulators, or co-receptors in signal transduction pathways. Biallelic variants involved in the glycosylphosphatidylinositol anchored proteins biosynthetic pathway are responsible for a growing number of disorders, including multiple congenital anomalies-hypotonia-seizures syndrome; hyperphosphatasia with mental retardation syndrome/Mabry syndrome; coloboma, congenital heart disease, ichthyosiform dermatosis, mental retardation, and ear anomalies/epilepsy syndrome; and early infantile epileptic encephalopathy-55. This review focuses on the current understanding of Glycosylphosphatidylinositol biosynthesis defects and the associated genes to further understand its wide phenotype spectrum.
Collapse
Affiliation(s)
- Tenghui Wu
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Fei Yin
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Shiqi Guang
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Fang He
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Li Yang
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jing Peng
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
24
|
Analyzing clinical and genetic characteristics of a cohort with multiple congenital anomalies-hypotonia-seizures syndrome (MCAHS). Orphanet J Rare Dis 2020; 15:78. [PMID: 32220244 PMCID: PMC7099766 DOI: 10.1186/s13023-020-01365-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
Objective To summarize and extend the phenotypic characterization of Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome, and to discuss genotype-phenotype correlations. Methods Collecting clinical information of 17 patients with pathogenic variants in PIGN, PIGA, and PIGT. Genetic studies were performed on all patients. Results There were 7 patients with 15 PIGN mutations (one patient carrying 3 mutations), 8 patients with 8 PIGA mutations, and 2 patients with 5 PIGT mutations (one patient carrying 3 mutations). All patients had epilepsy and developmental delay, with 71% of them showed hypotonia. And among these patients’ various seizure types, the focal seizure was the most common one. Eighty-two percent patients showed a significant relationship between seizures and fever. Serum ALP was elevated in one patient with PIGN mutations and in two patients with PIGA mutations. Brain MRI showed enlarged subarachnoid space in 56% of patients. Some other different characteristics had also been found in our patients: First, atypical absence seizures presented in three patients with PIGN mutations; Second, diffuse slow waves mixed with focal or multifocal discharges of interictal EEG in 88% cases with PIGA-deficient; Third, phenotypes of seven out of eight patients with PIGA mutations were difficult to be classified as severe or less severe group; Last, mild neurological symptoms and developmental status rather than severe conditions occurred in one patient with PIGT mutations. Conclusion With epilepsy, developmental delay, and/or hypotonia as common features, the knowledge of MCAHS in terms of phenotype and genotype has been expanded. In cases with PIGN-deficient, we expanded the types of atypical absence seizures, and described one patient with elevated serum ALP. Focal seizures with diffuse slow waves mixed with focal or multifocal discharges on EEG rather than infantile spasms with hypsarrhythmia, which as previously reported were often seen in our patients with PIGA mutations. The classifications of phenotypes caused by PIGA mutations should be more continuous than discrete. The mild phenotype of one patient with PIGT mutations expanded the clinical presentation of MCAHS3.
Collapse
|
25
|
Carmody LC, Blau H, Danis D, Zhang XA, Gourdine JP, Vasilevsky N, Krawitz P, Thompson MD, Robinson PN. Significantly different clinical phenotypes associated with mutations in synthesis and transamidase+remodeling glycosylphosphatidylinositol (GPI)-anchor biosynthesis genes. Orphanet J Rare Dis 2020; 15:40. [PMID: 32019583 PMCID: PMC7001271 DOI: 10.1186/s13023-020-1313-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Defects in the glycosylphosphatidylinositol (GPI) biosynthesis pathway can result in a group of congenital disorders of glycosylation known as the inherited GPI deficiencies (IGDs). To date, defects in 22 of the 29 genes in the GPI biosynthesis pathway have been identified in IGDs. The early phase of the biosynthetic pathway assembles the GPI anchor (Synthesis stage) and the late phase transfers the GPI anchor to a nascent peptide in the endoplasmic reticulum (ER) (Transamidase stage), stabilizes the anchor in the ER membrane using fatty acid remodeling and then traffics the GPI-anchored protein to the cell surface (Remodeling stage). RESULTS We addressed the hypothesis that disease-associated variants in either the Synthesis stage or Transamidase+Remodeling-stage GPI pathway genes have distinct phenotypic spectra. We reviewed clinical data from 58 publications describing 152 individual patients and encoded the phenotypic information using the Human Phenotype Ontology (HPO). We showed statistically significant differences between the Synthesis and Transamidase+Remodeling Groups in the frequencies of phenotypes in the musculoskeletal system, cleft palate, nose phenotypes, and cognitive disability. Finally, we hypothesized that phenotypic defects in the IGDs are likely to be at least partially related to defective GPI anchoring of their target proteins. Twenty-two of one hundred forty-two proteins that receive a GPI anchor are associated with one or more Mendelian diseases and 12 show some phenotypic overlap with the IGDs, represented by 34 HPO terms. Interestingly, GPC3 and GPC6, members of the glypican family of heparan sulfate proteoglycans bound to the plasma membrane through a covalent GPI linkage, are associated with 25 of these phenotypic abnormalities. CONCLUSIONS IGDs associated with Synthesis and Transamidase+Remodeling stages of the GPI biosynthesis pathway have significantly different phenotypic spectra. GPC2 and GPC6 genes may represent a GPI target of general disruption to the GPI biosynthesis pathway that contributes to the phenotypes of some IGDs.
Collapse
Affiliation(s)
- Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Daniel Danis
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Xingman A Zhang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | | | | | - Peter Krawitz
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Miles D Thompson
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
26
|
Holtz AM, Harrington AW, McNamara ER, Kielian A, Soul JS, Martinez-Ojeda M, Levy PT. Expanding the phenotypic spectrum of Mabry Syndrome with novel PIGO gene variants associated with hyperphosphatasia, intractable epilepsy, and complex gastrointestinal and urogenital malformations. Eur J Med Genet 2019; 63:103802. [PMID: 31698102 DOI: 10.1016/j.ejmg.2019.103802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/05/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
Abstract
Mabry syndrome is a glycophosphatidylinositol (GPI) deficiency characterized by intellectual disability, distinctive facial features, intractable seizures, and hyperphosphatasia. We expand the phenotypic spectrum of inherited GPI deficiencies with novel bi-allelic phosphatidylinositol glycan anchor biosynthesis class O (PIGO) variants in a neonate who presented with intractable epilepsy and complex gastrointestinal and urogenital malformations.
Collapse
Affiliation(s)
- Alexander M Holtz
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amanda W Harrington
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erin R McNamara
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Agnieszka Kielian
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Janet S Soul
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mayra Martinez-Ojeda
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Philip T Levy
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Murakami Y, Nguyen TTM, Baratang N, Raju PK, Knaus A, Ellard S, Jones G, Lace B, Rousseau J, Ajeawung NF, Kamei A, Minase G, Akasaka M, Araya N, Koshimizu E, van den Ende J, Erger F, Altmüller J, Krumina Z, Strautmanis J, Inashkina I, Stavusis J, El-Gharbawy A, Sebastian J, Puri RD, Kulshrestha S, Verma IC, Maier EM, Haack TB, Israni A, Baptista J, Gunning A, Rosenfeld JA, Liu P, Joosten M, Rocha ME, Hashem MO, Aldhalaan HM, Alkuraya FS, Miyatake S, Matsumoto N, Krawitz PM, Rossignol E, Kinoshita T, Campeau PM. Mutations in PIGB Cause an Inherited GPI Biosynthesis Defect with an Axonal Neuropathy and Metabolic Abnormality in Severe Cases. Am J Hum Genet 2019; 105:384-394. [PMID: 31256876 PMCID: PMC6698938 DOI: 10.1016/j.ajhg.2019.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/28/2019] [Indexed: 11/15/2022] Open
Abstract
Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.
Collapse
Affiliation(s)
- Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Thi Tuyet Mai Nguyen
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Nissan Baratang
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Praveen K Raju
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Alexej Knaus
- Insitute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany
| | - Sian Ellard
- Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Gabriela Jones
- Clinical Genetics Department, Nottingham University Hospitals NHS Trust, Nottingham NGS 1PB, UK
| | - Baiba Lace
- Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier, Ville de Québec, QC G1V 4G2, Canada
| | - Justine Rousseau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Norbert Fonya Ajeawung
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Atsushi Kamei
- Department of Pediatrics, School of Medicine, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Gaku Minase
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Manami Akasaka
- Department of Pediatrics, School of Medicine, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Nami Araya
- Department of Pediatrics, School of Medicine, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | | | - Florian Erger
- Institute of Human Genetics, University Hospital of Cologne, and Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Zita Krumina
- Deparment of Biology and Microbiology, Riga Stradinš University, Riga, LV-1029, Latvia
| | | | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga LV-1067, Latvia
| | - Janis Stavusis
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1 k-1, Riga LV-1067, Latvia
| | - Areeg El-Gharbawy
- Department of Medical Genetics, Children's Hospital of Pittsburgh of University Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Jessica Sebastian
- Department of Medical Genetics, Children's Hospital of Pittsburgh of University Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Ishwar C Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, 80337 Munich, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72074 Tübingen, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Anil Israni
- Department of Paediatric Neurology, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - Julia Baptista
- Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Adam Gunning
- Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marieke Joosten
- Dept of Clinical Genetics, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | | | - Mais O Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Hesham M Aldhalaan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Peter M Krawitz
- Insitute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany
| | - Elsa Rossignol
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Neurosciences, Centre Hospitalier Universitaire Sainte-Justine and University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine and University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
28
|
Nicklas JA, Vacek PM, Carter EW, McDiarmid M, Albertini RJ. Molecular analysis of glycosylphosphatidylinositol anchor deficient aerolysin resistant isolates in gulf war i veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:470-493. [PMID: 30848503 DOI: 10.1002/em.22283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
During the First Gulf War (1991) over 100 servicemen sustained depleted uranium (DU) exposure through wound contamination, inhalation, and shrapnel. The Department of Veterans Affairs has a surveillance program for these Veterans which has included genotoxicity assays. The frequencies of glycosylphosphatidylinositol anchor (GPIa) negative (aerolysin resistant) cells determined by cloning assays for these Veterans are reported in Albertini RJ et al. (2019: Environ Mol Mutagen). Molecular analyses of the GPIa biosynthesis class A (PIGA) gene was performed on 862 aerolysin-resistant T-lymphocyte recovered isolates. The frequencies of different types of PIGA mutations were compared between high and low DU exposure groups. Additional molecular studies were performed on mutants that produced no PIGA mRNA or with deletions of all or part of the PIGA gene to determine deletion size and breakpoint sequence. One mutant appeared to be the result of a chromothriptic event. A significant percentage (>30%) of the aerolysin resistant isolates, which varied by sample year and Veteran, had wild-type PIGA cDNA (no mutation). As described in Albertini RJ et al. (2019: Environ Mol Mutagen), TCR gene rearrangement analysis of these isolates indicated most arose from multiple T-cell progenitors (hence the inability to find a mutation). It is likely that these isolates were the result of failure of complete selection against nonmutant cells in the cloning assays. Real-time studies of GPIa resistant isolates with no PIGA mutation but with a single TCR gene rearrangement found one clone with a PIGV deletion and several others with decreased levels of GPIa pathway gene mRNAs implying mutation in other GPIa pathway genes. Environ. Mol. Mutagen. 60:470-493, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Janice A Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont
| | - Pamela M Vacek
- Medical Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vermont
| | - Elizabeth W Carter
- Jeffords Institute for Quality, University of Vermont Medical Center, Burlington, Vermont
| | - Melissa McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- U.S. Department of Veterans Affairs, Washington, District of Columbia
| | - Richard J Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
29
|
Albertini RJ, Nicklas JA, Vacek PM, Carter EW, McDiarmid M. Longitudinal study of t-cell somatic mutations conferring glycosylphosphatidylinositol-anchor deficiency in gulf war I veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:494-504. [PMID: 30848527 DOI: 10.1002/em.22281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Fifty Veterans of the first Gulf War in 1991 exposed to depleted uranium (DU) were studied for glycosylphosphatidylinositol-anchor (GPIa) deficient T-cell mutants on three occasions during the years 2009, 2011, and 2013. GPIa deficiency was determined in two ways: cloning assays employing aerolysin selection and cytometry using the FLAER reagent for positive staining of GPIa cell surface proteins. Subsequent molecular analyses of deficient isolates recovered from cloning assays (Nicklas JA et al. [2019]: Environ Mol Mutagen) revealed apparent incomplete selection in some cloning assays, necessitating correction of original data to afford a more realistic estimate of GPIa deficient mutant frequency (MF) values. GPIa deficient variant frequencies (VFs) determined by cytometry were determined in the years 2011 and 2013. A positive but nonsignificant association was observed between MF and VF values determined on the same blood samples during 2013. Exposure to DU had no effect on either GPIa deficient MF or VFs. Environ. Mol. Mutagen. 60:494-504, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richard J Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| | - Janice A Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont
| | - Pamela M Vacek
- Medical Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vermont
| | - Elizabeth W Carter
- Jeffords Institute for Quality, University of Vermont Medical Center, Burlington, Vermont
| | - Melissa McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- U.S. Department of Veterans Affairs, Washington, DC
| |
Collapse
|
30
|
Nguyen TTM, Murakami Y, Wigby KM, Baratang NV, Rousseau J, St-Denis A, Rosenfeld JA, Laniewski SC, Jones J, Iglesias AD, Jones MC, Masser-Frye D, Scheuerle AE, Perry DL, Taft RJ, Le Deist F, Thompson M, Kinoshita T, Campeau PM. Mutations in PIGS, Encoding a GPI Transamidase, Cause a Neurological Syndrome Ranging from Fetal Akinesia to Epileptic Encephalopathy. Am J Hum Genet 2018; 103:602-611. [PMID: 30269814 DOI: 10.1016/j.ajhg.2018.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022] Open
Abstract
Inherited GPI deficiencies (IGDs) are a subset of congenital disorders of glycosylation that are increasingly recognized as a result of advances in whole-exome sequencing (WES) and whole-genome sequencing (WGS). IGDs cause a series of overlapping phenotypes consisting of seizures, dysmorphic features, multiple congenital malformations, and severe intellectual disability. We present a study of six individuals from three unrelated families in which WES or WGS identified bi-allelic phosphatidylinositol glycan class S (PIGS) biosynthesis mutations. Phenotypes included severe global developmental delay, seizures (partly responding to pyridoxine), hypotonia, weakness, ataxia, and dysmorphic facial features. Two of them had compound-heterozygous variants c.108G>A (p.Trp36∗) and c.101T>C (p.Leu34Pro), and two siblings of another family were homozygous for a deletion and insertion leading to p.Thr439_Lys451delinsArgLeuLeu. The third family had two fetuses with multiple joint contractures consistent with fetal akinesia. They were compound heterozygous for c.923A>G (p.Glu308Gly) and c.468+1G>C, a splicing mutation. Flow-cytometry analyses demonstrated that the individuals with PIGS mutations show a GPI-AP deficiency profile. Expression of the p.Trp36∗ variant in PIGS-deficient HEK293 cells revealed only partial restoration of cell-surface GPI-APs. In terms of both biochemistry and phenotype, loss of function of PIGS shares features with PIGT deficiency and other IGDs. This study contributes to the understanding of the GPI-AP biosynthesis pathway by describing the consequences of PIGS disruption in humans and extending the family of IGDs.
Collapse
Affiliation(s)
- Thi Tuyet Mai Nguyen
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kristen M Wigby
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Nissan V Baratang
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada
| | - Justine Rousseau
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada
| | - Anik St-Denis
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Julie Jones
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Alejandro D Iglesias
- NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY 10032, USA
| | - Marilyn C Jones
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | | | | | | | | | - Françoise Le Deist
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada
| | - Miles Thompson
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte Justine Research Center, University of Montreal, Montreal, QC H3T1C5, Canada.
| |
Collapse
|
31
|
Yang J, Wang Q, Zhuo Q, Tian H, Li W, Luo F, Zhang J, Bi D, Peng J, Zhou D, Xin H. A likely pathogenic variant putatively affecting splicing of PIGA identified in a multiple congenital anomalies hypotonia-seizures syndrome 2 (MCAHS2) family pedigree via whole-exome sequencing. Mol Genet Genomic Med 2018; 6:739-748. [PMID: 29974678 PMCID: PMC6160699 DOI: 10.1002/mgg3.428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/25/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Background Glycosylphosphatidylinositol (GPI) anchoring is a special type of protein posttranslational modification, by which proteins with diverse function are attached to cell membrane through a covalent linkage between the protein and the glycolipid. Phosphatidylinositol glycan anchor biosynthesis class A (PIGA) is a key enzyme in GPI anchor biosynthesis, somatic mutations or genetic variants of which have been associated with paroxysmal nocturnal hemoglobinuria (PNH), or PIGA deficiency, respectively. More than 10 PIGA pathogenic or likely pathogenic variants have been reported in a wide spectrum of clinical syndromes of PIGA deficiency, including multiple congenital anomalies hypotonia‐seizures syndrome 2 (MCAHS2). Methods Whole‐exome sequencing (WES) was performed on two trios, that is., the proband's family and his affected maternal cousin's family, from a nonconsanguineous Chinese family pedigree with hypotonia‐encephalopathy‐seizures disease history and putative X‐linked recessive inheritance. Sanger sequencing for PIGA variant was performed on affected members as well as unaffected members in the family pedigree to verify its familial segregation. Results A novel likely pathogenic variant in PIGA was identified through comparative WES analysis of the two affected families. The single‐nucleotide substitution (NC_000023.9:g.15343279T>C) is located in intron 3 of the PIGA gene and within the splice acceptor consensus sequence (NM_002641.3:c.849‐5A>G). Even though we have not performed RNA studies, in silico tools predict that this intronic variant may alter normal splicing, causing a four base pair insertion which creates a frameshift and a premature stop codon at position 297 (NP_002632.1:p.(Arg283Serfs*15)). Sanger sequencing analysis of the extended family members confirmed the presence of the variant and its X‐linked inheritance. Conclusion WES data analysis along with familial segregation of a rare intronic variant are suggestive of a diagnosis of X‐liked PIGA deficiency with clinical features of MCAHS2.
Collapse
Affiliation(s)
- Junli Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Qiong Wang
- Institute for Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qingcui Zhuo
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Huiling Tian
- Children Rehabilitation Center of Linyi Women and Children's Hospital, Linyi, China
| | - Wen Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Fang Luo
- MyGenostics Inc., Beijing, China
| | - Jinghui Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Dan Bi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Peng
- Institute for Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Dong Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Huawei Xin
- Institute for Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China.,School of Pharmacy, Linyi University, Linyi, China
| |
Collapse
|
32
|
Yan S, Zhang H, Xie W, Meng F, Zhang K, Jiang Y, Zhang X, Zhang J. Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis. Oncotarget 2018; 8:4136-4146. [PMID: 27926529 PMCID: PMC5354818 DOI: 10.18632/oncotarget.13744] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022] Open
Abstract
Mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) is the most common type of focal epilepsy. The present study aimed to explore the expression and functions of exosomal microRNAs in mTLE-HS. A total of 50 microRNAs were found to be differentially expressed in mTLE-HS compared with healthy controls. Among them, 2 were increased and 48 were decreased. The 6 significant differentially expressed candidate microRNAs (miR-3613-5p, miR-4668-5p, miR-8071, miR-197-5p, miR-4322, and miR-6781-5p ) in exosome were validated. The bioinformatics analysis showed that the potential target genes of these microRNAs were involved in biological processes, molecular functions, and cellular components. Similarly, these microRNAs also affected axon guidance, pathways in cancer, regulation of the actin cytoskeleton, focal adhesion, the calcium signaling pathway, the MAPK signaling pathway, and the PI3K-Akt signaling pathway. Among 6 candidate microRNAs, miR-8071 had the best diagnostic value for mTLE-HS with 83.33% sensitivity and 96.67% specificity, and was associated with seizure severity. This study indicated that exosomal microRNAs, may be regulators for the seizure development in mTLE-HS, and can be used as potential therapeutic targets and biomarker for diagnosis in mTLE-HS.
Collapse
Affiliation(s)
- Shaofeng Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyan Xie
- Department of Clinical Laboratory, Qian Fo Shan Hospital of Shandong Province, Jinan, Shandong Province, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Alessandri JL, Gordon CT, Jacquemont ML, Gruchy N, Ajeawung NF, Benoist G, Oufadem M, Chebil A, Duffourd Y, Dumont C, Gérard M, Kuentz P, Jouan T, Filippini F, Nguyen TTM, Alibeu O, Bole-Feysot C, Nitschké P, Omarjee A, Ramful D, Randrianaivo H, Doray B, Faivre L, Amiel J, Campeau PM, Thevenon J. Recessive loss of function PIGN alleles, including an intragenic deletion with founder effect in La Réunion Island, in patients with Fryns syndrome. Eur J Hum Genet 2018; 26:340-349. [PMID: 29330547 DOI: 10.1038/s41431-017-0087-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/12/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022] Open
Abstract
Fryns syndrome (FS) is a multiple malformations syndrome with major features of congenital diaphragmatic hernia, pulmonary hypoplasia, craniofacial dysmorphic features, distal digit hypoplasia, and a range of other lower frequency malformations. FS is typically lethal in the fetal or neonatal period. Inheritance is presumed autosomal recessive. Although no major genetic cause has been identified for FS, biallelic truncating variants in PIGN, encoding a component of the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway, have been identified in a limited number of cases with a phenotype compatible with FS. Biallelic variants in PIGN, typically missense or compound missense with truncating, also cause multiple congenital anomalies-hypotonia-seizures syndrome 1 (MCAHS1). Here we report six further patients with FS with or without congenital diaphragmatic hernia and recessive loss of function PIGN alleles, including an intragenic deletion with a likely founder effect in La Réunion and other Indian Ocean islands. Our results support the hypothesis that a spectrum of phenotypic severity is associated with recessive PIGN variants, ranging from FS at the extreme end, caused by complete loss of function, to MCAHS1, in which some residual PIGN function may remain. Our data add FS resulting from PIGN variants to the catalog of inherited GPI deficiencies caused by the disruption of the GPI-anchor biosynthesis pathway.
Collapse
Affiliation(s)
- Jean-Luc Alessandri
- Service de Réanimation Néonatale, Pole Femme-Mère-Enfant, CH Felix Guyon, CHU de La Réunion, Saint-Denis, La Réunion, France.
| | - Christopher T Gordon
- Laboratory of embryology and genetics of congenital malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Marie-Line Jacquemont
- Unité de Génétique Médicale, Pole Femme-Mère-Enfant, Groupe Hospitalier Sud Réunion, CHU de La Réunion, La Réunion, France
| | | | - Norbert F Ajeawung
- Centre de Recherche du CHU Sainte-Justine et Université de Montréal, Montréal, QC, Canada
| | | | - Myriam Oufadem
- Laboratory of embryology and genetics of congenital malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Asma Chebil
- Service de Gynécologie-Obstétrique, CH Mamoudzou, Mayotte, France
| | - Yannis Duffourd
- INSERM UMR 1231 GAD team, Genetics of Developmental Anomalies, Université de Bourgogne-Franche Comté, Dijon, France.,FHU-TRANSLAD, Université de Bourgogne/CHU, Dijon, France
| | - Coralie Dumont
- Service de Gynécologie-Obstétrique, Pole Femme-mère-Enfant, Groupe Hospitalier Sud Réunion, CHU de La Réunion, La Réunion, France
| | | | - Paul Kuentz
- INSERM UMR 1231 GAD team, Genetics of Developmental Anomalies, Université de Bourgogne-Franche Comté, Dijon, France
| | - Thibaud Jouan
- INSERM UMR 1231 GAD team, Genetics of Developmental Anomalies, Université de Bourgogne-Franche Comté, Dijon, France.,FHU-TRANSLAD, Université de Bourgogne/CHU, Dijon, France
| | - Francesca Filippini
- Laboratory of embryology and genetics of congenital malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Thi Tuyet Mai Nguyen
- Centre de Recherche du CHU Sainte-Justine et Université de Montréal, Montréal, QC, Canada
| | - Olivier Alibeu
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Genomic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Christine Bole-Feysot
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Genomic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Patrick Nitschké
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Asma Omarjee
- Service de Gynécologie-Obstétrique, Pole Femme-mère-Enfant, Groupe Hospitalier Sud Réunion, CHU de La Réunion, La Réunion, France
| | - Duksha Ramful
- Service de Réanimation Néonatale, Pole Femme-Mère-Enfant, CH Felix Guyon, CHU de La Réunion, Saint-Denis, La Réunion, France
| | - Hanitra Randrianaivo
- Unité de Génétique Médicale, Pole Femme-Mère-Enfant, Groupe Hospitalier Sud Réunion, CHU de La Réunion, La Réunion, France
| | - Bérénice Doray
- Service de Génétique, CH Félix Guyon, CHU de La Réunion, La Réunion, France
| | - Laurence Faivre
- INSERM UMR 1231 GAD team, Genetics of Developmental Anomalies, Université de Bourgogne-Franche Comté, Dijon, France.,FHU-TRANSLAD, Université de Bourgogne/CHU, Dijon, France
| | - Jeanne Amiel
- Laboratory of embryology and genetics of congenital malformations, INSERM UMR 1163, Institut Imagine, Paris, France.,Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Service de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Philippe M Campeau
- Centre de Recherche du CHU Sainte-Justine et Université de Montréal, Montréal, QC, Canada
| | - Julien Thevenon
- INSERM UMR 1231 GAD team, Genetics of Developmental Anomalies, Université de Bourgogne-Franche Comté, Dijon, France.,FHU-TRANSLAD, Université de Bourgogne/CHU, Dijon, France.,Centre de Génétique, Hôpital Couple-Enfant, CHU de Grenoble-Alpes, 38700, La Tronche, France
| |
Collapse
|
34
|
Knaus A, Pantel JT, Pendziwiat M, Hajjir N, Zhao M, Hsieh TC, Schubach M, Gurovich Y, Fleischer N, Jäger M, Köhler S, Muhle H, Korff C, Møller RS, Bayat A, Calvas P, Chassaing N, Warren H, Skinner S, Louie R, Evers C, Bohn M, Christen HJ, van den Born M, Obersztyn E, Charzewska A, Endziniene M, Kortüm F, Brown N, Robinson PN, Schelhaas HJ, Weber Y, Helbig I, Mundlos S, Horn D, Krawitz PM. Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis. Genome Med 2018; 10:3. [PMID: 29310717 PMCID: PMC5759841 DOI: 10.1186/s13073-017-0510-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background Glycosylphosphatidylinositol biosynthesis defects (GPIBDs) cause a group of phenotypically overlapping recessive syndromes with intellectual disability, for which pathogenic mutations have been described in 16 genes of the corresponding molecular pathway. An elevated serum activity of alkaline phosphatase (AP), a GPI-linked enzyme, has been used to assign GPIBDs to the phenotypic series of hyperphosphatasia with mental retardation syndrome (HPMRS) and to distinguish them from another subset of GPIBDs, termed multiple congenital anomalies hypotonia seizures syndrome (MCAHS). However, the increasing number of individuals with a GPIBD shows that hyperphosphatasia is a variable feature that is not ideal for a clinical classification. Methods We studied the discriminatory power of multiple GPI-linked substrates that were assessed by flow cytometry in blood cells and fibroblasts of 39 and 14 individuals with a GPIBD, respectively. On the phenotypic level, we evaluated the frequency of occurrence of clinical symptoms and analyzed the performance of computer-assisted image analysis of the facial gestalt in 91 individuals. Results We found that certain malformations such as Morbus Hirschsprung and diaphragmatic defects are more likely to be associated with particular gene defects (PIGV, PGAP3, PIGN). However, especially at the severe end of the clinical spectrum of HPMRS, there is a high phenotypic overlap with MCAHS. Elevation of AP has also been documented in some of the individuals with MCAHS, namely those with PIGA mutations. Although the impairment of GPI-linked substrates is supposed to play the key role in the pathophysiology of GPIBDs, we could not observe gene-specific profiles for flow cytometric markers or a correlation between their cell surface levels and the severity of the phenotype. In contrast, it was facial recognition software that achieved the highest accuracy in predicting the disease-causing gene in a GPIBD. Conclusions Due to the overlapping clinical spectrum of both HPMRS and MCAHS in the majority of affected individuals, the elevation of AP and the reduced surface levels of GPI-linked markers in both groups, a common classification as GPIBDs is recommended. The effectiveness of computer-assisted gestalt analysis for the correct gene inference in a GPIBD and probably beyond is remarkable and illustrates how the information contained in human faces is pivotal in the delineation of genetic entities. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0510-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexej Knaus
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Jean Tori Pantel
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Center Schleswig Holstein, 24105, Kiel, Germany
| | - Nurulhuda Hajjir
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Max Zhao
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Tzung-Chien Hsieh
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Max Schubach
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | | | | | - Marten Jäger
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Sebastian Köhler
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Center Schleswig Holstein, 24105, Kiel, Germany
| | - Christian Korff
- Unité de Neuropédiatrie, Université de Genève, CH-1211, Genève, Switzerland
| | - Rikke S Møller
- Danish Epilepsy Centre, DK-4293, Dianalund, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, DK-5000, Odense, Denmark
| | - Allan Bayat
- Department of Pediatrics, University Hospital of Hvidovre, 2650, Hvicovre, Denmark
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France
| | | | | | | | - Christina Evers
- Genetische Poliklinik, Universitätsklinik Heidelberg, 69120, Heidelberg, Germany
| | - Marc Bohn
- St. Bernward Krankenhaus, 31134, Hildesheim, Germany
| | - Hans-Jürgen Christen
- Kinderkrankenhaus auf der Bult, Hannoversche Kinderheilanstalt, 30173, Hannover, Germany
| | | | - Ewa Obersztyn
- Institute of Mother and Child Department of Molecular Genetics, 01-211, Warsaw, Poland
| | - Agnieszka Charzewska
- Institute of Mother and Child Department of Molecular Genetics, 01-211, Warsaw, Poland
| | - Milda Endziniene
- Neurology Department, Lithuanian University of Health Sciences, 50009, Kaunas, Lithuania
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Natasha Brown
- Victorian Clinical Genetics Services, Royal Children's Hospital, MCRI, Parkville, Australia.,Department of Clinical Genetics, Austin Health, Heidelberg, Australia
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 06032, Farmington, USA
| | - Helenius J Schelhaas
- Departement of Neurology, Academic Center for Epileptology, 5590, Heeze, The Netherlands
| | - Yvonne Weber
- Department of Neurology and Epileptology and Hertie Institute for Clinical Brain Research, University Tübingen, 72076, Tübingen, Germany
| | - Ingo Helbig
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.,Pediatric Neurology, Children's Hospital of Philadelphia, 3401, Philadelphia, USA
| | - Stefan Mundlos
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Denise Horn
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.
| | - Peter M Krawitz
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany. .,Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany. .,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.
| |
Collapse
|
35
|
Thiffault I, Zuccarelli B, Welsh H, Yuan X, Farrow E, Zellmer L, Miller N, Soden S, Abdelmoity A, Brodsky RA, Saunders C. Hypotonia and intellectual disability without dysmorphic features in a patient with PIGN-related disease. BMC MEDICAL GENETICS 2017; 18:124. [PMID: 29096607 PMCID: PMC5668960 DOI: 10.1186/s12881-017-0481-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Abstract
Background Defects in the human glycosylphosphatidylinositol anchor biosynthetic pathway are associated with inherited glycosylphosphatidylinositol (GPI)-deficiencies characterized by a broad range of clinical phenotypes including multiple congenital anomalies, dysmorphic faces, developmental delay, hypotonia, and epilepsy. Biallelic variants in PIGN, encoding phosphatidylinositol-glycan biosynthesis class N have been recently associated with multiple congenital anomalies hypotonia seizure syndrome. Case presentation Our patient is a 2 year old male with hypotonia, global developmental delay, and focal epilepsy. Trio whole-exome sequencing revealed heterozygous variants in PIGN, c.181G > T (p.Glu61*) and c.284G > A (p.Arg95Gln). Analysis of FLAER and anti-CD59 by flow-cytometry demonstrated a shift in this patient’s granulocytes, confirming a glycosylphosphatidylinositol-biosynthesis defect, consistent with PIGN-related disease. Conclusions To date, a total of 18 patients have been reported, all but 2 of whom have congenital anomalies and/or obvious dysmorphic features. Our patient has no significant dysmorphic features or multiple congenital anomalies, which is consistent with recent reports linking non-truncating variants with a milder phenotype, highlighting the importance of functional studies in interpreting sequence variants. Electronic supplementary material The online version of this article (10.1186/s12881-017-0481-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, 2420 Pershing Road, Kansas City, MO, 64108, USA. .,Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA. .,University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.
| | - Britton Zuccarelli
- Department of Pediatrics, Children's Mercy Hospitals, Kansas City, MO, USA
| | - Holly Welsh
- Department of Pediatrics, Children's Mercy Hospitals, Kansas City, MO, USA
| | - Xuan Yuan
- Johns Hopkins Division of Hematology, Baltimore, MD, USA
| | - Emily Farrow
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, 2420 Pershing Road, Kansas City, MO, 64108, USA
| | - Lee Zellmer
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, 2420 Pershing Road, Kansas City, MO, 64108, USA
| | - Neil Miller
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, 2420 Pershing Road, Kansas City, MO, 64108, USA
| | - Sarah Soden
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, 2420 Pershing Road, Kansas City, MO, 64108, USA.,University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.,Department of Pediatrics, Children's Mercy Hospitals, Kansas City, MO, USA
| | - Ahmed Abdelmoity
- Department of Pediatrics, Children's Mercy Hospitals, Kansas City, MO, USA
| | | | - Carol Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, 2420 Pershing Road, Kansas City, MO, 64108, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA.,University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
36
|
Marques-da-Silva D, Francisco R, Webster D, Dos Reis Ferreira V, Jaeken J, Pulinilkunnil T. Cardiac complications of congenital disorders of glycosylation (CDG): a systematic review of the literature. J Inherit Metab Dis 2017; 40:657-672. [PMID: 28726068 DOI: 10.1007/s10545-017-0066-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 01/03/2023]
Abstract
Congenital disorders of glycosylation (CDG) are inborn errors of metabolism due to protein and lipid hypoglycosylation. This rapidly growing family of genetic diseases comprises 103 CDG types, with a broad phenotypic diversity ranging from mild to severe poly-organ -system dysfunction. This literature review summarizes cardiac involvement, reported in 20% of CDG. CDG with cardiac involvement were divided according to the associated type of glycosylation: N-glycosylation, O-glycosylation, dolichol synthesis, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, COG complex, V-ATPase complex, and other glycosylation pathways. The aim of this review was to document and interpret the incidence of heart disease in CDG patients. Heart disorders were grouped into cardiomyopathies, structural defects, and arrhythmogenic disorders. This work may contribute to improved early management of cardiac complications in CDG.
Collapse
Affiliation(s)
- D Marques-da-Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - R Francisco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - D Webster
- Division of Infectious Diseases, Department of Medicine, Saint John Regional Hospital, Dalhousie University, Saint John, NB, Canada
| | - V Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - J Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium
| | - T Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John, NB, E2L 4L5, Canada.
| |
Collapse
|
37
|
Johnstone DL, Nguyen TTM, Murakami Y, Kernohan KD, Tétreault M, Goldsmith C, Doja A, Wagner JD, Huang L, Hartley T, St-Denis A, le Deist F, Majewski J, Bulman DE, Kinoshita T, Dyment DA, Boycott KM, Campeau PM. Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy. Hum Mol Genet 2017; 26:1706-1715. [DOI: 10.1093/hmg/ddx077] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/27/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Devon L. Johnstone
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Thi-Tuyet-Mai Nguyen
- Research Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec H3T1C5, Canada
| | - Yoshiko Murakami
- WPI Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kristin D. Kernohan
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Martine Tétreault
- Department of Human Genetics, McGill University, Montreal, Quebec H3A1B1, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec H3A0G1, Canada
| | - Claire Goldsmith
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H8L1, Canada
| | - Asif Doja
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H8L1, Canada
| | - Justin D. Wagner
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Lijia Huang
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Taila Hartley
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Anik St-Denis
- Research Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec H3T1C5, Canada
| | - Françoise le Deist
- Research Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec H3T1C5, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec H3A1B1, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec H3A0G1, Canada
| | - Dennis E. Bulman
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
| | - Taroh Kinoshita
- WPI Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - David A. Dyment
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H8L1, Canada
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario K1H8L1, Canada
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H8L1, Canada
| | - Philippe M. Campeau
- Research Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec H3T1C5, Canada
- Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, Quebec H3T1C5, Canada
| | | |
Collapse
|
38
|
Kolicheski AL, Johnson GS, Mhlanga-Mutangadura T, Taylor JF, Schnabel RD, Kinoshita T, Murakami Y, O'Brien DP. A homozygous PIGN missense mutation in Soft-Coated Wheaten Terriers with a canine paroxysmal dyskinesia. Neurogenetics 2017; 18:39-47. [PMID: 27891564 PMCID: PMC5243907 DOI: 10.1007/s10048-016-0502-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 11/13/2016] [Indexed: 12/26/2022]
Abstract
Hereditary paroxysmal dyskinesias (PxD) are a heterogeneous group of movement disorders classified by frequency, duration, and triggers of the episodes. A young-adult onset canine PxD has segregated as an autosomal recessive trait in Soft-Coated Wheaten Terriers. The medical records and videos of episodes from 25 affected dogs were reviewed. The episodes of hyperkinesia and dystonia lasted from several minutes to several hours and could occur as often as >10/day. They were not associated with strenuous exercise or fasting but were sometimes triggered by excitement. The canine PxD phenotype most closely resembled paroxysmal non-kinesigenic dyskinesia (PNKD) of humans. Whole genome sequences were generated with DNA from 2 affected dogs and analyzed in comparison to 100 control canid whole genome sequences. The two whole genome sequences from dogs with PxD had a rare homozygous PIGN:c.398C > T transition, which predicted the substitution of an isoleucine for a highly conserved threonine in the encoded enzyme. All 25 PxD-affected dogs were PIGN:c.398T allele homozygotes, whereas there were no c.398T homozygotes among 1185 genotyped dogs without known histories of PxD. PIGN encodes an enzyme involved in the biosynthesis of glycosylphosphatidylinositol (GPI), which anchors a variety of proteins including CD59 to the cell surface. Flow cytometry of PIGN-knockout HEK239 cells expressing recombinant human PIGN with the c.398T variant showed reduced CD59 expression. Mutations in human PIGN have been associated with multiple congenital anomalies-hypotonia-seizures syndrome-1 (MCAHS1). Movement disorders can be a part of MCAHS1, but this is the first PxD associated with altered GPI anchor function.
Collapse
Affiliation(s)
- Ana L Kolicheski
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Gary S Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Robert D Schnabel
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
- Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Dennis P O'Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
39
|
Ihara S, Nakayama S, Murakami Y, Suzuki E, Asakawa M, Kinoshita T, Sawa H. PIGN prevents protein aggregation in the endoplasmic reticulum independently of its function in the GPI synthesis. J Cell Sci 2016; 130:602-613. [PMID: 27980068 DOI: 10.1242/jcs.196717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Quality control of proteins in the endoplasmic reticulum (ER) is essential for ensuring the integrity of secretory proteins before their release into the extracellular space. Secretory proteins that fail to pass quality control form aggregates. Here we show the PIGN-1/PIGN is required for quality control in Caenorhabditis elegans and in mammalian cells. In C. elegans pign-1 mutants, several proteins fail to be secreted and instead form abnormal aggregation. PIGN-knockout HEK293 cells also showed similar protein aggregation. Although PIGN-1/PIGN is responsible for glycosylphosphatidylinositol (GPI)-anchor biosynthesis in the ER, certain mutations in C. elegans pign-1 caused protein aggregation in the ER without affecting GPI-anchor biosynthesis. These results show that PIGN-1/PIGN has a conserved and non-canonical function to prevent deleterious protein aggregation in the ER independently of the GPI-anchor biosynthesis. PIGN is a causative gene for some human diseases including multiple congenital seizure-related syndrome (MCAHS1). Two pign-1 mutations created by CRISPR/Cas9 that correspond to MCAHS1 also cause protein aggregation in the ER, implying that the dysfunction of the PIGN non-canonical function might affect symptoms of MCAHS1 and potentially those of other diseases.
Collapse
Affiliation(s)
- Shinji Ihara
- Multicellular Organization Laboratory, National Institute of Genetics, Mishima 411-8540, Japan .,Department of Genetics, School of Life Science, Sokendai, Mishima 411-8540, Japan
| | - Sohei Nakayama
- Multicellular Organization Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases, and WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Emiko Suzuki
- Department of Genetics, School of Life Science, Sokendai, Mishima 411-8540, Japan.,Gene Network Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Masayo Asakawa
- Multicellular Organization Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, and WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Hitoshi Sawa
- Multicellular Organization Laboratory, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, School of Life Science, Sokendai, Mishima 411-8540, Japan
| |
Collapse
|
40
|
Hogrebe M, Murakami Y, Wild M, Ahlmann M, Biskup S, Hörtnagel K, Grüneberg M, Reunert J, Linden T, Kinoshita T, Marquardt T. A novel mutation in PIGW causes glycosylphosphatidylinositol deficiency without hyperphosphatasia. Am J Med Genet A 2016; 170:3319-3322. [PMID: 27626616 DOI: 10.1002/ajmg.a.37950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/15/2016] [Indexed: 01/02/2023]
Abstract
In recent years, many mutations have been identified that affect the biosynthesis of the glycosylphosphatidylinositol anchor, a biomolecule that attaches surface molecules to cell membranes. Here, we present two second-degree cousins with unexplained patterns of seizures. Next-generation sequencing identified the homozygous c.460A>G; p.(R154G) PIGW mutation in both patients. Transfection of the mutated allele into Pigw-defective CHO cells indicated impaired enzymatic activity of the mutated PIGW product. Alkaline phosphatase did not exceed the upper normal range and flow cytometry of CD16, CD24, and CD66c on granulocytes showed subtle changes of the cellular expression of the glycosylphosphatidylinositol-anchored proteins. The patients' phenotype is therefore remarkably different from the phenotype of the only other described individual with PIGW mutations. Patients might therefore be missed when relying on traditional flow cytometry of glycosylphosphatidylinositol-anchored proteins only and we suggest that glycosylphosphatidylinositol-deficiency should be considered even with patients not showing the typical clinical phenotypes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Max Hogrebe
- Universitätsklinikum Münster, Klinik für Kinder- und Jugendmedizin, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Martin Wild
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Martina Ahlmann
- Universitätsklinikum Münster, Pädiatrische Hämatologie und Onkologie, Albert-Schweitzer-Campus 1, Münster, Germany
| | | | | | - Marianne Grüneberg
- Universitätsklinikum Münster, Klinik für Kinder- und Jugendmedizin, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Janine Reunert
- Universitätsklinikum Münster, Klinik für Kinder- und Jugendmedizin, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Tobias Linden
- Kinderklinik Oldenburg, Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Oldenburg, Germany
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Thorsten Marquardt
- Universitätsklinikum Münster, Klinik für Kinder- und Jugendmedizin, Albert-Schweitzer-Campus 1, Münster, Germany
| |
Collapse
|
41
|
McInerney-Leo AM, Harris JE, Gattas M, Peach EE, Sinnott S, Dudding-Byth T, Rajagopalan S, Barnett CP, Anderson LK, Wheeler L, Brown MA, Leo PJ, Wicking C, Duncan EL. Fryns Syndrome Associated with Recessive Mutations in PIGN in two Separate Families. Hum Mutat 2016; 37:695-702. [PMID: 27038415 DOI: 10.1002/humu.22994] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/17/2016] [Indexed: 01/08/2023]
Abstract
Fryns syndrome is an autosomal recessive condition characterized by congenital diaphragmatic hernia (CDH), dysmorphic facial features, distal digital hypoplasia, and other associated malformations, and is the most common syndromic form of CDH. No gene has been associated with this condition. Whole-exome sequence data from two siblings and three unrelated individuals with Fryns syndrome were filtered for rare, good quality, coding mutations fitting a recessive inheritance model. Compound heterozygous mutations in PIGN were identified in the siblings, with appropriate parental segregation: a novel STOP mutation (c.1966C>T: p.Glu656X) and a rare (minor allele frequency <0.001) donor splice site mutation (c.1674+1G>C) causing skipping of exon 18 and utilization of a cryptic acceptor site in exon 19. A further novel homozygous STOP mutation in PIGN (c.694A>T: p.Lys232X) was detected in one unrelated case. All three variants affected highly conserved bases. The two remaining cases were negative for PIGN mutations. Mutations in PIGN have been reported in cases with multiple congenital anomalies, including one case with syndromic CDH. Fryns syndrome can be caused by recessive mutations in PIGN. Whether PIGN affects other syndromic and non-syndromic forms of CDH warrants investigation.
Collapse
Affiliation(s)
- Aideen M McInerney-Leo
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia.,Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI), Brisbane, QLD, Australia
| | - Jessica E Harris
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia.,Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI), Brisbane, QLD, Australia
| | - Michael Gattas
- Brisbane Genetics, Wesley Medical Centre, Auchenflower, QLD, Australia
| | - Elizabeth E Peach
- Specialized Obstetric and Gynaecological Imaging, South Bank, QLD, Australia
| | - Stephen Sinnott
- Specialized Obstetric and Gynaecological Imaging, South Bank, QLD, Australia
| | - Tracy Dudding-Byth
- Hunter Genetics, NSW Genetics of Learning Disability (GOLD) Service and GrowUpWell Priority Research Centre, The University of Newcastle, NSW, Australia
| | - Sulekha Rajagopalan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool BC, NSW, Australia
| | - Christopher P Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital/SA Pathology, North Adelaide, South Australia.,School of Medicine, University of Adelaide, North Adelaide, SA, Australia
| | - Lisa K Anderson
- Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI), Brisbane, QLD, Australia
| | - Lawrie Wheeler
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia.,Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI), Brisbane, QLD, Australia
| | - Matthew A Brown
- Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI), Brisbane, QLD, Australia
| | - Paul J Leo
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia.,Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI), Brisbane, QLD, Australia
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Emma L Duncan
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia.,Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI), Brisbane, QLD, Australia.,School of Medicine, Faculty of Medicine and Biomedical Sciences, University of Queensland, Australia.,Department of Endocrinology, James Mayne Building, Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD, Australia
| |
Collapse
|