1
|
Hnoonual A, Kaewfai S, Limwongse C, Limprasert P. Prevalence and implications of fragile X premutation screening in Thailand. Sci Rep 2024; 14:26257. [PMID: 39482338 PMCID: PMC11527874 DOI: 10.1038/s41598-024-77762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
The fragile X premutation is a public health concern worldwide. Implementing a comprehensive screening program for FMR1 premutation alleles could empower individuals and families with information, supporting informed health decisions and potentially reducing the incidence of fragile X syndrome (FXS). This study aimed to determine the prevalence of FMR1 premutations in the Thai population. We screened 369 female blood donors and 449 males with tremor and/or ataxia who tested negative for spinocerebellar ataxia (SCA) types 1, 2, and 3 for FMR1 CGG repeat expansions. Among the female blood donors, 0.27% (1/369) had a premutation allele, and 1.08% (4/369) had intermediate alleles. One female with a premutation carrier had 89 CGG repeats with one AGG interruption. In the male cohort, no premutations or full mutations were found; however, intermediate alleles were identified in 0.67% (3/449) of the males. This study provides the evidence of fragile X premutation screening in the Thai population. These findings contribute to the understanding of FMR1 premutation prevalence in Thailand and should encourage wider discussions on the feasibility for a national fragile X carrier screening program in Thailand to reduce the burden of fragile X-associated disorders.
Collapse
Affiliation(s)
- Areerat Hnoonual
- Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sunita Kaewfai
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Chanin Limwongse
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornprot Limprasert
- Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
- Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
2
|
Xue J, Zhu Y, Pan Y, Huang H, Wei L, Peng Y, Xi H, Zhou S, Wu H, Gu Z, Huang W, Wang H, Duan R. Strategic Implementation of Fragile X Carrier Screening in China: A Focused Pilot Study. J Mol Diagn 2024; 26:897-905. [PMID: 39032823 DOI: 10.1016/j.jmoldx.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Fragile X syndrome is the leading genetic cause of intellectual disability and autism spectrum disorders. Female premutation carriers exhibit no obvious symptoms during reproductive age, but the premutation allele can expand to full mutation when transmitted to the fetus. Given the relatively low prevalence but large population, the distinct health care system, the middle-income economic status, and low awareness among public and medical professionals, the optimal genetic screening strategy remains unknown. We conducted a pilot study of Fragile X carrier screening in China, involving 22,245 pregnant women and women with childbearing intentions, divided into control and pilot groups. The prevalence of Fragile X carriers in the control group was 1 of 850, similar to East Asian populations. Strikingly, the prevalence of Fragile X carriers in the pilot group was 1 of 356, which can be attributed to extensive medical training, participant education, and rigorous genetic counseling and testing protocols. Cost-effectiveness analyses of four strategies-no screening, population-based screening, targeted screening, and our pilot screening-indicated that our pilot screening was the most cost-effective option. A follow-up survey revealed that 55% of respondents reported undergoing screening because of their family history. We have successfully established a standardized system, addressing the challenges of low prevalence, limited awareness, and genetic testing complexities. Our study provides practical recommendations for implementing Fragile X carrier screening in China.
Collapse
Affiliation(s)
- Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Department of Medical Genetics, Hunan Children's Hospital, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yingbao Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yi Pan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hongjing Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Liyi Wei
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ying Peng
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Hui Xi
- Prenatal Diagnosis Center, National Health Commission Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Shihao Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Hongliang Wu
- Yueyang Maternal and Child Health Hospital, Yueyang, China
| | - Zhenxiang Gu
- Huaihua Hospital for Maternal and Child Health Care, Huaihua, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Children's Hospital, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| |
Collapse
|
3
|
Lincoln-Boyea B, Moultrie RR, Biesecker BB, Underwood M, Duparc M, Wheeler AC, Peay HL. Misunderstood terms and concepts identified through user testing of educational materials for fragile X premutation: "Not weak or fragile?". J Genet Couns 2024; 33:341-351. [PMID: 37232511 DOI: 10.1002/jgc4.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/27/2023]
Abstract
Complicated genetic mechanisms and unpredictable health risks associated with the FMR1 premutation can result in challenges for patient education when the diagnosis is made in a newborn. From October 15, 2018, to December 10, 2021, North Carolina parents could obtain FMR1 premutation results about their newborns through a voluntary expanded newborn screening research study. The study provided confirmatory testing, parental testing, and genetic counseling. We developed web-based educational materials to augment information about fragile X premutation conveyed by a genetic counselor. Many genetics education materials are developed for the lay population. However, relatively little research is published on how well individuals understand these materials. We conducted three rounds of iterative user testing interviews to help refine web-based educational materials that support understanding and self-paced learning. The participants included 25 parents with a 2-year college degree or less and without a child identified with fragile X syndrome, premutation, or gray-zone allele. Content analysis of interview transcripts resulted in iterative changes and ultimately saturation of findings. Across all rounds of interviews, there were two terms that were commonly misunderstood (fragile and carrier) and two terms that elicited initial misconceptions that were overcome by participants. Many also had difficulty understanding the relationship between fragile X premutation and fragile X syndrome as well as appreciating the implications of having a "fragile X gene." Website layout, formatting, and graphics also influenced comprehension. Despite iterative changes to the content, certain issues with understandability persisted. The findings support the need for user testing to identify misconceptions that may interfere with understanding and using genetic information. Here, we describe a process used to develop and refine evidence-based, understandable parental resources on fragile X premutation. Additionally, we provide recommendations to address ongoing educational challenges and discuss the potential impact of bias on the part of expert content developers.
Collapse
Affiliation(s)
- Beth Lincoln-Boyea
- Genomics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
| | - Rebecca R Moultrie
- Center for Communication Science, RTI International, Research Triangle Park, North Carolina, USA
| | - Barbara B Biesecker
- Genomics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
| | - Marcia Underwood
- Center for Data Science, RTI International, Research Triangle Park, North Carolina, USA
| | - Martin Duparc
- Genomics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
| | - Anne C Wheeler
- Genomics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
| | - Holly L Peay
- Genomics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
| |
Collapse
|
4
|
Ciobanu CG, Nucă I, Popescu R, Antoci LM, Caba L, Ivanov AV, Cojocaru KA, Rusu C, Mihai CT, Pânzaru MC. Narrative Review: Update on the Molecular Diagnosis of Fragile X Syndrome. Int J Mol Sci 2023; 24:9206. [PMID: 37298158 PMCID: PMC10252420 DOI: 10.3390/ijms24119206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
The diagnosis and management of fragile X syndrome (FXS) have significantly improved in the last three decades, although the current diagnostic techniques are not yet able to precisely identify the number of repeats, methylation status, level of mosaicism, and/or the presence of AGG interruptions. A high number of repeats (>200) in the fragile X messenger ribonucleoprotein 1 gene (FMR1) results in hypermethylation of promoter and gene silencing. The actual molecular diagnosis is performed using a Southern blot, TP-PCR (Triplet-Repeat PCR), MS-PCR (Methylation-Specific PCR), and MS-MLPA (Methylation-Specific MLPA) with some limitations, with multiple assays being necessary to completely characterise a patient with FXS. The actual gold standard diagnosis uses Southern blot; however, it cannot accurately characterise all cases. Optical genome mapping is a new technology that has also been developed to approach the diagnosis of fragile X syndrome. Long-range sequencing represented by PacBio and Oxford Nanopore has the potential to replace the actual diagnosis and offers a complete characterization of molecular profiles in a single test. The new technologies have improved the diagnosis of fragile X syndrome and revealed unknown aberrations, but they are a long way from being used routinely in clinical practice.
Collapse
Affiliation(s)
- Cristian-Gabriel Ciobanu
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
| | - Irina Nucă
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
- Investigatii Medicale Praxis, St. Moara de Vant No 35, 700376 Iasi, Romania
| | - Roxana Popescu
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
- Medical Genetics Department, “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| | - Lucian-Mihai Antoci
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
| | - Lavinia Caba
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
| | - Anca Viorica Ivanov
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania
| | - Karina-Alexandra Cojocaru
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania
| | - Cristina Rusu
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
- Medical Genetics Department, “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| | | | - Monica-Cristina Pânzaru
- Medical Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No 16, 700115 Iasi, Romania; (C.-G.C.)
- Medical Genetics Department, “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| |
Collapse
|
5
|
High normal sized CGG repeat on the FMR1 gene reduces live birth rates after in vitro fertilization in Han Chinese. Gene 2022; 819:146204. [PMID: 35101584 DOI: 10.1016/j.gene.2022.146204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/08/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
Abstract
Substantial evidence now suggests an association between the FMR1 genotype and female fertility. The aim of this study was to determine whether a high normal FMR1 allele (35-54 repeats) affects in vitro fertilization (IVF) outcomes in Chinese women. A total of 120 women with 210 IVF cycles were retrospectively recruited in this study. The patients were divided into two groups based on the FMR1 repeat lengths at allele 2 (normal repeat group: <35 repeats; high repeat group: 35-54 repeats). The observed primary outcomes were the clinical pregnancy rate and live birth rate. No associations were observed between the high normal FMR1 allele and lower clinical pregnancy rate or live birth rate after adjusting for maternal age, education, work status, duration of infertility and number of embryos transferred (aOR 0.633, 95% CI 0.249-1.601, p = 0.337; aOR 0.325, 95% CI 0.094-1.118, p = 0.075; respectively). However, after additionally adjusting for anti-Müllerian hormone (AMH) level, there was a weak but significant association between high normal sized CGG repeats and a lower live birth rate (aOR 0.218, 95% CI 0.057-0.836, p = 0.026). The rate of available embryos showed a decreasing trend in patients with a high normal FMR1 allele, although the difference was not statistically significant after adjusting for maternal age, education, work status, duration of infertility and AMH level (aOR 0.905, 95% CI 0.810-1.011, p = 0.078). Furthermore, the number of CGG repeats in either allele was not associated with the live birth rate after adjusting for all confounding factors (aOR 0.832, 95% CI 0.677-1.023, p = 0.081; aOR 0.865, 95% CI 0.651-1.148, p = 0.315; respectively). In addition, no significant differences were found in the rates of good-quality embryos (p = 0.263), miscarriage (p = 0.861) or cycle cancellation (p = 0.295) between the groups. Taken together, in the Chinese population, individuals with high normal sized CGG repeats on the FMR1 gene have a higher risk of reduced live birth rates in childbearing age. Therefore, we recommend enhanced screening for fragile X syndrome in women of childbearing age in China. This study also suggests that the association between the FMR1 genotype and fertility in Chinese women merits further research.
Collapse
|
6
|
Maltman N, Guilfoyle J, Nayar K, Martin GE, Winston M, Lau JCY, Bush L, Patel S, Lee M, Sideris J, Hall DA, Zhou L, Sharp K, Berry-Kravis E, Losh M. The Phenotypic Profile Associated With the FMR1 Premutation in Women: An Investigation of Clinical-Behavioral, Social-Cognitive, and Executive Abilities. Front Psychiatry 2021; 12:718485. [PMID: 34421690 PMCID: PMC8377357 DOI: 10.3389/fpsyt.2021.718485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
The FMR1 gene in its premutation (PM) state has been linked to a range of clinical and subclinical phenotypes among FMR1 PM carriers, including some subclinical traits associated with autism spectrum disorder (ASD). This study attempted to further characterize the phenotypic profile associated with the FMR1 PM by studying a battery of assessments examining clinical-behavioral traits, social-cognitive, and executive abilities in women carrying the FMR1 PM, and associations with FMR1-related variability. Participants included 152 female FMR1 PM carriers and 75 female controls who were similar in age and IQ, and screened for neuromotor impairments or signs of fragile X-associated tremor/ataxia syndrome. The phenotypic battery included assessments of ASD-related personality and language (i.e., pragmatic) traits, symptoms of anxiety and depression, four different social-cognitive tasks that tapped the ability to read internal states and emotions based on different cues (e.g., facial expressions, biological motion, and complex social scenes), and a measure of executive function. Results revealed a complex phenotypic profile among the PM carrier group, where subtle differences were observed in pragmatic language, executive function, and social-cognitive tasks that involved evaluating basic emotions and trustworthiness. The PM carrier group also showed elevated rates of ASD-related personality traits. In contrast, PM carriers performed similarly to controls on social-cognitive tasks that involved reliance on faces and biological motion. The PM group did not differ from controls on self-reported depression or anxiety symptoms. Using latent profile analysis, we observed three distinct subgroups of PM carriers who varied considerably in their performance across tasks. Among PM carriers, CGG repeat length was a significant predictor of pragmatic language violations. Results suggest a nuanced phenotypic profile characterized by subtle differences in select clinical-behavioral, social-cognitive, and executive abilities associated with the FMR1 PM in women.
Collapse
Affiliation(s)
- Nell Maltman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Janna Guilfoyle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Gary E. Martin
- Department of Communication Sciences and Disorders, St. John's University, Staten Island, NY, United States
| | - Molly Winston
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Joseph C. Y. Lau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Lauren Bush
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Shivani Patel
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Michelle Lee
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - John Sideris
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Lili Zhou
- Rush University Medical Center, Chicago, IL, United States
| | - Kevin Sharp
- Rush University Medical Center, Chicago, IL, United States
| | | | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
7
|
Barthelson K, Baer L, Dong Y, Hand M, Pujic Z, Newman M, Goodhill GJ, Richards RI, Pederson SM, Lardelli M. Zebrafish Chromosome 14 Gene Differential Expression in the fmr1 h u2787 Model of Fragile X Syndrome. Front Genet 2021; 12:625466. [PMID: 34135935 PMCID: PMC8203322 DOI: 10.3389/fgene.2021.625466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish represent a valuable model for investigating the molecular and cellular basis of Fragile X syndrome (FXS). Reduced expression of the zebrafish FMR1 orthologous gene, fmr1, causes developmental and behavioural phenotypes related to FXS. Zebrafish homozygous for the hu2787 non-sense mutation allele of fmr1 are widely used to model FXS, although FXS-relevant phenotypes seen from morpholino antisense oligonucleotide (morpholino) suppression of fmr1 transcript translation were not observed when hu2787 was first described. The subsequent discovery of transcriptional adaptation (a form of genetic compensation), whereby mutations causing non-sense-mediated decay of transcripts can drive compensatory upregulation of homologous transcripts independent of protein feedback loops, suggested an explanation for the differences reported. We examined the whole-embryo transcriptome effects of homozygosity for fmr1 h u2787 at 2 days post fertilisation. We observed statistically significant changes in expression of a number of gene transcripts, but none from genes showing sequence homology to fmr1. Enrichment testing of differentially expressed genes implied effects on lysosome function and glycosphingolipid biosynthesis. The majority of the differentially expressed genes are located, like fmr1, on Chromosome 14. Quantitative PCR tests did not support that this was artefactual due to changes in relative chromosome abundance. Enrichment testing of the "leading edge" differentially expressed genes from Chromosome 14 revealed that their co-location on this chromosome may be associated with roles in brain development and function. The differential expression of functionally related genes due to mutation of fmr1, and located on the same chromosome as fmr1, is consistent with R.A. Fisher's assertion that the selective advantage of co-segregation of particular combinations of alleles of genes will favour, during evolution, chromosomal rearrangements that place them in linkage disequilibrium on the same chromosome. However, we cannot exclude that the apparent differential expression of genes on Chromosome 14 genes was, (if only in part), caused by differences between the expression of alleles of genes unrelated to the effects of the fmr1 h u2787 mutation and made manifest due to the limited, but non-zero, allelic diversity between the genotypes compared.
Collapse
Affiliation(s)
- Karissa Barthelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Lachlan Baer
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yang Dong
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Melanie Hand
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Zac Pujic
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Morgan Newman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey J. Goodhill
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- School of Mathematics and Physics, University of Queensland, Brisbane, QLD, Australia
| | - Robert I. Richards
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Michael Lardelli
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
8
|
Xi H, Xie W, Chen J, Tang W, Deng X, Li H, Peng Y, Wang D, Yang S, Zhang Y, Duan R, Fang J, Wang H. Implementation of fragile X syndrome carrier screening during prenatal diagnosis: A pilot study at a single center. Mol Genet Genomic Med 2021; 9:e1711. [PMID: 34057320 PMCID: PMC8372084 DOI: 10.1002/mgg3.1711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 12/02/2022] Open
Abstract
Background Fragile X syndrome (FXS) is the most common inherited form of intellectual disability. Prenatal screening of FXS allows for early identification and intervention. The present study explored the feasibility of FXS carrier screening during prenatal diagnosis for those who were not offered screening early in pregnancy or prior to conception. Methods Pregnant women to be offered amniotic fluid testing were recruited for the free voluntary carrier screening at a single center between August, 2017 and September, 2019. The number of CGG repeats in the 5’ un‐translated region of the fragile X mental retardation gene 1 (FMR1) was determined. Results 4286 of 7000 (61.2%) pregnant women volunteered for the screening. Forty (0.93%), five (0.11%), and three (0.07%) carriers for intermediate mutation (45–54 repeats), premutation (55–200 repeats) and full mutation (>200 repeats) of the FMR1 gene were identified respectively. None of the detected premutation alleles were inherited by the fetuses. Of the three full mutation carrier mothers, all had a family history and one transmitted a full mutation allele to her male fetus. Conclusion Implementation of FXS carrier screening during prenatal diagnosis may be considered for the need to increase screening for FXS.
Collapse
Affiliation(s)
- Hui Xi
- Department of Medical Genetics & the Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Wanqin Xie
- NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Jing Chen
- Department of Medical Genetics & the Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Wanglan Tang
- Department of Medical Genetics & the Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Xiuli Deng
- Department of Medical Genetics & the Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Hua Li
- Department of Medical Genetics & the Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Ying Peng
- Department of Medical Genetics & the Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Dan Wang
- Department of Medical Genetics & the Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Shuting Yang
- Department of Medical Genetics & the Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Yanan Zhang
- Department of Medical Genetics & the Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences & Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Junqun Fang
- Department of Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Hua Wang
- Department of Medical Genetics & the Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.,NHC Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| |
Collapse
|
9
|
Mystery of Expansion: DNA Metabolism and Unstable Repeats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:101-124. [PMID: 32383118 DOI: 10.1007/978-3-030-41283-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The mammalian genome mostly contains repeated sequences. Some of these repeats are in the regulatory elements of genes, and their instability, particularly the propensity to change the repeat unit number, is responsible for 36 well-known neurodegenerative human disorders. The mechanism of repeat expansion has been an unsolved question for more than 20 years. There are a few hypotheses describing models of mutation development. Every hypothesis is based on assumptions about unusual secondary structures that violate DNA metabolism processes in the cell. Some models are based on replication errors, and other models are based on mismatch repair or base excision repair errors. Additionally, it has been shown that epigenetic regulation of gene expression can influence the probability and frequency of expansion. In this review, we consider the molecular bases of repeat expansion disorders and discuss possible mechanisms of repeat expansion during cell metabolism.
Collapse
|
10
|
Gao F, Huang W, You Y, Huang J, Zhao J, Xue J, Kang H, Zhu Y, Hu Z, Allen EG, Jin P, Xia K, Duan R. Development of Chinese genetic reference panel for Fragile X Syndrome and its application to the screen of 10,000 Chinese pregnant women and women planning pregnancy. Mol Genet Genomic Med 2020; 8:e1236. [PMID: 32281281 PMCID: PMC7284044 DOI: 10.1002/mgg3.1236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by a CGG repeat expansion in the 5' untranslated region of the FMR1 gene. When the number of repeats exceeds 200, the gene becomes hypermethylated and is transcriptionally silenced, resulting in FXS. Other allelic forms of the gene that are studied because of their instability or phenotypic consequence include intermediate alleles (45-54 CGG repeats) and premutation alleles (55-200 repeats). Normal alleles are classified as having <45 CGG repeats. Population screening studies have been conducted among American and Australian populations; however, large population-based studies have not been completed in China. METHODS AND RESULTS In this work we present FXS screening results from 10,145 women of childbearing age from China. We first created and tested a standard panel that was comprised of normal, intermediate, premutation, and full mutation samples, and we performed the screening after confirming the consistency of genotyping results among laboratories. CONCLUSION Based on our findings, we have determined the intermediate and premutation carrier prevalence of 1/130 and 1/634, respectively, among Chinese women.
Collapse
Affiliation(s)
- Fei Gao
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- National Institutes for Food and Drug ControlBeijingChina
| | - Wen Huang
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Yanjun You
- National Institutes for Food and Drug ControlBeijingChina
| | - Jie Huang
- National Institutes for Food and Drug ControlBeijingChina
| | - Juan Zhao
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Jin Xue
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Huaixing Kang
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Yingbao Zhu
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Zhengmao Hu
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Medical GeneticsCentral South UniversityChangshaHunanChina
| | - Emily G. Allen
- Department of Human GeneticsEmory University School of MedicineAtlantaGAUSA
| | - Peng Jin
- Department of Human GeneticsEmory University School of MedicineAtlantaGAUSA
| | - Kun Xia
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Medical GeneticsCentral South UniversityChangshaHunanChina
| | - Ranhui Duan
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Medical GeneticsCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Animal Models for Human DiseasesCentral South UniversityChangshaHunanChina
| |
Collapse
|
11
|
Winston M, Nayar K, Hogan AL, Barstein J, La Valle C, Sharp K, Berry-Kravis E, Losh M. Physiological regulation and social-emotional processing in female carriers of the FMR1 premutation. Physiol Behav 2020; 214:112746. [PMID: 31765665 PMCID: PMC6992413 DOI: 10.1016/j.physbeh.2019.112746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 01/28/2023]
Abstract
The FMR1 gene is associated with a wide range of clinical and cognitive phenotypes, ranging from intellectual disability and autism symptoms in fragile X syndrome (caused by the FMR1 full mutation), to a more varied, and still poorly understood range of clinical and cognitive phenotypes among carriers of the gene in its premutation state. Because the FMR1 premutation is relatively common among women (as high as 1 in 150), investigations of its phenotypic impact could have broad implications for understanding gene-behavior relationships underlying complex human traits, with potential clinical implications. This study investigated physiological regulation measured by pupillary responses, along with fixation patterns while viewing facial expressions among women who carry the FMR1 premutation (PM group; n = 47), to examine whether the FMR1 gene may relate to physiological regulation, social-emotional functioning, and social language skills (where subclinical differences have been previously reported among PM carriers that resemble those documented in autism-related conditions). Relative to controls (n = 25), the PM group demonstrated atypical pupillary responses and fixation patterns, controlling for IQ. In the PM group, pupillary response and fixation patterns were related to social cognition, social language abilities, and FMR1-related variation. Results indicate a pattern of atypical attention allocation among women who carry the FMR1 PM that could reflect different emotion-processing strategies mediated by autonomic dysregulation and the FMR1 gene. These findings lend insight into the FMR1 gene's potential contributions to complex human traits such as social emotional processing and social language.
Collapse
Affiliation(s)
- Molly Winston
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, United States
| | - Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, United States
| | - Abigail L Hogan
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Barnwell College, Suite 220, Columbia, SC 29208, United States
| | - Jamie Barstein
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, United States
| | - Chelsea La Valle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, United States
| | - Kevin Sharp
- Rush University Medical Center, Jelke Building, Room 1565, 1750W. Harrison St., Chicago IL 60612, United States
| | - Elizabeth Berry-Kravis
- Rush University Medical Center, Jelke Building, Room 1565, 1750W. Harrison St., Chicago IL 60612, United States
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, United States.
| |
Collapse
|
12
|
Nayar K, McKinney W, Hogan AL, Martin GE, La Valle C, Sharp K, Berry-Kravis E, Norton ES, Gordon PC, Losh M. Language processing skills linked to FMR1 variation: A study of gaze-language coordination during rapid automatized naming among women with the FMR1 premutation. PLoS One 2019; 14:e0219924. [PMID: 31348790 PMCID: PMC6660192 DOI: 10.1371/journal.pone.0219924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/03/2019] [Indexed: 01/15/2023] Open
Abstract
The FMR1 premutation (PM) is relatively common in the general population. Evidence suggests that PM carriers may exhibit subtle differences in specific cognitive and language abilities. This study examined potential mechanisms underlying such differences through the study of gaze and language coordination during a language processing task (rapid automatized naming; RAN) among female carriers of the FMR1 PM. RAN taps a complex set of underlying neuropsychological mechanisms, with breakdowns implicating processing disruptions in fundamental skills that support higher order language and executive functions, making RAN (and analysis of gaze/language coordination during RAN) a potentially powerful paradigm for revealing the phenotypic expression of the FMR1 PM. Forty-eight PM carriers and 56 controls completed RAN on an eye tracker, where they serially named arrays of numbers, letters, colors, and objects. Findings revealed a pattern of inefficient language processing in the PM group, including a greater number of eye fixations (namely, visual regressions) and reduced eye-voice span (i.e., the eyes' lead over the voice) relative to controls. Differences were driven by performance in the latter half of the RAN arrays, when working memory and processing load are the greatest, implicating executive skills. RAN deficits were associated with broader social-communicative difficulties among PM carriers, and with FMR1-related molecular genetic variation (higher CGG repeat length, lower activation ratio, and increased levels of the fragile X mental retardation protein; FMRP). Findings contribute to an understanding of the neurocognitive profile of PM carriers and indicate specific gene-behavior associations that implicate the role of the FMR1 gene in language-related processes.
Collapse
Affiliation(s)
- Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Walker McKinney
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas, United States of America
| | - Abigail L. Hogan
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Psychology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Gary E. Martin
- St. John’s University, Communication Sciences and Disorders, Queens, New York, United States of America
| | - Chelsea La Valle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Psychology, Boston University, Boston, Massachusetts, United States of America
| | - Kevin Sharp
- Pediatrics, Rush University Medical Center, Chicago, Illinois, United States of America
| | | | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Peter C. Gordon
- Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
13
|
Owens KM, Dohany L, Holland C, DaRe J, Mann T, Settler C, Longman RE. FMR1 premutation frequency in a large, ethnically diverse population referred for carrier testing. Am J Med Genet A 2018; 176:1304-1308. [PMID: 29603880 PMCID: PMC6001625 DOI: 10.1002/ajmg.a.38692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/23/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is caused by an expansion of cytosine‐guanine‐guanine (CGG) repeats in the FMR1 gene. Female premutation allele carriers (55–200 CGG repeats) are at risk to have an affected child. Currently, specific population‐based carrier screening for FXS is not recommended. Previous studies exploring female premutation carrier frequency have been limited by size or ethnicity. This retrospective study provides a pan‐ethnic estimate of the Fragile X premutation carrier frequency in a large, ethnically diverse population of women referred for routine carrier screening during a specified time period at Progenity, Inc. Patient ethnicity was self‐reported and categorized as: African American, Ashkenazi Jewish, Asian, Caucasian, Hispanic, Native American, Other/Mixed/Unknown, or Sephardic Jewish. FXS test results were stratified by ethnicity and repeat allele category. Total premutation carrier frequency was calculated and compared against each ethnic group. A total of 134,933 samples were included. The pan‐ethnic premutation carrier frequency was 1 in 201. Only the Asian group differed significantly from this frequency. Using the carrier frequency of 1 in 201, a conservative pan‐ethnic risk estimate for a male fetus to have FXS can be calculated as 1 in 2,412. This risk is similar to the highest ethnic‐based fetal risks for cystic fibrosis and spinal muscular atrophy, for which population‐wide screening is currently recommended. This study adds to the literature and supports further evaluation into specific population‐wide screening recommendations for FXS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryan E Longman
- Department of Obstetrics and Gynecology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|